
A Broader Impacts508

The goal of our work is to actively defend self-supervised encoders against model stealing attacks.509

Since we are directly defending encoders, any negative societal impacts of our work are minimal. One510

potentially negative impact could be the degradation of performance for legitimate users. However,511

as shown in our experimental results, we are able to preserve high utility for standard users.512

B Limitations513

We show how our defense method is tuned for SimSiam and DINO. There are more types of SSL514

encoders that can be tested with our method. The B4B defense method requires tuning the parameters,515

such as the number of occupied buckets that is allowed without any penalty for the cost function, or516

the selection of the transformations. These steps are rather difficult to automate but can be replaced517

with more data-driven approaches. For example, instead of designing a cost function from scratch,518

we could create an ML model to obtain a cost for a given occupation of the representation space. We519

explain more details in the Appendix C.2.520

C Alternative Building Blocks to Instantiate B4B521

While we present a reference implementation of B4B in our work that instantiates the three building522

blocks with (1) Local Sensitive Hashing, (2) Utility of the Representations, and (3) a set of concrete523

transformations, there exists a multitude of alternatives to concretely implement our B4B framework.524

In the following, we present these alternatives, grouped by building block.525

C.1 Alternative Estimation of the Coverage of Embedding Space526

We also explore alternative methods to measure the distances between representations for queries527

sent to an API. One of them is to apply the cosine distance (where for two representations a and b, it528

is defined as: 1� aT b
||a||2·||b||2) since it can be measured between individual data points in a pair-wise529

fashion. If the total pair-wise cosine distance between representations for a given user is small, then530

the user queries presumably come from a single downstream task distribution. Otherwise, a user531

might be malicious and would like to cover a large part of the representation space, then the total532

pair-wise cosine distance for the user’s representations would be high. Note that in this case, the533

cosine distance can be replaced with any other distance measure, such as the Minkowski distance.534

We opt for the LSH in our reference implementation, since it is much less expensive to compute than535

cosine distance. LSH requires only 212 = 4096 buckets that can be expressed as a binary table with536

the same number of elements, which requires in the worst case iterating over all of them to count how537

many are occupied. With more than 4096 queries sent by a given user, the computation on the LSH is538

sublinear < O(n) with respect to the number of user queries. For the cosine distance approach, the539

required computation grows quadratically O(n2) with the number of queries.540

C.2 Alternative Cost Functions541

The cost functions can be designed from scratch manually or learned, for example, via an ML model,542

such as a neural network or SVM. In our initial version, the function was designed manually, where543

the underlying premise is that once a specified number of buckets is occupied, the cost should grow544

exponentially. Instead of defining such a function or providing the high-level parameters for functions545

that we contributed, one could learn an ML model that for a given number of buckets occupied, it546

should output an estimated cost, or even directly, the desired � (standard deviation) of the noise added547

to representations. This method requires a relatively large number of data points to be provided for548

training the model, however, lowers the burden on a defender to either decide on the specific function549

or adjust its parameters. Thus, it could be more user-friendly, for example, not necessitating any550

mathematical background, but can be precise enough to obtain the desired behavior.551

Note that instead of adding the calibrated noise (proportional to the estimated cost) to the represen-552

tations, we could rather require a given user to pay a higher monetary cost for queries that cover a553

large fraction of the representation space, or force a user to solve a puzzle in a form of the proof-554

of-work [17], wait a specified amount of time via proof-of-elapsed time (PoET) [4], or prove that555

13

a specified amount of disk space was reserved [18, 19]. For example, consider the approach with556

PoET. A user sends queries to the API, which we cost based on their occupation of the embedding557

space. The user is sent a waiting time. The users’ resource (e.g., a CPU) has to be occupied for this558

specific waiting time without performing any work. At the end of the specified amount of time, the559

user sends proof of the elapsed time, which can be easily verified by the server. PoET requires access560

to specialized hardware, for example, secure CPU instructions that are becoming widely available in561

consumer and enterprise processors. If a user does not own such hardware, proof of elapsed time562

could be produced using a service exposed by a cloud provider (e.g., Azure VMs that feature TEE 2).563

Note that if a server sends the time based on the calculated cost, the adversary might learn the cost564

function. Instead, the exact waiting time should be split in random subwaiting times and sent to the565

user one by one. Thus, a server should rather have a few rounds of exchange with the client to incur566

the additional cost.567

C.3 Alternative to Transformations568

a

Affine Pad + Shuffle Affine + Pad + Shuffle Binary

0.7

-0.2

0.3

a

2.4

0.7

-1.1

c

x2 + 1

x-1 + 0.5

x3 - 2

0.7

-0.2

0.3

a

-0.2

0.3

0.7

c

0.5

0.3

-0.4

+ 0.5

+ 0.3

- 0.4

0.7

-0.2

0.3

a

0.7

-1.1

2.4

c

0.5

0.3

-0.4

+ 0.5

+ 0.3

- 0.4

0.7

-0.2

0.3

a

1

0

0

c

1

1

0

x2 + 1

x-1 + 0.5

x3 - 2

Figure 6: Overview on Transformations. We depict the inner-workings of the transformations
considered in this work.

As an alternative to the transformations used within this work (see Figure 6), one could use a different569

set of transformations or combinations thereof. The padding can be done with different constant570

values and combined with adding constant values within the representations. The padding and adding571

the constant values can be followed by shuffling the elements within the representations. We can572

apply the affine of binary transformations on top of the padding and shuffling. Additionally, we can573

also use other pre-defined linear transformations like rotations or shearing.574

The representations could also be compressed to smaller vectors and the compression rate would575

depend on the occupation of the representation space, for example, the higher the number of occupied576

buckets in our hash table, the more compressed the output representations could be. Such representa-577

tions could be compressed via FFT, a cosine transform, or standard compression techniques such578

as snappy [5]. If the information from the representations should not be lost, then the lossless com-579

pression techniques can be applied, for instance, zstd [6]. The only requirement of the compression580

techniques is to ensure that they do not decrease the accuracy on downstream tasks for legitimate581

users.582

Another alternative is to incorporate an additional neural network layer for transforming the returned583

representations. The training of this supplementary layer should primarily focus on preserving584

the usability of the representations for legitimate users. This approach grants the API provider585

with additional capabilities, as it allows for the utilization of customized training objectives. For586

instance, if the API provider employs LSH (Locality-Sensitive Hashing) to estimate the coverage587

of the representation space, they can leverage buckets and train the additional layer to maintain588

high-quality representations exclusively for frequently-used buckets and their surrounding areas,589

while not prioritizing the rest of the representation space. This approach safeguards legitimate users590

14

from any adverse effects, as their coverage of the representation space is minimal. Simultaneously, it591

ensures that adversaries are unable to exploit representations from the entire representation space.592

D Sybil Attacks593

We consider an adversary who generates n sybil accounts to steal the encoder from the API. For each594

of the accounts, the representations are transformed in a different way. Therefore, to replicate the595

victim model using all the obtained representations, the adversary has to map these representations596

into one single space. This can be done, for example, by training a neural network to perform the597

mapping.598

We assume the adversary obtains {N1, N2, . . . , Nn} many representations from the victim for each599

of the n sybil accounts. Without loss of generality, we assume the adversary maps them back to the600

embedding space of the first sybil account. To learn the mapping, the adversary can apply different601

strategies.602

D.1 Sybil Strategies603

We present three potential approaches that Sybils might want to apply to circumvent our defense. Con-604

sider three users: A, B, and C, with their respective datasets DA, DB , and DC , each with different605

distributions to maximize extraction effectiveness. First, user A is selected to unify representations606

from other users B and C. User A would have to query from at least two different datasets DB and607

DC , while other users would act legitimately. Sybil attackers want to deploy as many users as possible608

but with more fake accounts, user A incurs high coverage of the representation space, and this is609

prevented by our single-user defense. In all other cases neither of the sybil users can act legitimately,610

thus they are already affected by the single-user defense. Second, user A would query from their own611

dataset DA and partially from dataset DB . Then user B would query from their own dataset DB and612

partially from dataset DC , and so on. This method is the most inconspicuous but requires a number613

of remappings that scales super-exponentially with the number of fake accounts, which is impractical.614

Finally, each user would query from their respective dataset, for example, user B would query from615

dataset DB and additionally from a remapping dataset, e.g., DA. Representations could be unified616

by mapping them to A’s representations. The last approach as well as all other cases reduce to the617

minimum of remapping between representations of a pair of users. We show that our defense cuts618

such attempts short by ensuring that the remapping between representations is prohibitive even for a619

pair of users.620

E Additional Related Work621

One of the main workhorse techniques used in the encoders is contrastive learning, where the622

representations are trained so that the positive pairs (two augmented versions of the same image)623

have similar representations while negative pairs (augmentations of two different images) have624

representations which are far apart.625

SimSiam utilizes Siamese networks (two encoders with shared weights) but with a simplified training626

process and architecture. In contrast to the previous frameworks, such as SimCLR [10], SimSiam’s627

authors show that negative samples are unnecessary and collapsing solutions can be avoided by628

applying the projection head to of one of the encoders, and a stop-gradient operation to the other.629

SimSiam minimizes the negative cosine similarity between two randomly augmented views of the630

same image from the Siamese encoders, which is expressed via a symmetrized loss [21]. This creates631

a simple yet highly effective representation learning method.632

DINO is another popular representation learning framework. While SimSiam uses CNNs, DINO633

employs vision transformers (ViTs). It trains a student and teacher encoder with the same architec-634

ture, updating the teacher with an (exponential moving) average of the student. Different random635

transformations of the same image are passed through both encoders. The student receives smaller636

image crops, forcing it to generate representations restoring parts of the original image. The training637

objective is minimizing cross-entropy loss between teacher and student representations.638

15

F Additional Experimental Results639

F.1 Details on Experimental Setup640

The end-to-end experiments on stealing SimSiam and ViT DINO encoders were done using 3 A100641

GPUs. Detailed experiments including mapping, transformations and the evaluation was performed642

using a single computer equipped with two Nvidia RTX 2080 Ti GPUs.643

F.2 Datasets Used644

CIFAR10 [27]: The CIFAR10 dataset consists of 32x32 colored images with 10 classes. There are645

50000 training images and 10000 test images.646

SVHN [31]: The SVHN dataset contains 32x32 coloured images with 10 classes. There are roughly647

73000 training images, 26000 test images and 530000 "extra" images.648

ImageNet[14]: Larger sized coloured images with 1000 classes. As is commonly done, we resize649

all images to be of size 224x224. There are approximately 1 million training images and 50000 test650

images.651

STL10 [12]: The STL10 dataset contains 96x96 coloured images with 10 classes. There are 5000652

training images, 8000 test images, and 100000 unlabeled images.653

F.3 More Results for the End2End Empirical Evaluation654

We consider fine-tuning parameters �, �, and ↵ for our cost function and the intuitive meaning655

behind these parameters. In general, our recommendation is to adjust the parameter � that specifies656

how many buckets are allowed to be filled by users’ downstream tasks. On the other hand, when657

parameter � is increased, this causes a higher amount of added noise before we reach the number of658

buckets specified by �, which lowers the performance of a given downstream task relatively early.659

For example, a higher value of � in Figure 4, would cause an increase in the amount of added noise660

much earlier than for the target value of �. Finally, parameter ↵ controls the amount of noise once661

the number of buckets specified by � is reached. Thus, in Figure 4, we set ↵ = 1 and the maximum662

standard deviation of the added Gaussian noise is 1.663

(a) Cost Function for different � parameter values. (b) Cost Function for different ↵ parameter values.

Figure 7: Effects of � and ↵ parameters on the Cost Function. We present the Cost Function for
↵=1, �=80 and different values of � (left) and � = 10�6, �=80 and different values of ↵ (right).

16

Table 2: Stealing and Using Encoders With and Without our Defense. The model used in the
experiments is Simsiam, with the following parameters for the cost function � = 10�4, ↵ = 1, and
� = 80%, and the number of buckets equal to 212. Due to the higher value of the parameter �, we
observe lower performance on downstream tasks for the attackers since the magnitude of noise added
to the representations is higher. However, for more complicated tasks than CIFAR10, this change
might cause a potential drop in accuracy for the legitimate users.

USER DEFENSE # QUERIES DATASET TYPE CIFAR10 STL10 SVHN F-MNIST

N/A N/A Victim ImageNet Train 90.41±0.02 95.08±0.13 75.47±0.04 91.22±0.11

LEGIT B4B 50K CIFAR10 QUERY 90.02 ±0.1 N/A N/A N/A
LEGIT B4B 5K STL10 QUERY N/A 94.88 ±0.17 N/A N/A
LEGIT B4B 73K SVHN QUERY N/A N/A 74.72 ±0.13 N/A
LEGIT B4B 60K F-MNIST QUERY N/A N/A N/A 91.76 ±0.09

ATTACK NONE 50K IMAGENET STEAL 65.2 ±0.03 64.9 ±0.01 62.1 ±0.01 88.5 ±0.01

ATTACK B4B 50K IMAGENET STEAL 28.22 ± 0.04 26.62 ± 0.02 19.62 ± 0.02 78.41 ±0.01

ATTACK NONE 100K IMAGENET STEAL 68.1 ±0.03 63.1 ±0.01 61.5 ±0.01 89.0 ±0.07

ATTACK B4B 100K IMAGENET STEAL 17.73 ± 0.18 15.59 ± 0.61 19.53± 0.01 55.11 ± 0.05

SYBIL B4B 50K+50K IMAGENET STEAL 33.43 ± 0.03 31.18 ± 0.12 22.91 ± 0.01 75.35 ± 0.05

Table 3: Stealing and Using Encoders With and Without our Defense. The model used in the
experiments is Simsiam, with the following parameters for the cost function � = 10�6, ↵ = 1, and
� = 50%, and the number of buckets equal to 212. This experiment corresponds to considering 50%
of buckets filled as a too-large coverage of the embedding space. This improves the defense but again
might potentially harm the performance of more complicated tasks than CIFAR10 since they could
occupy more buckets than 50%.

USER DEFENSE # QUERIES DATASET TYPE CIFAR10 STL10 SVHN F-MNIST

N/A N/A Victim ImageNet Train 90.41±0.02 95.08±0.13 75.47±0.04 91.22 ±0.11

LEGIT B4B 50K CIFAR10 QUERY 90.27 ±0.07 N/A N/A N/A
LEGIT B4B 5K STL10 QUERY N/A 95.12 ±0.13 N/A N/A
LEGIT B4B 73K SVHN QUERY N/A N/A 74.94 ±0.16 N/A
LEGIT B4B 60K F-MNIST QUERY N/A N/A N/A 91.66 ±0.05

ATTACK NONE 50K IMAGENET STEAL 65.2 ±0.03 64.9 ±0.01 62.1 ±0.01 88.5 ±0.01

ATTACK B4B 50K IMAGENET STEAL 15.52 ± 0.37 12.57 ± 0.23 19.53± 0.01 23.17 ± 0.01

ATTACK NONE 100K IMAGENET STEAL 68.1 ±0.03 63.1 ±0.01 61.5 ±0.01 89.0 ±0.07

ATTACK B4B 100K IMAGENET STEAL 16.27 ± 0.04 13.93 ± 0.35 19.54 ± 0.02 54.69 ± 0.02

SYBIL B4B 50K+50K IMAGENET STEAL 30.14 ± 0.01 29.57 ± 0.08 19.99 ± 0.03 71.72 ± 0.01

17

Table 4: Stealing and Using Encoders With and Without our Defense. The model used in the
experiments is Simsiam, with the following parameters for the cost function � = 10�6, ↵ = 1, and
� = 30%, and the number of buckets equal to 212. Since the value of parameter � is decreased
substantially to 30%, we observe a drop in accuracy for legitimate users. For example, more than 1%
for CIFAR10. In the next Table 5, we show that by also decreasing the parameter ↵, we can attenuate
this harmful effect and retain higher accuracy for legitimate users. In case of an attack, for 100k
stealing queries, we observe much lower accuracy levels than for � = 50% shown in Table 3.

USER DEFENSE # QUERIES DATASET TYPE CIFAR10 STL10 SVHN F-MNIST

N/A N/A Victim ImageNet Train 90.41±0.02 95.08±0.13 75.47±0.04 91.22 ±0.11

LEGIT B4B 50K CIFAR10 QUERY 88.1 ±0.11 N/A N/A N/A
LEGIT B4B 5K STL10 QUERY N/A 94.92 ±0.11 N/A N/A
LEGIT B4B 73K SVHN QUERY N/A N/A 74.37 ±0.02 N/A
LEGIT B4B 60K F-MNIST QUERY N/A N/A N/A 91.67 ±0.07

ATTACK NONE 50K IMAGENET STEAL 65.2 ±0.03 64.9 ±0.01 62.1 ±0.01 88.5 ±0.01

ATTACK B4B 50K IMAGENET STEAL 30.82 ± 0.09 26.37 ± 0.07 21.87 ± 0.03 66.0 ± 0.02

ATTACK NONE 100K IMAGENET STEAL 68.1 ±0.03 63.1 ±0.01 61.5 ±0.01 89.0 ±0.07

ATTACK B4B 100K IMAGENET STEAL 9.57 ± 0.17 9.83 ± 0.09 19.57 ± 0.01 27.06 ± 0.46

SYBIL B4B 50K+50K IMAGENET STEAL 29.15 ± 0.02 28.67 ± 0.06 19.98 ± 0.03 70.62 ± 0.03

Table 5: Stealing and Using Encoders With and Without our Defense. The model used in the
experiments is Simsiam, with the following parameters for the cost function � = 10�6, ↵ = 0.1, and
� = 30%, and the number of buckets equal to 212. Due to the lower performance on downstream
tasks observed in Table 4 while keeping the parameter � fixed to 30% and � fixed to 10�6, we
decrease the value of parameter ↵ to 0.1, which increases the performance of legitimate users on their
downstream tasks. In this experiment, we also carry out a sybil attack with more accounts (4 instead
of 2), but observe that this modification does not improve the performance of the attacker. With more
accounts, a sybil has to sacrifice more queries for the remappings between the representations from
different accounts. Additionally, note that each account introduces a different remapping error by the
dint of different transformations applied to each account by B4B.

USER DEFENSE # QUERIES DATASET TYPE CIFAR10 STL10 SVHN F-MNIST

N/A N/A Victim ImageNet Train 90.41±0.02 95.08±0.13 75.47±0.04 91.22±0.11

LEGIT B4B 50K CIFAR10 QUERY 90.17 ±0.1 N/A N/A N/A
LEGIT B4B 5K STL10 QUERY N/A 94.92 ±0.09 N/A N/A
LEGIT B4B 73K SVHN QUERY N/A N/A 74.97 ±0.13 N/A
LEGIT B4B 60K F-MNIST QUERY N/A N/A N/A 91.71 ±0.08

ATTACK NONE 50K IMAGENET STEAL 65.2 ±0.03 64.9 ±0.01 62.1 ±0.01 88.5 ±0.01

ATTACK B4B 50K IMAGENET STEAL 19.95 ±0.19 15.54 ± 0.34 19.57 ± 0.01 23.50 ± 0.19

ATTACK NONE 100K IMAGENET STEAL 68.1 ±0.03 63.1 ±0.01 61.5 ±0.01 89.0 ±0.07

ATTACK B4B 100K IMAGENET STEAL 10.35 ± 0.19 12.37 ± 0.69 19.34 ± 0.01 68.93 ± 0.17

SYBIL B4B 4⇥25K IMAGENET STEAL 33.15 ± 0.04 30.23 ± 0.07 20.87 ± 0.01 72.19 ± 0.02

18

F.4 Setting the number of buckets664

We present our procedure to find an optimal number of buckets in Figure 8.665

(a) Number of buckets = 28 (b) Number of buckets = 210

(c) Number of buckets = 212 (d) Number of buckets = 214

Figure 8: Estimating Embedding Space Coverage through LSH on SimSiam Encoder. We extend
the results from Figure 7a(a) and present the fraction of buckets occupied by representations of
different datasets as a function of the number of queries posed to the encoder. We consider different
number of buckets in the LSH table. We observe that 28 buckets is to small since queries from the
ImageNet dataset saturate all the buckets after around 50k queries, while the number 214 of buckets
is too large since it is never occupied more than 40%. Thus, the number 212 buckets is a good middle
ground. Subfigure (c) corresponds to Figure 7a from the main paper. We also use the same notation
and carry out our experiments in the same way as in Figure 7a.

F.5 Results DINO666

We show that our defense is also applicable to the DINO encoder. The occupation of the representa-667

tions space is presented visually in Figure 9. We also show that the number of buckets 212 is optimal668

for DINO in Figure 10. The impact of transformation on the representations from DINO is shown669

Table 7. Finally, the end to end experiment for DINO is presented in Table 6.670

Figure 9: Representations from Different Tasks Occupy Different Sub-Spaces of the Embedding
Space. Presented for FashionMNIST, SVHN, CIFAR10, and STL10. In this plot, we used the
DINO ViT Small encoder trained on ImageNet.

19

Figure 10: Estimating Embedding Space Coverage through LSH on the DINO Encoder. The
number of buckets is set to 212. We also use the same notation and carry out our experiments in the
same way as in Figure 7a.

Table 6: Stealing and Using Encoders With and Without our Defense. The model used in the
experiments is DINO, with the following parameters for the cost function � = 10�6, ↵ = 1000, and
� = 60%, and the number of buckets equal to 212. We have to increase the value of parameter ↵ by
⇥1000 since the norms of the DINO representations are also around 103 higher than for SimSiam.
We observe that B4B performs similarly on DINO as for SimSiam.

USER DEFENSE # QUERIES DATASET TYPE CIFAR10 STL10 SVHN F-MNIST

N/A N/A Victim ImageNet Train 94.51 ±0.08 97.98 ±0.04 70.66 ±0.16 89.98 ±0.03

LEGIT B4B 50K CIFAR10 QUERY 94.25 ±0.11 N/A N/A N/A
LEGIT B4B 5K STL10 QUERY N/A 98.05 ±0.04 N/A N/A
LEGIT B4B 73K SVHN QUERY N/A N/A 69.66 ±0.14 N/A
LEGIT B4B 60K F-MNIST QUERY N/A N/A N/A 89.68 ±0.01

ATTACK NONE 50K IMAGENET STEAL 67.92 ± 0.04 66.02 ± 0.22 61.30 ± 0.01 89.46 ± 0.01

ATTACK B4B 50K IMAGENET STEAL 42.02±0.05 38.91±0.06 19.94±0.02 73.33±0.04

ATTACK NONE 100K IMAGENET STEAL 75.07 ± 0.01 76.32 ± 0.02 71.79 ± 0.06 89.76 ± 0.01

ATTACK B4B 100K IMAGENET STEAL 19.27±0.03 21.24±0.03 19.84±0.01 71.01±0.03

SYBIL B4B 50K+50K IMAGENET STEAL 45.56± 0.06 42.50±0.02 24.25±0.03 78.01± 0.08

F.6 Additional evaluation of transformations671

Additionally, we show the impact of transformations on the performance of legitimate users in Table 7672

(for both SimSiam and DINO).673

Table 7: Impact of Transformations on the Performance for Legitimate Users. We show that
the transformations applied per-account do not harm the performance of legitimate users on their
downstream tasks. The victim encoders was trained on the ImageNet dataset using SimSiam and
DINO frameworks.

TRANSFORMATION ENCODER CIFAR10 STL10 SVHN F-MNIST

NONE Victim SimSiam 90.41±0.02 95.08 ±0.13 75.47 ±0.04 91.22 ±0.11

AFFINE SIMSIAM 90.24 ±0.11 95.05 ±0.1 74.96 ±0.18 91.42 ±0.15

PAD+SHUFFLE SIMSIAM 90.4 ±0.05 95.34 ±0.06 75.47 ±0.01 91.38 ±0.15

AFFINE+PAD+SHUFFLE SIMSIAM 90.18 ±0.06 95.03 ±0.05 74.86 ±0.1 91.35 ±0.1

BINARY SIMSIAM 88.78 ±0.2 94.72 ±0.02 68.42 ±0.16 88.91 ±0.34

NONE Victim DINO 94.51 ±0.08 97.98 ±0.04 70.66 ±0.16 89.98 ±0.03

AFFINE DINO 94.25 ±0.11 98.05 ±0.04 69.77 ±0.11 89.68 ±0.01

PAD+SHUFFLE DINO 94.72 ±0.02 98.07 ±0.03 70.44 ±0.1 89.91 ±0.08

AFFINE+PAD+SHUFFLE DINO 94.26 ±0.06 98.02 ±0.01 69.49 ±0.2 89.70 ±0.1

BINARY DINO 92.96 ±0.1 98.03 ±0.03 59.53 ±0.27 88.26 ±0.04

20

0.7

-0.2

0.3

a

User #2

2.4

0.7

-1.1

c

2.1

-0.5

0.2

d

User #1

a

a

a

Reference
classfier

cAPI
call

0.7

-0.2

0.3

a

GENERATE REPRESENTATIONS TRANSFORM REPRESENTATIONS TRAIN REFERENCE CLASSIFIER TRAIN MAPPERS REMAP & ASSESS REPRESENTATIONS

User #2
TRAIN

User #1
TRAIN

Mapper

d c
FIXED FIXED

User #2
TEST

d

Figure 11: Protocol to Evaluate the Mapping Between Representations. We present the protocol
of evaluating remappings for two sybil accounts. 1 API receives inputs from two sybil accounts
and generates corresponding representations. 2 Representations are transformed on a per-user
basis and returned. 3 Adversary trains a reference classifier on representations from account
one. 4 Adversary trains a linear model to find mapping from representations of account two to
representations of account one. 5 To check the quality of obtained mapping representations from
test set of account two are mapped using the fixed mapper (from step 4) to representation space of
account one. This enables the calculation of cosine distance between representations from account
one and their counterparts from account two shown in Figure 5. Additionally, the fixed reference
classifier (from step 3) can be used to measure the accuracy drop caused by remapping .

21

	Introduction
	Related Work
	Actively Defending against Model Stealing with B4B
	Threat Model and Intuition
	Building Block 1: Coverage Estimation of the Embedding Space
	Building Block 2: Cost Function Design
	Building Block 3: Per-User Representation Transformations against Sybil Attacks

	Empirical Evaluation
	Local Sensitive Hashing for Coverage Estimation
	Calibrating the Cost Function
	Assessing the Effect of Transformations
	End-to-End Stealing of an Encoder under our Defense

	Conclusions
	Broader Impacts
	Limitations
	Alternative Building Blocks to Instantiate B4B
	Alternative Estimation of the Coverage of Embedding Space
	Alternative Cost Functions
	Alternative to Transformations

	Sybil Attacks
	Sybil Strategies

	Additional Related Work
	Additional Experimental Results
	Details on Experimental Setup
	Datasets Used
	More Results for the End2End Empirical Evaluation
	Setting the number of buckets
	Results DINO
	Additional evaluation of transformations

