
A Extensions321

We explore additional extensions of GloptiNets that further enhance its appeal. We first describe322

a block diagonal structure for the model for faster evaluation, a theoretical splitting scheme for323

optimization, and finally a warm start scheme.324

A.1 Block diagonal structure for efficient computation325

Without any further assumption, we see that a model from definition 1 can be evaluated in O(rmd)326

time; its Fourier coefficient given by lemma 1 in O(m2d); the bound on the RKHS norm is computed327

in O(m3d) time thanks to lemma 2; all that enables to compute a certificate, as stated in theorem 2,328

in O(N(m2d) +m3) time, where N is the number of frequencies sampled. If the function f to be329

minimized has big Hs norm, we might need a large model size m to have f � f? ⇡ g. Hence, we330

introduce specific structure on G which makes it block-diagonal and better conditioned, so that the331

complexity on m and the positivity constraint are alleviated.332

Proposition 2 (Block-diagonal PSD model). Let g be a PSD model as in definition 1, with m = bs333

anchors. Split them into b groups, denoting them zij, i 2 [b] and j 2 [s]. Compute the Cholesky334

factorization of each kernel matrix T>

i
Ti = Kzi 2 Rs⇥s. Then, define G as a block-diagonal matrix,335

with b blocks defined as Gi = R̃iR̃>

i
, R̃i = T�1Ri, and Ri 2 Rr⇥s. Equivalently,336

G =

0

B@
R̃1R̃>

1
. . .

R̃bR̃>

b

1

CA , s.t. g(x) =
bX

i=1

��R>

i
Kzi(x)

��2 , Kzi(x) = K(zij , x)1js.

(21)
Then g can be evaluated in O(rbs3d) time, bg! in O(bs2(r+d+s)) time, and kgk2

S(Hs)
in O(b2(rs2+337

r2s) + bs3) time. The model has (r + d)bs real parameters.338

Proof. Having G defined as such, it is psd, of rank at most rb  sb = m. Written g(x) =339 P
b

i=1kR̃
>

i
Kzi(x)k

2, we can compute the Fourier coefficient by applying lemma 1 to each of the b340

component. Adding the cost of computing Gi = R̃iR̃>

i
results in complexity of O(bs2(r + d+ s)).341

Finally, note that kgk2
S(Hs)

= kAk
2
S(Hs)

where342

A = (('(z1j))j2[s], . . . , ('(zbj))j2[s])(DiagGi)i2[b](('(z1j))j2[s], . . . , ('(zbj))j2[s])
⇤.

Then, defining Q the matrix of b⇥ b blocks of size s⇥ s s.t. for j, k 2 [b], Qjk = K(zj , zk) 2 Rs⇥s,343

we have344

kAk
2
S(Hs)

= Tr Q(DiagGi)i2[b]Q(DiagGi)i2[b] =
bX

j,k=1

Tr GjQjkGkQkj , (22)

and each term in the sum can be written Tr (R̃>

j
QjkR̃k)(R̃>

k
QkjR̃>

j
) = kR̃>

j
QjkR̃kk

2
HS

, which is345

computed in O(s2r + sr2) time, plus O(bs3) to compute the Cholesky factor.346

Denoting 'zi = ('(zij))1js, note that347

'ziGi'
⇤

zi
= 'ziT

�1
i

RiR
>

i
('ziT

�1
i

)⇤ = EiRiR
>

i
E⇤

i
, (23)

with Ei = 'ziT
�1
i

an orthonormal basis of Span('zij)1js as E⇤

i
Ei = Is. Thus, each model’s348

coefficient is defined on an orthonormal basis, which makes the optimization easier.349

Remark 3 (Relation to Term Sparsity in POP). The successful application of polynomial hierarchies350

to problems with thousands of variables rely on making the moment matrix M having a block351

structure [11, 12]. If the monomial basis has size m, the constraint M ⌫ 0 is replaced with352

M = (DiagMi)i2[b] and Mi ⌫ 0. This enables to solve b SDP of size at most s instead of one of353

size m. Our model in proposition 2 follows a similar route for having a lower computational budget.354

12

A.2 Global optimization with splitting scheme355

While GloptiNets can provide certificates for functions, it falls behind local solvers in terms of356

competitiveness. The challenge lies in the fact that finding a certificate is considerably more dif-357

ficult than locating a local minimum, as it necessitates the uniform approximation of the entire358

function. However, we present a novel algorithmic framework that has the potential to enhance the359

competitiveness of GloptiNets with local solvers while simultaneously delivering certificates. Our360

approach involves partitioning the search domain into multiple regions and computing lower bounds361

for each partition. By discarding portions of the domain where the lower bound exceeds a certain362

threshold, the algorithm progressively simplifies the optimization problem and removes areas from363

consideration. Moreover, such an approach is naturally well suited to parallel computation.364

The algorithm relies on a divide-and-conquer mechanism. First, we split the hypercube (�1, 1)d in365

N regions, where N is the number of core available. We compute an upper bound with a local solver.366

For each region, we run GloptiNets in parallel, computing a certificate at regular interval. As soon as367

the certificate is bigger than the upper bound, we stop the process: we know that the global minimum368

is not in the associated region. We can then reallocate the freed computing power by splitting the369

biggest current region, which yields an easier problem. We stop as soon as the region considered are370

small enough. This is summarized in alg. 2, where P indicates the loop run in parallel.371

Note that minimizing f on a hypercube of center µ and size � amounts to minimizing x 7! f((x�372

µ)/�) on [�1, 1]d, which is another Chebychev polynomial whose coefficients can be evaluated373

efficiently thanks to the order-2 relation every orthonormal polynomial satisfy. For Chebychev374

polynomials, that is H!+1(x) = 2xH!(x)�H!�1(x).375

Algorithm 2: Splitting scheme with GloptiNets
Data: A Chebychev polynomial f with a unique global optimum, a probability �, a number of

cores N and a volume ⇢ < 1/N .
Result: A certificate on f : f? � C�(f) with proba. 1� �?.
/* Initialization: upper bound and partition */

⇧ = partition([�1, 1]d, N), �? = 0. ;
P ub = min⇡2⇧ {localsolverx2⇡f(x)};
/* Iterate over the partition */

P for ⇡ 2 ⇧, While length(⇧) > 1 do
while C�(f⇡) < ub do

Continue optimization;
Split biggest part: ⇡0 = argmax⇡2⇧ Vol(⇡); (⇡1,⇡2) = partition(⇡0, 2) ;
If Vol(⇡1,2) < ⇢: end this process ;
Update upper bound: ub = min

�
ub, localsolverx2⇡1,2f(x)

;

Update search space and �?: ⇧ = ⇧ \ {⇡,⇡0} [{⇡1,⇡2}, �? = 1� (1� �?)(1� �);
/* A single region in ⇧ remains */

Returns ⇧ = {⇡}, C�(f⇡), �?;

A.3 Warm restarts376

Our model distinguishes itself by leveraging the analytical properties of the objective function,377

rather than relying solely on algebraic characteristics. This approach offers a notable advantage,378

as closely related functions can naturally benefit from a warm restart. For example, if we already379

have a certificate for a function f using a PSD model g, and we seek to compute a certificate for380

a similar function f̃ ⇡ f , we can readily employ GloptiNets by initializing the PSD model with g.381

In contrast, P-SoS methods, which rely on SDP programs, cannot directly adapt to new problems382

without significant effort. For instance, if a new component is introduced, an entirely new SDP must383

be solved. Our model’s ability to accommodate related yet distinct problems could prove highly384

valuable in domains with a frequent need to certify different but closely related problems. In the385

industry, the Optimal Power Flow (OPF) problem requires periodic solves every 5 minutes [21].386

With GloptiNets, once the initial challenging solve is performed, subsequent solves become easier387

assuming minimal changes in supply and demand conditions.388

13

B Kernel defined on the Chebychev basis389

In this section we describe the approach we take to model functions written in the Chebychev basis.390

For f such a polynomial, a naive approach would simply model f̃ = f � cos(2⇡·) as a trigonometric391

polynomial. However, note that the decomposition of f̃ only has cosine terms. Thus, approximating392

f � f? efficiently requires a PSD model which has only cosine terms in its Fourier decomposition.393

This is achieved by using a kernel written in the Chebychev basis, as introduce in proposition 1, for394

which we now provide a proof.395

Proof of proposition 1. Let x, y 2 [�1, 1] and u, v 2 [0, 1/2] s.t. x, y = cos(2⇡u), cos(2⇡v), by396

bijectivity of the cosine function on [0,⇡]. From the definition of K in eq. (19) and the definition of q397

in eq. (5), we have that398

K(x, y) =
1

2

X

!2Z
bq!
⇣
e2⇡i!(u+v) + e2⇡i!(u�v)

⌘

=
X

!2Z
bq!e2⇡i!u cos(2⇡!v)

= bq0 + 2
X

!2N
bq! cos(2⇡!u) cos(2⇡!v)

= bq0 + 2
X

!2N
bq!H!(u)H!(v).

Since q has positive Fourier transform, this makes the feature map of K explicit with K(x, y) =399

'(u) · '(v), '(u)! =
p
(1 + 1! 6=0)bq!H!(u), for ! 2 N. Hence the kernel is a reproducing400

kernel.401

We now use this kernel with the Bessel function x 7! es(cos(2⇡x)�1), i.e. we define the kernel K on402

[�1, 1] to satisfy403

8u, v 2 (0, 1/2), K(cos(2⇡u), cos(2⇡v)) =
1

2

⇣
es(cos(2⇡(u+v)) + es(cos(2⇡(u�v))

⌘
. (24)

As it was the case for the torus, this kernel enables an easy characterization of a RKHS in which an404

associated PSD model g lives.405

Lemma 3 (Chebychev coefficient of the Bessel kernel). Let g be a PSD model as in definition 1, with406

the kernel K of eq. (24). Then, the Chebychev coefficient ! 2 Nd of g can be computed in O(m2d)407

time with408

g! =
mX

i,j=1

Aij

dY

`=1

(1 + 1! 6=0)
e�2s`

2


I!`(2s`��`ij)H!`(�+`ij)

+I!`(2s`�+`ij)H!`(��`ij)

�
(25)

where409

�±`ij = cos(2⇡m±`ij), m±`ij = (u`ij ± u`ij)/2, and cos 2⇡u`ij = z`ij .

Proof.410

Expanding g and definition of Chebychev coefficient. From the definition of g in eq. (4), we have411

g(x) =
mX

i,j=1

Aij

dY

`=1

Ks`(x`, z`i)Ks`(x`, z`j). (26)

We consider x, y, z 2 (�1, 1) and s > 0. We denote u, v, w 2 (0, 1/2) s.t.412

x, y, z = cos 2⇡u, cos 2⇡v, cos 2⇡w

14

with the bijectivity of x 7! cos(2⇡x) on (0, 1/2). We now compute the Chebychev coefficient of413

x 7! Ks(x, y)Ks(x, z). Denoted h! , this is414

8! 2 N, h! =
1 + 1! 6=0

⇡

Z 1

�1
Ks(x, y)Ks(x, z)T!(x)

dx
p
1� x2

,

or equivalently415

8! 2 N, h! = (1 + 1! 6=0)

Z 1

0
Ks(cos 2⇡u, cos 2⇡v)Ks(cos 2⇡u, cos 2⇡w) cos(2⇡!u)du. (27)

416

Chebychev coefficient of kernel product. With the definition of the kernel in proposition 1,417

eq. (19), we have418

Ks(x, y)Ks(x, z) =
1

4
(h(u+ v) + h(u� v))⇥ (h(u+ w) + h(u� w))

=
e�2s

4

⇣
es cos 2⇡(u+v) + es cos 2⇡(u�v)

⌘
⇥

⇣
es cos 2⇡(u+w) + es cos 2⇡(u�w)

⌘

Now use the sum-to-product formula with the cosines to obtain419

Ks(x, y)Ks(x, z) =
e�2s

4

e2s cos 2⇡(

v�w
2) cos 2⇡(u+ v+w

2) + e2s cos 2⇡(
v�w

2) cos 2⇡(u� v+w
2)

+e2s cos 2⇡(
v+w

2) cos 2⇡(u+ v�w
2) + e2s cos 2⇡(

v+w
2) cos 2⇡(u� v�w

2)

!
,

(28)
We simplify this expression by introducing420

m± =
1

2
(v ± w) and �± = cos 2⇡m±. (29)

Then, eq. (28) becomes421

Ks(x, y)Ks(x, z) =
e�2s

4

e2s�� cos 2⇡(u+m+) + e2s�� cos 2⇡(u�m+)

+e2s�+ cos 2⇡(u+m�) + e2s�+ cos 2⇡(u�m�)

!
.

(30)

We recognize the definition of the kernel (which is not a surprise as we chose the kernel to be stable422

by product). However, we need variables in (0, 1/2) to retrieve the proper definition of the kernel.423

Instead, we use lemma 4 on eq. (30) combined with eq. (27), to obtain424

h! = (1 + 1! 6=0)
e�2s

4

cos(2⇡!m+)I!(2s��) + cos(2⇡!m+)I!(2s��)

+ cos(2⇡!m�)I!(2s�+) + cos(2⇡!m�)I!(2s�+)

!
,

which gives425

h! = (1 + 1! 6=0)
e�2s

2
(cos(2⇡!m+)I!(2s��) + cos(2⇡!m�)I!(2s�+)). (31)

Equation (31) contains the Chebychev coefficient of the product of two kernel function as defined426

in eq. (27). Plugging this result into the definition of g in eq. (26), and noting that cos(2⇡!m±) =427

H!(cos 2⇡m±) = H!(�±), we obtain the result.428

Thanks to lemma 3, we see that a model g defined as in definition 1 with the Bessel kernel Ks of429

eq. (24) as its Chebychev coefficients decaying in O(I!(2s)). Hence, it belongs to H2s, the RKHS430

associated to K2s.431

15

Figure 3: Certificate vs. RKHS norm of f , for a given model g with a fixed number of parameters. f
has 1146 coefficients and g has 22528 parameters. Best certificate is kept among a set of optimization
hyperparameters. As the norm of f decreases, fitting f � f? with g is easier and the certificate
becomes tighter.

C Additional details on the experiments432

Regularization. Regularization is performed by approximating the HS norm with a proxy which433

is faster to compute. We use kR>

j
R̃kk

2
HS

instead of kR̃>

j
QjkR̃kk

2
HS

in eq. (22).434

Hardware. GloptiNets was used with NVIDIA V100 GPUs for the interpolation part, and Intel435

Xeon CPU E5-2698 v4 @ 2.20GHz for computing the certificate. TSSOS was ran on a Apple M1436

chip with Mosek solver.437

Configuration of TSSOS. We use the lowest possible relaxation order d (i.e. ddegf/2e), along438

with Chordal sparsity. We use the first relaxation step of the hierarchy. In these settings, TSSOS is439

not guaranteed to converge to f? but will executes the fastest.440

Certificate vs. number of parameter for a given function. In fig. 2, the target function is a441

random polynomial of norm 1. The models forming the blue line are defined as in proposition 2, with442

rank, block size and number of blocks equal to (1, bs, 1) respectively, with bs the block size we vary.443

The number of frequencies sampled to compute the certificate is 160000, and accounts for the fact444

that the bound on the variance becomes larger than the MOM estimator for large models.445

Certificate vs. problem difficulty for a given model. We have 3 related parameters: the quality446

of the optimization (given by the certificate), the expressivity of the model (given by its number of447

parameters), and the difficulty of the optimization (given by the norm of the function). In fig. 2, we448

fix the latter and plot the relation between the first two. Here, we fix the model with parameters449

(8, 16, 128), and we optimize a polynomial in 3d of degree 12, with RKHS norm ranging from 1 to450

20. The certificates obtained are given in fig. 3. The resulting plot exhibits a clear polynomial relation451

between the certificate and the norm of the function, with a slope of �0.88. This suggest that the452

certificate behaves as O(kfk�1
H2s

).453

Comparison with TSSOS on the Fourier basis. In table 1, the polynomials f all have a RKHS454

norm of 1. The small model is defined as in proposition 2, with rank, block size and number of blocks455

equal to 4, 8, 16 respectively. For the big models, those values are 8, 16, 32. The certificate is the456

maximum of the Chebychev bound of theorem 2 and the MoM bound of theorem 3. The number of457

frequencies sampled is 160000.458

Comparison with TSSOS on the Chebychev basis. We compare GloptiNets with TSSOS on ran-459

dom Chebychev polynomials in table 2, similarly to the comparison with trigonometric polynomials460

in table 1. Minimizing polynomials defined on the canonical basis is easier: contrary to trigonometric461

polynomials, there is no need to account for the imaginary part of the variable. If d is the dimension,462

complex polynomials are encoded in a variable of dimension 2d in TSSOS, following the definition463

of Hermitian Sum-of-Squares iontroduced in [30]. Hence, the random polynomials we consider are464

characterized by the dimension d and their number of coefficients n; instead of bounding the degree,465

we use all the basis elements H!(x) =
Q

d

`=1 H!`(x`) for which k!k
1

 p. The maximum degree466

16

Table 2: GloptiNets and TSSOS on random Chebychev polynomials. The same conclusion as in
table 1 applies. While TSSOS is very efficient on small problems, its memory requirements grow
exponentially with the problem size. GloptiNets has less accuracy, but a computational burden which
does not increase with the problem size.

d p n
TSSOS GN-small GN-big

Certif. t Certif. t Certif. t

4
3 255 3.4 · 10�7 6 9.3 · 10�2 54 3.3 · 10�2 264
4 624 2.1 · 10�9 153 8.3 · 10�2 55 2.8 · 10�2 258
5 1295 Out of memory! - 1.0 · 10�1 56 3.2 · 10�2 264

is then dp. The RKHS norm of f is fixed to 1. As with the comparison on Trigonometric polynomial467

table 1, we see that GloptiNets provides similar certificates no matter the number of coefficients in f .468

Even though it lags behind TSSOS for small polynomials, it handles large polynomials which are469

intractable to TSSOS. The “small” and “big” models have the same structure as for the trigonometric470

polynomials experiments.471

Sampling from the Bessel distribution. The function ! 7! e�sI!(s) decays rapidly. In fact, with472

s = 2, which is the value used to generate the random polynomials, it falls under machine precision473

as soon as ! > 14. Thus, we approximate the distribution with a discrete one with weights I!(s) for474

! s.t. the result is above the machine precision. We then extend it to multiple dimension with a tensor475

product. Finally, we use a hash table to store the already sampled frequency, to make the evaluation476

of million of frequencies much faster. For instance in dimension 5, sampling 106 frequencies from477

the Bessel distribution of parameter s = 2 on N5 yields only ⇡ 104 unique frequencies. This allows478

for tighter certificates, as it makes the r.h.s of eq. (9), in 1/N, much smaller. Note that the time to479

generate this hash table is not reported in tables 1 and 2, and of the order of a few seconds.480

D Other computation481

Lemma 4. Let f be the function defined on (�1, 1) with482

8u 2 (0, 1/2), f(cos 2⇡u) = es cos 2⇡(u�v). (32)
Then, its Chebychev coefficient are given with483

f! = (1 + 1! 6=0) cos(2⇡!v)I!(s). (33)

Proof. The ! 2 N⇤. The component ! of a function f on the Chebychev basis is given with484

f! =
2

⇡

Z 1

�1
f(x)T!(x)

dx
p
1� x2

,

which we conveniently rewrite, with the classical change of variable x = cos 2⇡u,485

f! = 2

Z

I1

f(cos 2⇡u) cos(2⇡!u)du (34)

which is valid for any interval I1 ⇢ R of length 1.486

Now, for s > 0, consider the function f defined on (�1, 1) with x 7! es cos(arccos(x)�2⇡v), or487

equivalently488

8u 2 (0, 1/2), f(cos 2⇡u) = es cos 2⇡(u�v). (35)
Putting eq. (35) into eq. (34), we obtain489

f! = 2

Z

I1

es cos 2⇡(u�v) cos(2⇡!u)du

= 2

Z

I1

es cos 2⇡u cos(2⇡!(u+ v))du

= 2

Z

I1

es cos 2⇡u cos(2⇡!u) cos(2⇡!v)du� 2

Z

I1

es cos 2⇡u sin(2⇡!u) sin(2⇡!v)du.

17

The last term is odd, hence integrate to 0 on an interval centered around 0. Hence,490

f! = 2 cos(2⇡!v)

Z

I1

es cos 2⇡u cos(2⇡!u)du. (36)

We recognize the definition of the modified Bessel function of the first kind, defined in eq. (14).491

Plugging this into eq. (36), we obtain492

f! = 2 cos(2⇡!v)I!(s) = 2I!(s)H!(cos(2⇡v)). (37)

If ! = 0, we add a factor 1/2 into the definition in eq. (34), which yields493

f! = I0(s). (38)

494

References495

[1] Pablo Moscato et al. On evolution, search, optimization, genetic algorithms and martial496

arts: Towards memetic algorithms. Caltech concurrent computation program, C3P Report,497

826(1989):37, 1989.498

[2] Reiner Horst and Panos M Pardalos. Handbook of global optimization, volume 2. Springer499

Science & Business Media, 2013.500

[3] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,501

2004.502

[4] Peter JM Van Laarhoven, Emile HL Aarts, Peter JM van Laarhoven, and Emile HL Aarts.503

Simulated annealing. Springer, 1987.504

[5] Jean Bernard Lasserre. Moments, Positive Polynomials and Their Applications, volume 1 of505

Series on Optimization and Its Applications. IMPERIAL COLLEGE PRESS, October 2009.506

[6] Jean B. Lasserre. Global Optimization with Polynomials and the Problem of Moments. SIAM507

Journal on Optimization, 11(3):796–817, January 2001.508

[7] Blake Woodworth, Francis Bach, and Alessandro Rudi. Non-Convex Optimization with Cer-509

tificates and Fast Rates Through Kernel Sums of Squares. In Proceedings of Thirty Fifth510

Conference on Learning Theory, pages 4620–4642. PMLR, June 2022.511

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.512

[9] Didier Henrion, Milan Korda, and Jean-Bernard Lasserre. The Moment-SOS Hierarchy, vol-513

ume 4 of Optimization and Its Applications. World Scientific Publishing Europe Ltd., December514

2020.515

[10] Hayato Waki, Sunyoung Kim, Masakazu Kojima, and Masakazu Muramatsu. Sums of Squares516

and Semidefinite Program Relaxations for Polynomial Optimization Problems with Structured517

Sparsity. SIAM Journal on Optimization, 17(1):218–242, January 2006.518

[11] Jie Wang, Victor Magron, and Jean-Bernard Lasserre. TSSOS: A Moment-SOS Hierarchy That519

Exploits Term Sparsity. SIAM Journal on Optimization, 31(1):30–58, January 2021.520

[12] Jie Wang, Victor Magron, and Jean-Bernard Lasserre. Chordal-TSSOS: A Moment-SOS521

Hierarchy That Exploits Term Sparsity with Chordal Extension. SIAM Journal on Optimization,522

31(1):114–141, January 2021.523

[13] Francis Bach and Alessandro Rudi. Exponential convergence of sum-of-squares hierarchies for524

trigonometric polynomials, January 2023.525

[14] Monique Laurent and Lucas Slot. An effective version of schmüdgen’s positivstellensatz for the526

hypercube. Optimization Letters, September 2022. Funding Information: This work is supported527

by the European Union’s Framework Programme for Research and Innovation Horizon 2020528

under the Marie Skłodowska-Curie Actions Grant Agreement No. 764759 (MINOA). Publisher529

Copyright: © 2022, The Author(s).530

18

[15] Ngoc Hoang Anh Mai, J. B. Lasserre, Victor Magron, and Jie Wang. Exploiting Constant531

Trace Property in Large-scale Polynomial Optimization. ACM Transactions on Mathematical532

Software, 48(4):40:1–40:39, December 2022.533

[16] Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi. Non-parametric Models for Non-534

negative Functions. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,535

Advances in Neural Information Processing Systems, volume 33, pages 12816–12826. Curran536

Associates, Inc., 2020.537

[17] Eloïse Berthier, Justin Carpentier, Alessandro Rudi, and Francis Bach. Infinite-Dimensional538

Sums-of-Squares for Optimal Control. In 2022 IEEE 61st Conference on Decision and Control539

(CDC), pages 577–582, December 2022.540

[18] Boris Muzellec, Adrien Vacher, Francis Bach, François-Xavier Vialard, and Alessandro Rudi.541

Near-optimal estimation of smooth transport maps with kernel sums-of-squares, December542

2021.543

[19] Alessandro Rudi and Carlo Ciliberto. PSD Representations for Effective Probability Models. In544

Advances in Neural Information Processing Systems, volume 34, pages 19411–19422. Curran545

Associates, Inc., 2021.546

[20] Alessandro Rudi, Ulysse Marteau-Ferey, and Francis Bach. Finding Global Minima via Kernel547

Approximations. arXiv:2012.11978 [cs, math, stat], December 2020.548

[21] Pascal Van Hentenryck. Machine Learning for Optimal Power Flows. INFORMS Tutorials in549

Operations Research, October 18.550

[22] Joseph J. Hilling and Anthony Sudbery. The geometric measure of multipartite entanglement551

and the singular values of a hypermatrix. Journal of Mathematical Physics, 51(7):072102, July552

2010.553

[23] Irène Waldspurger, Alexandre d’Aspremont, and Stéphane Mallat. Phase Recovery, MaxCut554

and Complex Semidefinite Programming, July 2013.555

[24] Ingo Steinwart and Andreas Christmann. Support vector machines. Springer Science & Business556

Media, 2008.557

[25] The Basic Theorems of Fourier Analysis. In Fourier Analysis on Groups, chapter 1, pages 1–34.558

John Wiley & Sons, Ltd, 1990.559

[26] Luc Devroye, Matthieu Lerasle, Gabor Lugosi, and Roberto I. Oliveira. Sub-Gaussian Mean560

Estimators. The Annals of Statistics, 44(6):2695–2725, 2016.561

[27] G. N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge University Press, 1922.562

[28] Vern I. Paulsen and Mrinal Raghupathi. An Introduction to the Theory of Reproducing Kernel563

Hilbert Spaces. Cambridge Studies in Advanced Mathematics. Cambridge University Press,564

Cambridge, 2016.565

[29] Jie Wang and Victor Magron. Exploiting Sparsity in Complex Polynomial Optimization. Journal566

of Optimization Theory and Applications, 192(1):335–359, January 2022.567

[30] Cédric Josz and Daniel K. Molzahn. Lasserre Hierarchy for Large Scale Polynomial Optimiza-568

tion in Real and Complex Variables. SIAM Journal on Optimization, 28(2):1017–1048, January569

2018.570

19

	Introduction
	Previous work

	Computing certificates with extended k-SoS
	Certificates for global optimization and k-SoS
	Providing certificates with the F-norm.

	Algorithm and implementation
	Bessel kernel
	The algorithm: GloptiNets
	Specific implementation for the Chebychev basis

	Experiments
	Limitations
	Conclusion
	Extensions
	Block diagonal structure for efficient computation
	Global optimization with splitting scheme
	Warm restarts

	Kernel defined on the Chebychev basis
	Additional details on the experiments
	Other computation

