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Abstract

Deep neural networks have achieved significant success in the last decades, but
they are not well-calibrated and often produce unreliable predictions. A large
number of literature relies on uncertainty quantification to evaluate the reliability
of a learning model, which is particularly important for applications of out-of-
distribution (OOD) detection and misclassification detection. We are interested in
uncertainty quantification for interdependent node-level classification. We start our
analysis based on graph posterior networks (GPNs) that optimize the uncertainty
cross-entropy (UCE)-based loss function. We describe the theoretical limitations
of the widely-used UCE loss. To alleviate the identified drawbacks, we propose a
distance-based regularization that encourages clustered OOD nodes to remain clus-
tered in the latent space. We conduct extensive comparison experiments on eight
standard datasets and demonstrate that the proposed regularization outperforms the
state-of-the-art in both OOD detection and misclassification detection.

1 Introduction

In recent years, deep neural networks (DNNs) have been widely used in various fields [10, [28]].
However, some neural networks provide under-confident [36] or over-confident [[14] predictions,
limiting their practical applications in risk-constrained and safety-critical fields, such as drug discovery
[38], autonomous driving [30], and medical diagnosis [2]]. Take autonomous drug design for an
example. Uncertainty estimation on the reliability of model predictions helps to support molecular
reasoning and experimental design by saving considerable time and resources [23]]. It is important to
estimate the predictive uncertainty of a DNN, i.e., indicating when its predictions are likely incorrect.
There are two main types of uncertainty: epistemic uncertainty (knowledge uncertainty) and aleatoric
uncertainty (data uncertainty) [9]. Epistemic uncertainty is due to the lack of knowledge about
unseen data. Aleatoric uncertainty is caused by the inherent complexity of the data, which cannot
be reduced by increasing the training data, including sources of noise such as homoscedastic or
heteroscedastic noise [[17]. These two uncertainty types are typically used for out-of-distribution
(OOD) and misclassification detection, respectively.

Most models have been introduced for uncertainty estimation on i.i.d. inputs, such as image and
tabular data. However, the uncertainty estimation for classifying interdependent nodes in attributed
graph data, such as social networks and citation networks, is under-explored. This work focuses on
the node classification tasks with great potential to generalize to others with interdependent inputs.
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Among various graph neural networks (GNNs) for processing graph data structures [[18l, 35131 [8]],
graph posterior network (GPN) has been developed for semi-supervised node classification tasks [32]
that achieves state-of-the-art results in uncertainty estimation.

The major contributions of this paper are three-fold: (1) We theoretically analyze the limitations
of GPN at OOD detection when minimizing uncertainty cross-entropy (UCE), a widely used loss
function for uncertainty estimation. (2) Motivated by the aforementioned limitations, we propose a
distance-based regularization that considers the prior knowledge that OOD-specific features are useful
for learning representational space mappings. (3) We conduct extensive experiments comparing
our proposed model with five state-of-the-art baselines on eight graph datasets for two uncertainty
quantification tasks: OOD detection and misclassification detection tasks. The results demonstrate
that our proposed regularization can improve the quality of uncertainty quantification.

2 Related Work

This section reviews existing uncertainty estimation methods for i.i.d data and graph data.

Uncertainty Quantification for i.i.d inputs  There is plentiful research on uncertainty quantifi-
cation on i.i.d. inputs as discussed in a recent survey [[1]. The first family quantifies the predictive
uncertainty of a DNN via multiple forward passes, such as deep ensembles and dropout-based
Bayesian neural networks (BNNs). Deep ensembles [19] intuitively sample multiple predictions by
training an ensemble of deep neural networks and aggregate the results. Dropout-based methods
[L1] utilize multiple stochastic forward passes implemented with different dropout initializations to
approximate the posterior distribution of network weights. However, the substantial memory and
computational demands required for training and testing make it impractical for real-time applications.
The second family quantifies uncertainty using deterministic single forward-pass neural networks,
including density-based methods and distribution-based methods. The density-based approaches
typically fit a distribution (e.g., class-wise Gaussian distribution [3| 20, [34]]) in the representation
space of a pre-trained or fine-tuned DNN, followed by the associated PDF function to quantify
different uncertainty types. The distribution-based methods train a deterministic neural network that
directly predicts the conjugate prior distribution of the class probabilities of the input feature vector,
called Dirichlet distribution, for uncertainty quantification. The predicted Dirichlet distribution can
be interpreted as an approximation of the posterior distribution of class probabilities conditioned
on the input feature vector. Popular distribution-based models are prior networks [22], evidential
networks [29]], and posterior networks (PN) [7]], all using UCE as the loss function with different
regularizations to improve the quality of uncertainty quantification.

Uncertainty Quantification for Graphs As pointed out in the survey [[1]], uncertainty quantification
on GNNs and semi-supervised learning is under-explored. Most existing models for uncertainty
quantification on graphs are either dropout-based or BNN-based methods that typically drop or assign
probabilities to edges. There are two approaches using deterministic single-pass GNNs to quantify
uncertainty. One is called graph-based kernel Dirichlet distribution estimation (GKDE) [39], which
consists of evidential GCN, graph-based kernel, teacher network, dropout, and loss regularization.
Another method is the GPN model that combines PN and personalized page rank (PPR) message
passing to disentangle uncertainty with and without network effects. In addition, a recent method
[37] used standard classification loss for OOD detection on graphs together with an energy function
that is directly extracted from GNN, however, it is limited to OOD detection, not generally on the
topic of uncertainty quantification.

3 Preliminary

We discuss the problem setting of uncertainty quantification on the task of semi-supervised node
classification in Section[3.1] In particular, we use a deep neural network to predict the multinomial
uncertainty for each node and evaluate the aleatoric uncertainty and epistemic uncertainty by the
prediction result. In Section[3.2] we give a brief review of the GPN model [32]], which serves as a
fundamental framework for our analysis and motivation for the proposed approach.



3.1 Problem Setting

We de ne a graph with attributed node-level featués ( V;E; X;Y ), whereV is a set of nodes
on the graph with cardinalithy andE VvV V denotes a set of graph edges that can be represented
by an adjacency matriw/ . A feature matrix is denoted by =[x1;:::;xn]" 2 RV 9, in which

for K classes.

Our goal is to design and learn a deterministic GNN base@ tirat takes the feature matrk and

the adjacency matrit as INPUT and predicts the parameters of a Dirichlet distribution for each
nodei 2 V as OUTPUT, denoted as;, which is often referred to as the concentration parameters.
Therefore, the network functioh can be expressed a&:= F (X;W ), whereA :=[ iJiov isa
matrix and refers to network parameters. The statistical relations between the clasg;lahel
vector of class probabilitigs;, and the Dirichlet parameters can be represented as:

yilpi  Calpi); pij i Dir( i); [ ilizv = F (X;W): 1)
Based on the predictions &, the eﬁpected vector of class probabilities := E[pij i] =
[ i1=i0; ; ik = iol]",where jo = E:l ik is called the Dirichlet strength. The aleatoric and
epistemic uncertainties about the classi cation of each namm be calculated as:
U= maxpy;  ipkg and ut= g (2)

respectively. The aleatoric uncertainty is measured by the negative of the largest class probability in

pi. This uncertainty is higher when the largest class probabilify iis lower, which implies that

the model is less con dent and the probabilities are more evenly spread across classes. On the other

hand, the epistemic uncertainty is measured by the negative of the Dirichlet strepgitthose

value is higher when the Dirichlet strength is lower, meaning that the model is unfamiliar with the

feature vector of nodeand the predicted Dirichlet distribution is less concentrated around a speci ¢

point or set of points on the probability simplé22]. We note that a high aleatoric uncertainty may

not indicate a high epistemic uncertainty and vice versa. For example, two evidence parameters
i =[1; ;1]and ; =[1000; ;1000]have the same aleatoric uncertaintyl=K, since they

have the same projected class probabilities; but their epistemic uncertainties differ dradically:

versuslO0X . Please refer to [32, 33] for rationales of aleatoric and epistemic uncertainties in (2).

3.2 Graph Posterior Network

Our framework is based on graph posterior network (GRH), iwhich extends posterior network

(PN) [7] to semi-supervised node classi cation. GPN consists of three main steps. First, a feature
encoder maps the original features onto a low-dimensional latent space with a simple two-layer
multi-layer perception (MLP) encoder. Second, a radial normalizing 2w gstimates the density

of the latent space per class. Lastly, a personalized page rank message passingxkfjlifiusé¢s

the pseudo counts (density multiplied by the number of training nodes) by taking the graph structure
into account. We summarize the three steps with notations as follows,

1. Multi-layer perceptron for representation learnimg= f (x;; ) orf in short.
2. Normalizing ow for density estimationg for short, and more speci cally
g (zi)k = Nk P(zijk; ); 3)
whereNy is the number of training nodes belonging to the clasg is the embedding
vector of nodée obtained via the rst steg?(z;jk; ) is the conditional density per class

k estimated by a normalizing ow module, anddenotes the parameters of this module.
GPN also includes the evidence computed prior to the graph aggregation, de ned by

=g (z)+ L @

i i <o agar P ppr
3. Personalized page rank (PPR) for evidence dlffusuﬁﬂ. = v ij 9 (Z))k; where

i refer to the dense PPR scores implicitly re ecting the importance of fofdem
the perspective of node Then we can get the predicted concentrate parameteiish a
uniform prior1 for a non-degenerated Dirichlet distribution, i.e.,

= [ (5)



As opposed to GPN, PN is designed for uncertainty estimation for i.i.d. inputs, which only considers
the rst two steps to predict the Dirichlet distribution Dirfe2).

Given the labels of training node¥; = fy; ji 2 Lg, GPN is trained by minimizing the following
Bayesian loss:

X
L = UCEA;Y)+ L H[Dir( i)I: (6)
The rsttermin (6), called uncertainty cross entropy (UCE) [5], is de ned by

X _ X X
UCEA;Y) = B, oir( [ logP(yijpi)]l = yik (C o) C w):  (7)
i2L i2L k2[K ]

whereY = [yilizin. Vi 2 f 0;1g° is the one-hot encoded ground-truth class of the npded

is the digamma function, in terms of the Gamma function byx) = (0(:)). Minimizing UCE
is known to increase con dence in classifying observed data (training nodes in this context). The
second term ir{6) is based on the entropy of each node-level Dirichlet distribublo ;) that

favors smooth distributions. For more details on GPN, please refer to Appendix C.

4  Our Contributions

This section provides a series of theoretical analyses relating to the UCE loss term and the GPN model
for detecting the OOD nodes, followed by a partial remedy to derived issues via two distance-based
regularizations. Speci cally, we prove in Theorem 1 that under certain conditions, UCE can be made
arbitrarily small with the limiting case of UCE equal to zero in Corollary 3. Theorem 4 gives a
construction to make the UCE to be zero. As UCE does not involve the OOD nodes, Theorem 6 and
Corollary 7 elucidate scenarios for possibly detecting the OOD nodes. Lastly, Theorem 8 presents a
special situation where GPN fails to detect the OOD nodes.

4.1 Theoretical analysis

The loss function plays a pivotal role in learning effective representation functions and density
estimations. In this context, we establish several theorems (Theorems 1 and 4) to describe some
demanding assumptions én andg that achieve the minimum UCE loss. We then describe a
limitation of UCE in separating ID and OOD nodes in Theorem 6 and Corollary 7 for PN, which
means that we only consider the rst two steps in GPN. The main conclusion of our analysis is that
the UCE loss function alone is insuf cient to learn a representation space that separates OOD from
ID nodes. We take graph connectivity into account in Theorem 8 to study some scenarios where
GPN is ineffective for OOD detection. Although our theorems do not completely characterize graph
learning, they provide some insights into the behavior of the network parameters in PN/GPN when
minimizing the UCE loss.

Theorem 1. If the underlying distribution of feature vectors belonging to clasdenoted byKy, is
disjoint to each other and both the MLP modgfe ) and the normalizing ow moduléh ) can be
arbitrarily complex, ther8 > 0 there exists a con guration df andg such thatUCE(A;Y) <

For the proofs, please refer to Appendix B. Here, we elaborate on the ideal con guration that satis es
the conclusion of Theorem 1. We assume the MLP fundtiois arbitrarily complex such that it
mapsx; 2 X into a bounded ball in the representational space, i.e.,

ff (xi)ji 2 [N]andx; 2 Xxg B (zk:r«);
where each baB (z; ri) is centered at a poi and bounded in size withy <r for a positive
valuer. Furthermore, we choose the normalizing aw to be
if d(z;zx) <r
otherwise

_ 1
9 (Z; k) — (\)/OI(B(Zk;rk)) (8)

where Vo[ ) refers to the volume of the ball. The conclusion in Theorem 1 states that for every
there exists a suitable upper boundf all the balls such that UGR; Y) <



An implication of Theorem 1 is that UCE is not suf cient to separate OOD from ID nodes. Example 2
illustrates a scenario that OOD nodes can be close to ID nodes in the learned representation space
even though they can be separated in the feature space based on OOD-speci c features, which are
unfortunately discarded. In other words, the learned representation space by GPN based on the UCE
loss is not guaranteed to preserve the distance between OOD and ID nodes in its representation
learning step.

Example 2 (Lost Features) Suppose two ID classes in a citation network contain bags of words for
SVM and neural networks papers respectively. Additionally, the OOD nodes contain bags of words
from reinforcement learning papers. Note that frequencies of keywords are used to discriminate
different classes. Then the keywords, “actor critic” and “policy network” are able to separate OOD
nodes from ID nodes, but are irrelevant features for discriminating between the two ID classes. UCE,
as a discriminatory loss, is only applied on ID nodes, and hence it is almost impossible to learn
representations that respect the OOD-speci ¢ features such as “actor-critic” and “policy networks”.

Limitations and discussions The rstassumption in Theorem 1 regarding the distinct class-speci ¢
distributions of feature vectors might not be realistic in practice since certain ID classes may not be
clearly distinguishable due to noise in features or class labels. Nevertheless, our intuition suggests
that if the UCE loss is inadequate for separating OOD from ID nodes in situations where they are
separable, it is even more likely to falter in the more complex, non-separable cases. As for the second
assumption in Theorem 1, it is true that arbitrary complexity oindg does not fully respect the
inductive bias 24] of the network design, such as the MLP layers with ReLU for the feature encoder

f (x; ), our analysis remains insightful and informative about the structures these networks are likely
to exhibit. For example, we may expect from Theorem 1 that the representation of each class may
favor an embedded space that compresses OOD-speci c features, while density estmésiwis

to have higher peaks over smaller volumes as the model consolidates the representation space.

We note that inT, Theorem 1] and32, Theorem], the authors demonstrated that PN/GPN is able

to achieve reasonable uncertainty estimation when the feature encoder is a ReLU network and PPR
diffusion is removed to disregard network effects. Unfortunately, the analysis is based on extreme
node features, specicallyas! 1 ;

PF( xi; )ik; )! 0 and 5¥1 0

for any node with a high probability. Moreover, Theorem 1 in the GPN pai32] holds even when

the supports of disjoint ID and OOD classes in the latent space overlap. In other words, this result
does not prevent distant nodes from having similar representations. In summary, the analysis based
on extreme node features may provide limited insights about the issues of GPN studied in this section.
See Appendix D for detailed discussions.

By taking ! 0, Theorem 1 reduces to Corollary 3 where UCE is equal to 0.

Corollary 3. In the ideal case, where the representation funcfiomaps the support of each class,
Xk, to a countable set (with measure zed), and there exists a normalizing ow that has in nite
density on the point set for every class, one achieves(BC¥E) = 0.

Next, we aim for the construction of a speci ¢ case to make UCE equal to zero. As it is challenging
to analyze the joint minimization onand , we assume that the normalizing ow can be chosen
optimally. For this purpose, we consider a simpli ed problem where the true density function is
assumed to be known for a giverand hence it can be used to replace the learning of the normalizing
ow. As a result, the problem reduces to the learning of the representation network

Theorem 4. Let Xy be the true distributions for cladsin the original feature space. Suppose the
normalizing ow moduley obtains the true analytic solution. If the true distributioiXs, g are
disjoint, then théd ~ that minimizes the UCE loss projects the support of each class in the original
space to a disjoint point s&y, whereZy is de ned by the projection ok to the representation
space, i.e.Zy = f (Xk):

Notice that the true analytical solutidhin Theorem 4 is a function of, i.e., " = (). Itis possible

to know an analytical form of ( ). For example, if the data points belonging to each class are
sampled from a known Gaussian distribution in the original feature space and the representation
network is a linear projection function, then the true density of the projected data points belonging
to each class can be derived based on any con guration of the known Gaussian distribution in the
original feature space.
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Figure 1: lllustration of the representation mapping in Theorem 1 with the conditions to detect far
OOD nodes (Theorem 6) and near OOD nodes (Corollary 7).

Before discussing OOD detection, we start with the de nition of OOD nodes.

De nition 5. We de ne out-of-distribution (OOD) nodes to be the nodes that do not gelong to any of
theK in-distribution (ID) classes. We denote all the ID distribution supports(py] k=1 Xk-

In order to detect the OOD nodes, we need a good representatiof, €4, ]) fF XX kp=72.

However, it is possible thdtf_, f Y(zx) = X, which implies that any OOD node in the feature
space is mapped to the same distribution of an ID class in the representation space. To this end, we
require the preimagé, 1, to be well-behaved in the sense that'(Z) must be contained within

a bounded region near the support of the true distribuXipn Explicitly, we require there exists

a constant > 0 such thad(x;®) < ; 8% 2 f (Z\) and8x 2 X for eachk. The choice of

depends on additional information about the dataset. An excessively laeeses overlap between
classes, thus increasing the likelihood of improperly identifying the OOD nodes as ID. On the other
hand, a relatively small forces the model to over t, which labels the non-training nodes as OOD.

We characterize in Theorem 6 that under certain conditions, OOD can be detected correctly if they
are far away from the ID distribution. One such condition is that the fundtida well- t, meaning

that it maps the support ofy insideB (zk;ry) for everyk in [K]. We denote a set of all well- t
functions by . Please refer to Figure 1 for a geometric illustration of these relevant quantities.

Theorem 6 (Far OOD) Under the same assumptions in Theorem 4 and two additional assumptions:
(i) X« is bounded and (i) forang 2 f 1(z) withz 2 Z \; there exist 2 X such thad(xk R) <

, if the true distribution of OOD nodes does not overlap with the re§ion [ k[ 2.2z ff *(zx)9,
then minimizing UCE can learn a representation projectiori othat detect all the OOD points
farther than from Xj.

Corollary 7 (Near OOD) Following Theorem 6, iR 2 [ » [« [ z2z,ff *(z)gfollows the
distribution of OOD nodes, then the classi cationfoflepends on the choice o2

The main purpose of Theorem 6 is to show a desired behavior for OOD detection is induced by
point-wise effects. In practice, we suggest the careful constructibn'sfopology coupled with
proper regularization terms to achieve the point-wise effect.

Lastly, we consider the setting of GPN to use a graph layer after the feature-wise evidence predictions.

Theorem 8. Under the following conditions: (1) The features of some class 0 and OOD nodes belong
to S; (2) The OOD nodes are only corected to class 0 and themselves; (3) Other nodes belong to
otherregionsi.ex 2 X Sifx 2Xg Xoop; (4) Other nodes' features are non-degenerate in
their associated region; and (5) the endowed graph neural network layer must produce evidence
for each node between the highest and lowest feature evidence found among its neighbors. A graph
with arbitrary homophily can achieve a global minimum on UCE with the associated OOD nodes
achieving arbitrarily large evidence, while simultaneously having perfect accuracy.

Limitations and Discussions.In Theorem 8, we provide a special situation where the GPN archi-
tecture may fail to detect OOD nodes by predicting large evidence values for belonging to class
0. In addition, we show in Appendix B that if GPN has bad initial feature predictions, even ideal
graph construction coupled with an ideal graph neural network (with a homophily degree 1.0) fails to



prevent the OOD nodes from being misclassi ed as ID nodes. For homophily graphs with degrees
less than 1.0, the majority of nodes for each class have similar evidence values after graph diffusion
layers, except that the nodes between some pairs of classes may have different evidence values.

4.2 Distance-Based Regularization

As discussed in Section 4.1, the UCE loss function alone is insuf cient to learn a representation
space that separates OOD from ID nodes using the GPN model. We propose a heuristic remedy that
enforces distance minimization on the graph. Ideally, we should design a distance formula that can
preserve the distance relationship among all the feature vectors. However, distance preservation likely
increases variation in the latent space as we cannot compress the classes' support in the representation
space to be arbitrarily small, while simultaneously preserving distances.

Instead, we consider distance minimization, as it helps prevent the model from discarding relevant
features while decreasing variation between nodes in the representation space. Here we give two
formulations directly. The simpler, theorem-motivated term, is the distance regularization on the
latent space,

X
Ro(f (X);G = ki (q) f (x)k: ©9)
ij 2E
The regularization encourages nearby points in the graph representation tp remain nearby in the latent
space. In other words, this regularization (9) discourages the oer{Xp ;) f (X X k).

We also minimize the "distance" on the produced evidence through a divergence-based regularization,

X
R( ™0= divig( (%% )+ divia( [ 1°); (10)
(i )2E

wheredivy refers to the Kullback-Leibler divergence and two symmetric terms are considered. This
divergence-based formulation likely decreases the variation in evidence between neighboring nodes,
because high variation in the latent space between neighboring nodes need not be mapped to similar
evidence.

In summary, we augment the GPN mode with either one of the proposed regularization terms in (9)
and (10), thus leading to the objective function as follows,
?Z< ); G‘) ; (11)

X
proposed regularizer

L = UCEA:Y) 1 i2LI-;(Dir( i)%"' 2 r%(f
—_—

entropy regularizer

with two positive parameters;; ,: The rstterm is the standard UCE loss function. The second
term is regarded by GPN as an entropy regularizer. The last Rris,chosen to be eithdtp or

R , a decision implemented through hyperparameter tuning. We have included a theoretical result in
Appendix B that provides a rationale for the proposed distance regularizations.

5 Experiments

In this section, we conduct extensive experiments on two tasks of OOD detection and misclassi cation
detection. We compare the proposed framew@d for uncertainty estimation of semi-supervised
node classi cation using 8 datasets with a comparison to 5 baseline methods. The code is available at
https://github.com/neoques/Graph-Posterior-Network.

5.1 Experiment Setup

Datasets We use three citation networks (i.e. CoraML, CiteSeer, Pubmdfo co-purchase
datasets31] (i.e. AmazonComputers, AmazonPhotos), two coauthor date®8té.p. CoauthorCS

and CoauthorPhysics) and a large dataset OGBN A, [A detailed description of these datasets

is in Appendix E. We show the result of three citation datasets in the main paper and the remaining
results in Appendix F.



Baselines We present the results for uncertainty estimation using ve baseline methods. Among
these, two evidence collection models, namely graph kernel density estimation (GB#&h{l label
propagation (LP)32], assuming that OOD nodes are located far away from the training nodes, while
easily misclassi ed nodes reside near the boundaries between classes. We compare to a modi ed
GCN model, referred to as VGCN-Energ®/], a Bayesian-based model, called GKDE-GQ9][

and GPN B2] as baselines in our evaluation. We also introduce a Graph Neural Network called
APPNP [L2] as one baseline for the misclassi cation detection task and report the ROC score. Details
of these baselines can be found in Appendix D.

Metrics To assess the classi cation performance of ID nodes, we rely on the atACC , which
calculates the fraction of correct predictions among all predictions. As for evaluating uncertainty
estimation, we employ the metriédJC-ROC andAUC-PR as evaluation measures. The rankings

are based on the scores of epistemic or aleatoric uncertainty. OOD detection is treated as a binary
classi cation task, where the positive class corresponds to OOD nodes and the negative class pertains
to ID nodes. Please refer () for the calculation of aleatoric uncertainty and epistemic uncertainty.
For the Dirichlet-based models, the epistemic uncertainty has a similar practical interpretation to
vacuity in the belief theory, assessed using AUC scores. On the other hand, in VGCN-Energy, the

calculation of epistemic uncertainty is based on the energy value and is represam‘?@ﬂrasanergy
The misclassi cation detection task is also a binary classi cation problem, where the positive cases
correspond to wrongly classi ed nhodes and the negative cases represent correctly classi ed nodes.

The calculation of uncertainty for misclassi cation detection is performed in the same manner as OOD

detection except that™™ = max, . Prior studies32, 39 has indicated that aleatoric uncertainty

is generally more effective for identifying misclassi cations, whereas epistemic uncertainty is more
appropriate for detecting out-of-distribution instances.

Model Setup For all the baseline methods, we maintain consistency by employing the same set of
model hyperparameters as provided by GPN. Speci cally for some model hyperparameters such as
latent dimension and weight decay, we adopt the same settings as GPN. Inspi2&}] e [explore
multiple choices of activation functions in the representation networks. In addition to the default
ReLU used in GPN, we experiment with Sigmoid and GELU activation functions. Through empirical
evaluation, we discover that the choice of activation function signi cantly impacts the performance
of certain datasets, which is demonstrated in Appendix E.4. Besides, hyperparameters that we tune
include entropy regularization weight, distance-based regularization format (wikgtherR ), and
weighting parameters {; ), which are optimized based on the validation cross-entropy for each
speci ¢ dataset. For a comprehensive overview of the hyperparameter con guration and ablation
study, please refer to Appendix D.

5.2 Results

OOD Detection OOD detection aims to detect whether an input example is OOD given the
predicted uncertainty estimation. For the semi-supervised node classi cation, we adbefttt-
Classessetting where we assume several categories as OOD (details can be found in Appendix D),
as considered in7| 39]. Different from the independent input setting, we retain the OOD nodes in
the graph but exclude their labels from the training and validation sets. This implies that the loss
function does not involve OOD labels, but the model has encountered the OOD node features during
the training phase. Similarly t@p], we also remove the last graph propagation layer for comparison
as “w/o network” where the nal result only depends on the node features and no graph structure
involved. This con guration, referred to as the “w/o network” setting, results in a nal output that
solely relies on the node features, with no involvement of the graph structure.

The results on CoraML, Citeseer, and PubMed are presented in Table 1 and the results on the other 5
datasets are shown in Table 6 in Appendix E. Our model achieves the best ID accuracy for four datasets
and demonstrates comparable performance to GPN for the remaining four datasets Furthermore, we
observe an improvement in the ROC (Receiver Operating Characteristic) rankings based on predicted
epistemic uncertainty with propagation, ranging from +1% to +8% compared to GPN. Consistent
with previous studies32], our results demonstrate that prediction models incorporating evidence
propagation consistently outperform those without propagation across all datasets. This observation
highlights the signi cant impact of graph structure on uncertainty estimation. Moreover, when
comparing aleatoric uncertainty and epistemic uncertainty as ranking scores, we nd that epistemic



uncertainty outperforms aleatoric uncertainty in the OOD detection task. This nding aligns with
literature [39, 32] and emphasizes the superiority of epistemic uncertainty for OOD detection.

Table 1: AUROC and AUPR for the OOD Detection

AUROC AUPR
Data Model ID-ACC | pleaw/ Epiw/  Epiwlo | Aleaw/ Epiw/  Epiwlo
P 8640 | 8378 8086  na | 7480 7L15  na
GKDE 8302 | 7446 7186 na | 6619 6405  na

VGCN-Energy 89.66 81.70 83.15 n.a. 75.67 78.44 n.a.
GKDE-GCN 89.33 82.23 82.09 n.a. 75.88 77.03 n.a

CoraML GPN 8851 | 8325 8628 8095 | 7579  79.97 7281
Ours 90.06 | 8394 8720 7612 | 7626  80.36 6332

P 5734 | 6599 6754  na | 4812 4859  na

GKDE 4962 | 6375 6391 na | 5674 5679  na

VGCN-Energy 70.79 72.16 76.08 n.a. 53.71 58.35 n.a.
Citeseer | GKDE-GCN 70.76 73.34 76.19 n.a. 54.25 59.07 n.a.
GPN 69.79 72.46 70.74 66.65 55.14 50.52 44.93

Ours 72.51 75.22 78.98 73.21 62.30 58.63 52.73
LP 89.18 80.32 79.64 n.a. 71.01 72.98 n.a.
GKDE 88.16 69.66 68.47 n.a. 55.81 54.33 n.a.

VGCN-Energy 94.77 72.58 72.63 n.a. 60.54 60.63 n.a.
PubMed GKDE-GCN 94.66 73.53 74.47 n.a. 61.36 61.96 n.a.
GPN 94.08 71.84 73.91 71.2 57.92 67.19 59.72
Ours 93.84 75.23 81.76 77.79 60.75 78.16 69.19

Alea: Aleatoric, Epi.: Epistemic, w/: with propagation, w/o: without propagation
AUROC and AUPR for the OOD Detection: ID-ACC means the accuracy on ID nodes. AUROC and AUPR scores are given for OOD
detection based on different uncertainty metrics, where [Alea w/] is the aleatoric score with propagation layer, [Epi w/] is the epistemic score
with propagation layer and [Epi w/0] is the epistemic score without propagation. n.a. means either model or metric not applicable.

Misclassi cation Detection In addition to OOD detection, we conduct misclassi cation detection

on the clean graph for evaluating the predictive uncertainty estimation. Table 2 presents the results
for three datasets, while Table 7 in Appendix D is for the other 5 datasets. We observe a signi cant
improvement ranging from +12% to +50% in our model's AUC-PR scores. While it is true that our
method performs worse than the best of the baselines in terms of AUROC, the differences are within
approximately 3% for six of the eight datasets.: Amazon Computers, Amazon Photos, Coauthor CS,
Coauthor Physics, and ODBG Arxiv, and PubMed. Despite having a lower AUROC compared to
the best of the baselines, our method exhibits a higher AUPR. This suggests that our method may
excel at identifying true positives among the top-ranked nodes when compared to GPN, while the
best baselines may be more effective at distinguishing between true positives and negatives among
the lower-ranked nodes.

Table 2: AUROC and AUPR for the Misclassi cation Detection

Data Model AUROC AUPR

Aleaw/  Epiw/ | Aleaw/ Epiw/

APPNP 83.64 n.a 48.39 n.a
VGCN-Energy 81.02 n.a 48.30 n.a
CoraML GKDE-GCN 80.80 76.83 49.61 45.87
GPN 81.19 78.10 49.51 44.42
Ours 75.8 69.85 89.95 88.20

APPNP 73.55 n.a. 51.70 n.a.
VGCN-Energy | 74.64 n.a 48.30 n.a.
CiteSeer | GKDE-GCN 75.45 73.83 54.78 53.57
GPN 75.89 74.16 60.78 59.32
Ours 69.15 68.62 72.67 72.36

APPNP 80.98 n.a. 37.79 n.a.
VGCN-Energy 81.16 n.a 38.24 n.a
PubMed GKDE-GCN 80.95 73.99 39.64 33.19
GPN 80.46 75.38 40.74 35.11
Ours 80.13 72.87 95.41 92.79

Alea: Aleatoric, Epi.: Epistemic, w/: with propagation, w/o: without propagation
AUROC and AUPR for misclassi cation detection: AUROC and AUPR scores are given for misclassi cation detection based on different

uncertainty metrics, where [Alea w/] is the aleatoric score with propagation layer, [Epi w/] is the epistemic score with propagation layer and
[Epi w/o] is the epistemic score without propagation. n.a. means either model or metric not applicable

5.3 Ablation Study

Our proposed model differs from the GPN model in three main aspects. First, we use validation
cross entropy (CE) instead of hold-out datasets to select hyperparameters. Second, we consider the



activation function for the MLP layers as one of the hyperparameters for selection. We expect feature
value rescaling through non-linear activation of feature values to affect the density predictions. Third,
we incorporate one of the proposed distance-based regularization terms to the loss function used in
GPN.We conduct an ablation study to demonstrate the contribution of these three components. The
results for CiteSeer and PubMed are shown in Table 3 and the remaining datasets are included in
Appendix E. Hyperparameter tuning using validation cross-entropy improves GPN's performance,
especially in cases where the choice of activation function has a signi cant impact on speci c
datasets. Additionally, we consistently observe performance enhancements from the distance-based
regularization in both datasets, demonstrating the effectiveness of the proposed distance awareness
regularization term.

Table 3: Ablation Study with OOD Detection task

AUROC AUPR
Data Model ID-ACC Aleaw/  Epiw/ Epiw/o | Aleaw/ Epiw/  Epiw/o
GPN 69.79 72.46 70.74 66.65 55.14 50.52 44.93
GPN-CE 70.98 74.20 73.75 68.41 58.12 53.55 46.60

Citeseer | pN.CE-ACT | 71.96 7472 77.97 7228 | 6041 5604  50.73

GPN-CE-GD 72.51 75.22 78.98 73.21 62.30 58.63 52.73
GPN 94.08 71.84 73.91 712 57.92 67.19 59.72

GPN-CE 93.84 74.19 78.32 74.50 59.85 74.11 64.55
GPN-CE-ACT 93.84 74.19 78.32 74.50 59.85 74.11 64.55
GPN-CE-GD 93.84 75.23 81.76 77.79 60.75 78.16 69.19

Alea: Aleatoric, Epi.: Epistemic, w/: with propagation

GPN refers to the original GPN paper with its default hyperparameters and ReLU as the middle activation function, GPN-CE is the
original GPN model with re-tuned Dirichlet entropy regularization weight based on validation cross-entropy; GPN-CE-ACT is the original
GPN model with re-tuned entropy regularization weight and activation function based on cross-entropy; GPN-CE-GD/(Ours) adds the
distance-based regularization term while tuning the two weights and activation function.

PubMed

6 Limitations

Our theoretical analyses mainly study the limitations of the UCE loss function when separating OOD
from ID nodes in the learned representation space. If we include the entropy-based regularization
term in Equation (6) with a suf ciently large weight, some of our theoretical ndings may not
remain applicable. However, the entropy-based regularization term is designed to favor smooth
Dirichlet distributions but not to preserve the distance between OOD and ID nodes. We conjecture
that the resulting loss function is still insuf cient to learn a representation space that separates OOD
from ID nodes, even though they are separable in the original feature space. In addition, our proposed
regularization terms in Section 4.2 are more effective for homophily graphs than heterophily graphs,
as neighboring nodes are less likely to belong to the same class in a heterophily graph than those in a
homophily graph.

7 Conclusion

This paper contributed to a better understanding of uncertainty quanti cation for node classi cation.
We investigated the limitations of the widely used UCE loss function. Motivated by the theoretical
analysis, we proposed a distance-based regularization that helps learn a representation network that is
more effective for the uncertainty quanti cation task. Experimentally, we demonstrated our approach
outperforms the state-of-the-art in two speci ¢ applications of uncertainty quanti cation for node
classi cation: OOD detection and misclassi cation detection.
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The supplementary materials are organized as follows. Appehgiovides the background knowledge on

the Dirichlet distribution. In AppendiB we review the architecture of the graph posterior network (GBHR]) [
together with our discussion on oversight 82] Theorem 1]. Appendi details the proofs of all the theorems

and corollaries discussed in the main paper. We provide detailed descriptions of baseline models, datasets, and
hyperparameter tuning for the experiments in Appemlix.astly, AppendixE includes more experimental

results that we are unable to tinto the paper.

A Dirichlet Distribution

A non-degenerate Dirichlet distribution, denotedy( ), is parameterized by the concentration parameters

=[ 1; . k] with > 1fork 2 [K]. More speci cally, the Dirichlet distribution with parameters
1; ; k hasa probability density function (pdf) given by
pip; )= 2" g (12)
] B( ) - k 1

P
wheref prgi-; belongs to the standard probability simplex, thu§=1 p« =1 andpk 2 [0;1];8k 2 [K], and
the normalizing constar ( ) is expressed in term%of the Gamma functipn), i.e.,
B( )= M; (13)
( x «)
Under the semi-supervised learning setting, a set of labels is available, dendted/by Fori 2 L, the class
labely; 2 f 1;:::; K g can be converted into a one-hot veggerwith yi = 1 if the sample belongs to tHeth
classandg;; =0 forj 6 k: By arranging ; andy; into matricesA :=[ ili2L andY =[yilizL, the UCE
loss function is de ned as: X X
UCE(A;Y) = Yik (C o) ( &)); (14)
i2L k2[K]

P
where o = Ezl ik and is the digamma function given by

(%)
(x)

(x)=

B Detailed Framework of GPN

In this section, we review the architecture of GPN, followed by two examples that reveal a limitation of Theorem
1 in the GPN paper [32].

Multi-layer Perceptron (MLP). Instead of deep convolution layers used in many neural networks designed

for image classi cation taskd], GPN utilizes two simple perceptron layers with ReLU activation function as the
encoding network, which maps high dimensional data to a latent space with a much smaller dimension, avoiding
the curse of dimensionality for the density estimation on a (mapped) latent represerggfidks[each node is
independent of the others in this step, the encoding map only considers the node features without any graph
structure involved. Mathematically, the mapping can be expressed by

zi = f(xi; )= Wy (Wix;+ 1'by)+ 1l by;
where = fW;;W5;bi;b.g denotes a set of learning parameters. For simplicity we use the notation
Zi = f (Xi).

Normalizing Flow. Normalizing ow is used to estimate the densRyz; jk; ) for k 2 [K ] and learning
parameters as an invertible transformatiag( ; k) of a base distribution, e.g. Normal distribution, which
denotes the distribution of claksn the latent space. The default ow in GPN is the radial ow [27], given by

Az k)= z+ 7+(Zkz Zoz)ok
. . k).
Pk )= pe(a *(@ik)idet2d L

wherez, is areference pointar@ () N (0;1). After estimating the density of the nodbelonging to a
speci ¢ classk, the pseudo evidence counts are scaled to the probability, f.¢., P(zijk; ), GPN sets

K:= g (zi)k = Nk P(zijk; );
whereNy is the number of training nodes that belong to the class
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Personalized Page Rank. GPN applies a personalized page rank (PPR) module to diffuse the evidence
among neighboring nodes. It is motivated by the work of Approximate Personalized Propagation of Neural
Predictions (APPNP)12] that is designed to decouple the prediction (only based on node features) with any
encoding network and propagate with a personalized page rank (PPR) module (only based on edge information).
In particular, PPR provides a personalized in uence score matrix for each node that cohsigref neighbors

without involving any new parameters to learn anés a hyperparameter:

R Y SR

where is a hyper-parameter relating to the teleport probabifitglenotes the symmetrically normalized graph
adjacency matrix with added self-loops (i&.;= D '“2AD =2 with the standard adjacency mat/, andl
denotes the layer index with® obtained after the normalizing ow. The output of PPR is a set of concentration
parameters, denoted by= h ( ©):

Collectively for MLP, normalizing ow, and PPR, the network in GPN can be expressed by

i =1+ h (g (f (xi)); (15)

for each node, where the addition of 1 guarantees that the concentration parameter is strictly positive. In
addition, an entropy regularization was considered by GPN de ned by,

X
H(Dir( i))=1log B( i)+( 0 K)( o) (w DO w) (16)

P K
where io = k=1 ik -

Next, we provide two examples to describe oversighBpffheorem 1] and32, Theorem 1] in the sense that

both theorems assume an impossibility. Particularly the assumption is that a two-layer ReLU network can be
represented by a set of af ne mappings, each being full rank, from a nite set of regions to the latent space.
However, we construct Example 9 and Example 10 to show this assumption is impossible.

Example 9. We start with a simple case where a two-layer ReLU network with input, hidden layer, and output
of a scalar (1-dimensional) is considered for an easier interpretation of the results. One simple example of a
two-layer ReLU network is expressed by

z=f X)=1 Reul x+0)+0: (17)
Following [15], we split the latent space into two af ne regions, i.e.,
x ifx2[0;1)

0 ifx2(1 ;0] (18)

labeled byQ© =[0;1 )andQ® =( 1 ;0]. We see the associated® =1 andvV® =0 in the afne
representatior{17) that certainly do not have independent rows, as required by [6, Theorem 1].

Example 10 extends the 1D case in Example 9 into a hidftimension, showing that there is always at least
one af ne region that produces a single value, f.Q‘" ) = fvgwhen mapped into a ReLU netwofk.

Example 10. We consider the ReLU network,

f (x)= C reLu(Bx); (19)
whereB; C 2 R® ¢ are matrices of full rank. Denote;j to be the solution to the equation,
e = Bx; (20)

wheree; is thej th Euclidean standard basis. A&sis assumed to be full rank, there is the unique solution of the
corresponding; :
Notice that the polytope, ( )
xd
S= Qi Xj q 0 ; (21)
j=1
has non-zero measure Rf. Note that the ReLU network is constant by construction,ss{ €)= 0:In
other words, we have for 2 S that
z=1f (X)= C reu(BXx)= CO= 0: (22)

As in the previous example, the existenc® afieans that there exists somé) = 04.d Which contradicts the
assumption that alN/ s have independent rows. Under this setting, the density does not approach zero, which is
the conclusion of Theorem 1 in [32].
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C Proofs

In this section, we provide the proof of all the theorems and corollaries. Note that until Theorem 8, We ignore
the graph componeiit and focus solely on the representational Idfyeand normalizing ow layerg .

Proof of Theorem 1 and Corollary 3Asf is arbitrary by assumption, we choose it in such a way that it maps
a point inXy to a point inside the ball centeredzt with radiusry, denoted byB (zi; r«),

f oXe!Z «  B(zk;rv); (23)
wherez, 2 Z with a minimal distanc&® between any two of them, i.ed(zx;zm) > R; 8k;m 2 [K]; and we
dener >r ;8k 2 [K]. We then choose the normalizing ow to be,

g (K =1+ N, ECEGTo 22BN

; (24)
0; otherwise

We add the value of 1 in the normalizing ow to produce valid evidence measures. We also assume that
Nk = (Xx) > 0, where isthe Lebesgue measure function.

The global minimum of UCE occurs when UCE is equal to O for every class. Recall that

x Z 7 7 x
UCE(9(Z«);Y) = Om (2) (&(z) d: (25)

k2K ] k2[k] Zk m2[K ]

Using (23), we consider an upper bound of the right-hand side by integrating over the larger region, that is,
VA

” ” Z
x Z
On (2) (&(2)) d; (26)
ka[k] B m2 (K]
X . [ Nk < . Nk «
= |<2[K]VoI(B(zk,rk)) K + Vol(B (ziT)) 1+ VB o] 27)

According the recurrence relation of the digamma functionx + 1) = ( x) + 1 =x, we readily derive that,

X | K 1° Ny <1
UCE(g(Z«k);Y) Vol(B (zk;rk)) ] K m+ Vol(B (ze 1)) (28)
k2[K ] k2[K] m=1
Taking the limit of the right-hand side yields
X K 1° Ny <o
lim Vol(B (zk;r K m+ —M— ; 29
CLT (B(@r) o VoI(B (zk; Tv)) (29)
X | | [ o Ni e
= im Vol(B (zk;r im K m+ —m— : 30
oy (B(zk:rk)) S VOI(B (zx:14)) (30)
It is straightforward for the following two limits to hold,
lim Vol(B(zx;r¢)) =0 ; (31)
rg! 0
ot N ‘1
Mo M By .
thus leading to
lim X Vol(B (z; rk)) 1.K me Nk ( 1—o- (33)
ki Mk - =0:
r! OKZ[K] mel Vol(B (zk;r«))
P
Onthe otherhand, a6 =, ;% (2)) ( &(2)) O, wehave
. Z
x £ X X
0 ( Om (2) (x(2))d = UCE(9(Z«);Y); (34)
k2[K] Zk m2[K ] K2 [K ]

which implies that UCE Oasr ! 0. Forr =0; UCE is equal to zero, which leads to Corollary 3. O
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Proof of Theorem 4We denote the parametersgpfthat represent the true analytic solutiors (). Note that
this is a function with respect to the choice qfthat is, the true distribution is dependent on the representational
mapping. In this proof, we focus on nding a value of6.t.,

"=argmin UCE( (:; ™):;Y)=argmin UCE( (; ());Y): (35)

As the true distribution is dependent on the representational mapping, we should consider a joint minimization
problem with respect to both the representation map and density distribution.

We will separate the proof into two cases. Speci cally, we prove Case 1 by contradiction, showing that if the set
Z mapped to by from Xy has a non-zero measure, then the global minimi#@E = 0 can not be achieved.

We then prove Case 2, under the assumption that a true analytical solution may achieve density evidence at a
point, by showing that we may achieve the global minimizer on a point set.

Case 1: Non-Zero Measure. Suppose the true distribution on this set is a non-degenerate distribution. As
the natural de nitions of a probability distributiah= d; the UCE loss can be expressed by

Z Z

Zy
x Z 7 7 x
UCE(9(Z«);Y) = Om (2) (&(2) d (2): (36)

k2K ] k2[K] Zk m2[K]

In order for the measure & to have a density of> 0, there exists a subset @f with non-zero measure
k > 0, denotedZ, . Using similar techniques as the proof of Theorem 1 in reverse, we obtain,

X
UCE(9(Zk);Y) (( K+Nk) (@I+ Ng)d;
k2[K ] k2[K] Zk

then for somek 2 [K ] there exists somg, ,
z
UCE(g(Z«k);Y) (( K+Ng) (1+ Ng)d;
k2K ] Zy

= 1 ((K+Neg) I+ Ne):
As s strictly increasing, ther, = ( K + Ny )  (1+ Nk ) > 0, which implies that

X
UCE(9(Zk);Y) 1 2> 0
k2[K] k2[K]

Therefore, we prove that ff maps to a measurable set, the UCE loss is necessarily hon-zero.

Case 2: Zero Measure Sets. Corollary 3 shows that the zero UCE is achievable. If Case 1 fails, then we
can conclude that only on a disjoint &t with measure 0 for eadkis permissible to achieve the UCE to be 0.

The exact choice of this set depends on the precise de nitions of the probability distributions on a point set and
their ability to achieve in nite densities. Here we constrain these possibilities by requiring the rahgtoof

have non-zero measure or to be a point set if having zero méasure O

Proof of Theorem 6Pickx 2 X s.t.d(x;xx) > forxk 2 X see that forany where 2 we have that

X is necessarily not mappedq 2 Z (if it were mapped irZ then the preimage would contain it and thus we
would haved(x; xx) < , which is a contradiction with our selection xf. Recall that the density for any point
mapped tay is in nite. That is the density of the associated points mapped to the point set is necessarily in nite
and the density of points mapped elsewhere is necessarily smaller, namely 0, with the associated®vidence
Our selectec then has no evidence in favor of it belonging to a clasghile any point inx, 2 X must have

in nite evidence by our choice of a well-t. O

Proof of Corollary 7. Notice that we can choose two types of such

Case 1l Let forclassk be chosen such that,__

Zx if X 2 Xg;

Fe)= 0 otherwise

@37

AWe choose that the cardinality of the zero-measuré ety ) to be nite (rather than countably in nite) as
we do not want to detail precise topological arguments (like compactness and boundedness) about the pointsets
and their respective preimages.
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Case 2 -
oz ifd(x;R) < forany® 2 Xy;
f(x)= .

0 otherwise
If x 2 X is mapped tay then it is endowed with in nite density, moreover, it is believed to be an ID node

belonging to clask. Thus, the nearby OOD being detected for these UCE minimizers is determined by arbitrary
choice. O

(38)

Proof of Theorem 8 First note that the ID nodes are mapped to have in nite evidence achieved at the points
in the latent spacgy . As the representations of the OOD nodes argirthey are also endowed with in nite
evidence. That is graph layers can only help separate nodes by pulling them towards the center of their own
classes w.r.t. to the representation space this is only helpful if their representations are separate to begin with.

O

Lastly, we give a toy example showing heuristically that the proposed regularization yields a better separation of
the OOD nodes from IDs, compared to the original GPN model without the distance-based regularization.

Example 11. Consider two ID classes (Class 1 and Class 2) and one OOD class with the following construction:
1. All nodes belonging to Clagshave feature values sampled frorf? =[1:0;0].
. All nodes belonging to Clagshave feature values sampled frot? =[ 1;0;0].

. All nodes belonging to the OOD clag$ave feature values sampled frotfP° =[0;1;v].

. All nodes are connected to every node within their own class, leading to a graph of homophily 1.

2

3

4. We sample from the uniform distributiotJ ( 1; 1) independently for each sample in each class.
5

6. Suppose the density function is true density distribution

7

1

. Denote the PPR layer bﬁr that uses the right normalized adjacency mathi® rather than

symmetrically normalize® “2AD 72, used in APPNP.

2 3
Wi Wi
8. Supposé is a linear function (i.e. no activation function) explicityy = 4Wz1 W29 :
Wiz Wa

Then GPN with our regularization can learn an embedding that makes it possible to separate classes 1, 2, and
OOD nodes. Without regularization, OOD nodes lie between ID classes in the latent space.

Proof. A simple calculation for thegroject leads to

2 [Wi1; Wi2] for class 1 nodes
zi =[XW]i = [ Wu; Wi for class 2 nodes (39)
© [Wa1 + VW31 ; Wae + VW31]  for OOD nodes
Clearly, the values 0#V3; andWs, would be smaller with the distance minimization term applied than without,
asv is selected randomly. Moreover neithdfs; norWs, affects the model's ability to separate the two classes

as desired. We explicitly calculate both UCE and the distance-based regularization in the objective function,
while ignoring the Dirichlet regularization, thus leading to the following objective function,

L(Z; ;Y ;6= UCEf(g (f (x));Y)+ R(Z:O): (40)
First, we explicitly work out the distance-based regularization term
X
R(Z;G) = kzi zj K
(i )2E X
K[W11; W12] [W11;W12]|<2 + K[ Wi1;, W] [ Wz W12]k2
(i )2E 1 (i )2E,

. , . . 2
+ [War + VOO Wa1; Wap + vOWa2]  [War + v Way; Wap + v Wap]
(i )2E oop
DI : z.
(v VU [War; Wa2]
(i )2E oop
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which is minimized when W31; W32 go to zero.

Next, we consider the UCE loss portion. See that as we estimatg the true dengjty using g we will have no overlap

Wi Wi
between the two distributions Z1; Z». We are left with W = 4Wo1 W25,
0 0

8

2[W11; W12] for class 1 nodes

>[ Wi1; Woi2] for class 2 nodes
- [Wa1; Wa2] for OOD nodes;

Zi = [XW]; = 41

If W is to remain full rank this will necessarily require either W21 or Wa2» to be non-zero. Thus OOD nodes will
be mapped as we see in (41) to some distinct values - which can be separated after the application of APPNP as
we expect APPNP to only average the values within each class. O

D Additional Experimental Details

D.1 Descriptions of Baselines

Graph-based Kernel Dirichlet distribution Estimation (GKDE) [39]: Based on the high homophily property
of most graphs (neighboring nodes tend to share the same class label), GKDE derives the evidence with the help
of the node-level distances (shortest path in the graph) with training nodes belonging to the same class.

Label Propagation (LP) [32]: Following the idea of GKDE, LP collects the evidence by relying on the density
of labeled nodes in neighborhoods rather than distance. An initial condition per class is defined and then a
Personalized Page Rank is used as the diffusion.

VGCN-Energy [21]: It is a GCN-based model with energy score as the uncertainty estimation which maps each
node to a single, non-probabilistic scalar called the energy. The energy score can be calculated as follows

- x ik
: Tlog expT;

Senergy =
k=1

where | is the predicted logits of a neural network and temperature parameter T = 1.

GKDE-GCN [39]]: GKDE-GCN utilizes a GCN network to estimate the multisource uncertainty by a Dirichlet
distribution and then sample probability as well as the class prediction. The evidence derived from the aforemen-
tioned GKDE is as a teacher of concentration parameters of Dirichlet Distribution, and another deterministic
GCN predicting the probability is used as a teacher for sampled probability. The overall loss is composed of the
KL divergence between these two teachers with the corresponding distribution and Bayes risk with respect to the
squared loss of sampled class prediction.

APPNP [12]: Given that message passing neural network suffers from the over-smoothing problem that limits the
depth of the neural network, APPNP proposed to decouple the prediction and propagation where the prediction
depends on the node features and propagation depends on interactions between nodes through edges. APPNP
first uses any kind of neural network to embed the input space and diffuses information with a personalized page
rank. For large graphs, they use power iteration to approximate a topic-sensitive page rank.

GPN [32]: GPN applies a normalizing flow to estimate the density of each class in the latent space embedded
with an encoding network and then propagates the scaled density as the evidence.

D.2 Description of Datasets

We use three citation networks, labelled by CoraML, CiteSeer, Pubmed [4], two co-purchase Amazon datasets
[31], labeled by Computers and Photos, two coauthor datasets [31]], labeled by CoauthorCS and Physics, and a
large dataset OGBN Arxiv [16]. We use the same train/val/test split of 5/15/80 as [32]. The details of the graphs
and setups for the OOD detection are provided in Table[d]

Table 4: Dataset Description

CoraML  CiteSeer ~ PubMed Computers Photos Coauthor CS Coauthor Physics OGBN-Arxiv
#nodes 2,995 4,230 19,717 13,752 7,650 18,333 34,493 169,343
#edges 16,316 10,674 88,648 491,722 238,162 163,788 495,924 2,315,598
#features 2879 602 500 767 745 6,805 8,415 128
#classes 7 6 3 10 8 15 5 40
# left-out-classes 3 2 1 5 3 4 2 15
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D.3 Hyper-parameter tuning

We follow the same setting with [32]. In detail, we use the Adam optimizer with a learning rate of 0.01. For
VGCN-Energy, we use a temperature of T = 1:0. We carefully tune three hyperparameters: the distance-based
regularization weight, Dirichlet entropy weight, and activation functions. We select the best parameters for each
dataset separately that returns the highest validation cross-entropy. The detailed hyperparameters configuration
is as Table

Table 5: Hyperparameter configurations of proposed model

Dirichlet Entropy Reg. Weight | Graph Distance Reg. Weight | Activation function

CoraML 0 10 4 GELU

CiteSeer 10 4 10 9% LogSigmoid
PubMed 10 ° 10 4 RELU
Computers 10 S 10 4 RELU
Photos 10 ° 10 11 RELU
Coauthor CS 0 10 © RELU

Coauthor Physics | 10 # 10 4% LogSigmoid
OGBN-Arxiv 10 ° 10 8 RELU

We also consider the following activation functions in the encoding network with element-wise operations,

RELU(X) = maX(O; X);
Logsigmoid (X) = log (1 + exp( X))_l ;
GeLU (X) = )éCDFN(X)

= 1Ix< 1
HardTanh(X) = - X; 1 X 1:
- LIix>1

ReLU is the most popular activation function used in the hidden layer of neural networks, which brings
efficient computation by only activating neurons with positive outputs. Sigmoid is popularly used for probability
prediction because its output is always in the range (0,1) with a smooth gradient. GeLU has better nonlinearity and
is widely used in Natural Language processing and computer vision. HardTanh is a more computation-efficient
version of Tanh.

E Additional Experiments

E.1 Additional Experiments - OOD Detection

For Amazon Photos, Amazon Computers, Coauthor CS, Coauthor Physics, and OGBN Arxiv dataset, the OOD
Detection results are shown in Table[6l

E.2 Additional Experiments - Misclassification Detection

For Amazon Photos, Amazon Computers, Coauthor CS, Coauthor Physics, and OGBN Arxiv dataset, the
Misclassification Detection results are shown in Table[7l

E.3 Graph Distance Minimization

We plot the tSNE visualization of latent space with different distance-based regularization weights and symbol
sizes denote the total evidence. We plot for coraML in Figure 2] CiteSeer in Figure[3] Coauthor CS in Figure 4]
Coauthor Physics in Figure[5] With increasing weight, it tends to have a more separable latent representation for
different categories while degenerate mappings occur when distance minimization is too large.
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Table 6: OOD Detection (Cont.)

AUROC AUPR
Data Model ID-ACC | Alcaw/  Epiw/ Epiwlo | Aleaw/ Epiw/  Epiwlo
LP 8328 86.74 8388 na. 67.10 6308 na.
GKDE 71.41 75.14 7358 na. 4921 47.68 na.
Amazon | VOCN-Enersy | 88.95 8276 8343 na. 5749 60.64 na.
Computers | GKDEGCN 82.73 7703 7032 na 4981 4592 na
GPN 88.48 8249  87.63 7455 5678 6794  48.03
Ours 89.88 8356  89.26  71.82 5851 7106 4335
LP 89.27 9424 9026 na. 9024 8555 na.
GKDE 85.94 7651 60.83 na. 6672 59.09 na.
Amazon | VOCN-Energy | 94.24 8244  79.64 na. 7260 7171 na.
o GKDE-GCN 89.84 7365 69.09 na 6245  59.68 na
GPN 94.10 8272 9198 7657 7455 8629  64.00
Ours 94.40 8351 9230  78.10 7765 8736 6539
LP 86.40 83735 80.86 na. 7438 7115 na
GKDE 78.84 7932 77.59 na. 6630  64.69 na.
Coauthor VGCN-Energy 93.07 85.35 87.33 n.a. 80.87 82.79 n.a.
s GKDE-GCN 93.13 85.02 8445 na. 80.15  77.90 na.
GPN 88.21 6949 9290  88.84 5541 9028  86.54
Ours 89.24 7012 9237 9138 5620 9117 9045
LP 9539 9178 90.03 na. 7058 69.63 na.
GKDE 93.30 87.02  84.64 na. 5700  52.49 na.
Coauthor | VOCN-Energy | 97.96 9029  91.08 na. 63.63 6941 na.
Physics GKDE-GCN 97.95 8738  84.62 na. 5797 56.30 na.
GPN 97.40 8520 9451  89.63 61.89 8373  66.44
Ours 97.44 8528 9442 9036 62.80 8361  70.62
LP 66.84 8004 7522 na. 6521 67.69 na.
GKDE 51.51 68.12 6580 na. 4722 4523 na.
oGeN | VGCN-Energy | 75.61 6491  64.50 na. 072 4241 na
iy GKDE-GCN 73.89 63.84 7244 na. 4971 5223 na.
GPN 73.84 6633 7482 6217 4635 5871 4301
Ours 71.30 6698 7452 6275 4748 5697 4148

Alea: Aleatoric, Epi.: Epistemic, w/: with propagation, w/o: without propagation

Table 7: AUROC and AUPR for the Misclassification Detection (Cont.)

AUROC AUPR

Data Model Aleaw/  Epiw/ | Aleaw/  Epiw/

APPNP 79.75 n.a. 45.10 n.a.

Amazon VGCN-Energy 82.08 n.a. 4553 n.a.
Computers GKDE-GCN 79.66 73.66 63.26 56.93
GPN 82.20 77.58 47.93 41.80
Ours 80.75 74.87 93.12 90.11

APPNP 85.74 n.a. 37.00 n.a.

Amazon VGCN-Energy 87.94 n.a. 48.35 n.a.
Photos GKDE-GCN 84.11 75.07 54.35 45.43
GPN 87.21 83.38 46.32 37.07
Ours 84.42 81.61 96.89 96.70

APPNP 89.92 n.a. 37.98 n.a.

Coauthor VGCN-Energy 89.46 n.a. 38.86 n.a.
cs GKDE-GCN 89.24 80.98 39.30 30.52
GPN 85.72 81.56 46.12 38.98
Ours 86.21 83.94 97.34 96.80

APPNP 93.27 n.a. 38.14 n.a.

Coauthor VGCN-Energy 92.86 n.a. 37.19 n.a.
Physics GKDE-GCN 92.77 86.12 37.08 25.13
GPN 91.14 89.63 41.43 35.64
Ours 89.93 88.83 99.14 99.10

APPNP 77.55 n.a. 54.57 n.a.

VGCN-Energy 77.89 n.a. 54.87 n.a.
OGBN GKDE-GCN 77.47 71.55 61.62 62.33
Arxiv GPN 75.44 72.71 55.64 52.99
Ours 75.30 72.85 83.95 81.54

Alea: Aleatoric, Epi.: Epistemic, w/: with propagation
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Figure 2: latent representation for CoraML
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Figure 3: latent representation for CiteSeer
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