
A Dataset Description442

We evaluate our proposed GRAPHPATCHER as well as other frameworks that mitigate the degree443

bias problem on seven real-worlds datasets spanning various fields such as citation network and444

merchandise network. Their statistics are shown in Table 4. For Cora, Citeseer and, Pubmed, we445

explore the community acknowledged public splits (i.e., fixed 20 nodes per class for training, 500446

nodes for validation, and 1000 nodes for testing); whereas for ogbn-arxiv, we use the API from447

Open Graph Benchmark (OGB)2 and explore the provided splits. For Wiki.CS, Amazon-Photo,448

and Coauthor-CS, we randomly select 10% nodes for training, another 10% for validation, and the449

remaining 80% for testing. We use the API from Deep Graph Library (DGL)3 to load all datasets.

Table 4: Dataset Statistics.
Dataset # Nodes # Edges # Features Avg. Degree Split

Cora 2,708 5,429 1,433 2.0 Public Split
Citeseer 3,327 4,732 3,703 1.4 Public Split
Pubmed 19,717 88,651 500 4.5 Public Split
Wiki-CS 11,701 216,123 300 18.5 10%/10%/80%
Amazon-Photo 7,650 119,043 745 15.6 10%/10%/80%
Coauthor-CS 18,333 81,894 6,805 4.5 10%/10%/80%
ogbn-arxiv 169,343 1,166,243 128 6.9 Public Split

450

B GRAPHPATCHER Configuration and Experiment on Hyper-parameters451

B.1 GRAPHPATCHER Configuration452

The architecture of GRAPHPATCHER consists of two parts; the first part is a 2-layer GCN encoder453

that takes an ego-graph as input and vectorizes its nodes and the second part is an MLP that takes the454

representation of the anchor node and outputs the generated feature for the virtual patching node.455

To ensure the reproducibility, we also provide the detailed hyper-parameter configurations of GRAPH-456

PATCHER for all datasets, as shown in Table 5. Besides, we use an early stopping strategy to decide457

the number of optimization steps, where the optimization stops if the validation loss stops decreasing458

for two consecutive steps.

Table 5: Hyper-parameters used for GRAPHPATCHER.
Hyper-param. Cora Citeseer Pubmed Wiki.CS Am.Photo Co.CS Arxiv

Augmentation strength 0.3 0.3 0.3 0.3 0.3 0.3 0.1
Patching step 3 3 3 3 3 3 5
of sampled graphs 10 used for all datasets
Batch size 64 64 64 8 16 4 16
Accumulation step 16 16 16 32 16 16 64
Learning rate 1e-4 used for all datasets
Optimizer AdamW with a weight decay of 1e-5 used for all datasets

459

B.2 Experiment on Hyper-parameters460

The hyper-parameters we tune for GRAPHPATCHER include the number of patching nodes during the461

testing time, learning rate, hidden dimension, the augmentation strength at each step, and the total462

amount of patching steps. Experiments w.r.t. the number of patching nodes during the testing time463

has been showcased in Figure 3 and here we also append the results for the other four datasets, as464

shown in Figure 4. We observe similar trends as the aforementioned three datasets exhibit, where the465

2https://ogb.stanford.edu
3https://www.dgl.ai

12

https://ogb.stanford.edu
https://www.dgl.ai

77

77.5

78

78.5

1 2 3 4 5
70

71

72

1 2 3 4 5

80

80.5

81

81.5

1 2 3 4 5
88

88.5

89

89.5

1 2 3 4 5

Wiki.CSCiteseer

Co.CSAm. Photo

Original Perf.

Original Perf.

Original Perf.

Original Perf.

Figure 4: Overall perf. (y-axis) w.r.t. the number of patching nodes (x-axis).

65

70

75

80

85

90

arxiv Cora Pubmed
1.00E-03 5.00E-04 1.00E-04 5.00E-05

Ac
c(
%
)

(a) Accuracy w.r.t. learning rate

65

70

75

80

85

90

arxiv Cora Pubmed
64 128 256 1024

(b) Accuracy w.r.t. hidden dimension

65

70

75

80

85

90

arxiv Cora Pubmed
0.1 0.2 0.3 0.4

(c) Accuracy w.r.t. augmentation strength

Ac
c(
%
)

Ac
c(
%
)

Ac
c(
%
)

65

70

75

80

85

90

arxiv Cora Pubmed
1 5 10 20

(d) Accuracy w.r.t. # of sampled graphs

Figure 5: GRAPHPATCHER’s sensitivity to different hyper-parameters.

performance of GRAPHPATCHER improves as the number of patching nodes increases and the gain466

saturates with 4 to 5 nodes patched.467

We also conduct experiments w.r.t. learning rate, hidden dimension, the augmentation strength at468

each step, and the total amount of patching steps during the training. We tune the hidden dimension469

by conducting a grid search over common selections of [64, 128, 256, 1024] hidden units; we tune470

the learning rate similarly by searching over [1e-3, 5e-4, 1e-4, 5e-5]; and we tune the augmentation471

strength by searching over [0.1, 0.2, 0.3, 0.4].472

The hidden dimension refers to the intermediate dimension of the 2-layer GCNs of GRAPHPATCHER.473

GRAPHPATCHER is constructed by a 2-layer GCN and features for virtual nodes are generated by a474

following multi-layer perceptron with the same hidden dimension. To reduce the search complexity,475

we explore an arithmetic sequence for the augmentation strength (i.e., the difference between any two476

consecutive strengths is the same) and set the total amount of patching steps during the training to477

b
1
t c. For instance, an augmentation strength of 0.3 would lead to a 3-step training with augmentation478

strength of 0.3, 0.6, and 0.9 respectively. GRAPHPATCHER’s sensitivity to these hyper-parameters is479

shown in Figure 5. Specifically, in Figure 5.(a) we can observe that across datasets, a large learning480

rate (i.e., 1e-3) leads to sub-optimal performance and GRAPHPATCHER achieves the best performance481

with a learning rate of 1e-4. We also investigate GRAPHPATCHER’s sensitivity to the number of482

13

hidden dimensions (i.e., the model size). In Figure 5.(b), we notice that for large graphs like Arxiv,483

the performance gradually increases as the model size enlarges. And for small and medium graphs484

like Cora and Pubmed, the performance saturates with a hidden dimension of 128. Besides, in485

Figure 5.(c) we study GRAPHPATCHER’s performance w.r.t. the augmentation strength (which can486

also be interpreted as the number of patching steps as described previously). We can observe that,487

for small and medium graphs, strong augmentation strength leads to better performance, due to the488

sparsity of the graph structures. Whereas for large graphs, small augmentation strength delivers489

good performance. Furthermore, to prove the effectiveness of our proposed training scheme with490

multiple ego-graphs, we train GRAPHPATCHER with different numbers of sampled graphs (i.e., L491

in Equation (5)), with the performance shown in Figure 5.(d). We can observe that without our492

proposed sampling strategy (i.e., the first column with L = 1), the performance of GRAPHPATCHER493

degrades significantly. As the number of sampled graphs gradually increases, the performance keeps494

improving and saturates with L = 10, empirically proving the effectiveness of the exploration of495

multiple ego-graphs for the same corruption strength.496

B.3 Hardware and Software Configuration497

We conduct experiments on a server having one RTX3090 GPU with 24 GB VRAM. The CPU we498

have on the server is an AMD Ryzen 3990X with 128GB RAM. The software we use includes DGL499

1.9.0 and PyTorch 1.11.0. As for the baseline models that we compare GRAPHPATCHER with, we500

explore the implementations provided by code repositories listed as follows:501

• TAIL-GNN [13]: https://github.com/shuaiOKshuai/Tail-GNN.502

• COLBBREW [37]: https://github.com/amazon-science/gnn-tail-generalization.503

• EERM [26]: https://github.com/qitianwu/GraphOOD-EERM.504

• GTRANS [8]L https://github.com/ChandlerBang/GTrans.505

• DGI [24]: https://github.com/dmlc/dgl/tree/master/examples/pytorch/dgi.506

• GRACE [39]: https://github.com/dmlc/dgl/tree/master/examples/pytorch/grace.507

• PARETOGNN [9]: https://github.com/jumxglhf/ParetoGNN.508

We sincerely appreciate the authors of these works for open-sourcing their valuable code and509

researchers at DGL for providing reliable implementations of these models. For TUNEUP [7], since510

the authors have not released the code yet, we manually implement it by ourselves, with a similar511

performance as reported in its original paper.512

C Proof to Theorem 1513

Here we re-state Theorem 1 before diving into its proof:514

Theorem 1. Assuming the parameters of GRAPHPATCHER are initialized from the set P� = {� :515

||��N (0|�|;1|�|)||F < �} where � > 0, with probability at least 1� �, for all � 2 P� , the error516

bound (i.e., E(Lpatch)� Lpatch) is O(�
q

|�|
L +

q
log(1/�)

L).517

Proof. To prove Theorem 1, we need the following lemma, which has been broadly utilized in the518

literature of generalization error bound [14, 17].519

Lemma 1. Suppose a set P of functions is (B, d)-Lipschitz parameterized for B > 0 and d 2 N520

with input from a distribution D and output in (0, 1). There exist a constant c such that for all n 2 N,521

for any � > 0, if S is obtained by sampling n times independently from D, with probability at least522

1� �, for all B and f 2 P , we have:523

Ed⇠D[f(d)]� ES [f]  c ·
⇣
B

r
d

n
+

r
log(1/�)

n

⌘
. (7)

In order to prove E(Lpatch) � Lpatch is O(�
q

|�|
L +

q
log(1/�)

L), we need to show that Lpatch is524

Lipschitz continuous. Lpatch, as discussed in Section 3.2.1, is a regularized cross-entropy formulated525

14

https://github.com/shuaiOKshuai/Tail-GNN
https://github.com/amazon-science/gnn-tail-generalization
https://github.com/qitianwu/GraphOOD-EERM
https://github.com/ChandlerBang/GTrans
https://github.com/dmlc/dgl/tree/master/examples/pytorch/dgi
https://github.com/dmlc/dgl/tree/master/examples/pytorch/grace
https://github.com/jumxglhf/ParetoGNN

as (y1+ ✏) ·
�
log(y2+ ✏)� log(y1+ ✏)

�
. In this work, y1 and y2 refers to the prediction distribution526

(i.e., 0 < y1 < 1) delivered by the GNN we aim at improving. Hence, we need to show that for given527

a specific y1, for any two ya
2 ,y

b
2 2 {y0

2 : 0 < y0
2 < 1} and K 2 R+, we have528

���
���(y1 + ✏) · log(

ya
2 + ✏

y1 + ✏
)� (y1 + ✏) · log(

yb
2 + ✏

y1 + ✏
)
���
���
F
 K ·

���
���ya

2 � yb
2

���
���
F

(8)
529 ���

���(y1 + ✏) ·
�
log(

ya
2 + ✏

y1 + ✏
)� log(

yb
2 + ✏

y1 + ✏
)
����
���
F
 K ·

���
���ya

2 � yb
2

���
���
F

(9)
530 ���

���(y1 + ✏) ·
�
log(

ya
2 + ✏

yb
2 + ✏

)
����
���
F
 K ·

���
���ya

2 � yb
2

���
���
F

(10)

Given the fact that log(·) is strictly concave, Equation (10) holds and hence Lpatch is Lipschitz531

continuous. We can then directly apply Lemma 1 to show that Theorem 1 holds.532

15

	Introduction
	Related Works
	Methodology
	Preliminary
	The Proposed Framework: GraphPatcher
	Patching Ego-graphs via Prediction Reconstruction
	Iterative Patching to Mitigate Degree Bias
	Theoretical Analysis

	Experiments
	Experimental Setting
	Performance Comparison with Baselines
	Performance of GraphPatcher for Self-supervised GNNs
	Performance w.r.t. the Number of Patching Nodes

	Conclusion
	Dataset Description
	GraphPatcher Configuration and Experiment on Hyper-parameters
	GraphPatcher Configuration
	Experiment on Hyper-parameters
	Hardware and Software Configuration

	Proof to thm:err

