
Bucks for Buckets (B4B): Active Defenses Against
Stealing Encoders

Anonymous Author(s)
Affiliation
Address
email

Abstract
Machine Learning as a Service (MLaaS) APIs provide ready-to-use and high-1

utility encoders that generate vector representations for given inputs. Since these2

encoders are very costly to train, they become lucrative targets for model stealing3

attacks during which an adversary leverages query access to the API to replicate4

the encoder locally at a fraction of the original training costs. We propose Bucks5

for Buckets (B4B), the first active defense that prevents stealing while the attack is6

happening without degrading representation quality for legitimate API users. Our7

defense relies on the observation that the representations returned to adversaries8

who try to steal the encoder’s functionality cover a significantly larger fraction9

of the embedding space than representations of legitimate users who utilize the10

encoder to solve a particular downstream task. B4B leverages this to adaptively11

adjust the utility of the returned representations according to a user’s coverage of12

the embedding space. To prevent adaptive adversaries from eluding our defense by13

simply creating multiple user accounts (sybils), B4B also individually transforms14

each user’s representations. This prevents the adversary from directly aggregating15

representations over multiple accounts to create their stolen encoder copy. Our16

active defense opens a new path towards securely sharing and democratizing17

encoders over public APIs.18

1 Introduction19

In model stealing attacks, adversaries extract a machine learning model exposed via a public API by20

repeatedly querying it and updating their own stolen copy based on the obtained responses. Model21

stealing was shown to be one of the main threats to the security of machine learning models in prac-22

tice [36]. Also in research, since the introduction of the first extraction attack against classifiers [38],23

a lot of work on improving stealing [26, 32, 38, 39], extending it to different model types [8, 35],24

and proposing adequate defenses [17, 24, 25, 30] has been put forward. With the recent shift in25

learning paradigms from supervised to self supervised learning (SSL), especially the need for new26

defenses becomes increasingly pressing. From an academic viewpoint, the urge arises because it27

was shown that SSL models (encoders) are even more vulnerable to model stealing [15, 28, 34] than28

their supervised counterparts. This is because whereas supervised models’ output is low dimensional,29

e.g., per-class probabilities or pure labels, SSL encoders output high-dimensional representation30

vectors that encode a larger amount of information and thereby facilitate stealing. In addition, from31

a practical industry’s viewpoint, defenses are required since many popular API providers, such as32

Cohere, OpenAI, or Clarify [1–3] already expose their high-value SSL encoders via APIs to a broad33

range of users.34

Most of the current defenses against encoder stealing are reactive, i.e., they do not actively prevent35

the stealing but rather aim at detecting it by adding watermarks to the encoder [13, 15] or performing36

dataset inference to identify stolen copies [16]. Since at the point of detection, the damage of stealing37

has already been inflicted, we argue that reactive defenses intervene too late and we advocate for38

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

0.71

-0.26

0.41

b

x2
0.01

-0.06

0.11

n

0.7

-0.2

0.3

a

0.71

-0.26

0.41

b

1.42

-0.52

0.82

c

101a

Embedding space

ADAPTIVE NOISING TRANSFORMATIONSLOCAL SENSITIVE HASHING

API call
0.7

-0.2

0.3

a

Embedding space
occupied

C
os

t

COST FUNCTION

Affine

Pad + Shuffle

Affine + Pad +Shuffle

Binary

TRANSFORMATIONSCOVERAGE ESTIMATION

DEFENSE FRAMEWORK

DEFENSE INSTANTIATION

Figure 1: Overview of B4B. In the upper part, we present our B4B framework that consists of three
modular building blocks: (1) A coverage estimation to track the fraction of embedding space covered
by the representations returned to each user, (2) a cost function that serves to map the coverage to a
concrete penalty to prevent stealing, and (3) per-user transformations that are applied to the returned
representations to prevent sybil attacks. In the lower part, we present a concrete instantiation of
B4B and the operation flow of our defense: 1 The API calculates representations for the incoming
queries. 2 We instantiate the coverage estimation with local sensitive hashing and estimate the
covered space as the fraction of hash buckets occupied. We calibrate the costs by adding noise to the
representations according to the coverage. 3 We apply a set of transformations on a per-user basis.
4 The noised and transformed representations are returned to the user.

active defenses that prevent stealing while it is happening. Yet, active defenses are challenging to39

implement because they not only need to prevent stealing but also should preserve the utility of40

representations for legitimate users. The only existing active defense against encoder stealing [28]41

falls short on this latter aspect since it significantly degrades the quality of representations for all42

users.43

To close the gap between required and existing defenses, we propose Bucks for Buckets (B4B), the44

first active defense against encoder stealing that does not harm utility for legitimate users. B4B45

leverages the observation that the representations returned to adversaries who try to steal the encoder’s46

functionality cover a significantly larger fraction of the full embedding space than representations47

of legitimate users who utilize the encoder to solve a particular downstream task. To turn this48

observation into a practical defense, B4B is equipped with three modular building blocks: (1) The49

first building block is a tracking mechanism that continuously estimates the fraction of the embedding50

space covered by the representations returned to each user. The intuition why this is relevant is that51

by covering large fractions of the embedding space, the representations will suffice for an adversary52

to reproduce the encoder’s functionality, i.e., to successfully steal it. (2) B4B’s second building53

block consists of a cost function to translate the covered fraction of the embedding space into a54

concrete penalty. We require this cost function to significantly penalize adversaries trying to steal the55

model while having only a minimal effect on legitimate users. (3) The third building block contains56

transformations that can be applied to the representations on a per-user basis to prevent adaptive57

attackers from circumventing our defense by creating multiple user accounts (sybils) and distributing58

their queries over these accounts such that they minimize the overall cost. We present the different59

building blocks of B4B in Figure 1.60

While B4B’s modularity enables different instantiations of the three building blocks, we propose61

a concrete end-to-end instantiation to showcase the practicability of our approach. To implement62

tracking of the covered embedding space, we employ local sensitive hashing that maps any represen-63

tation returned to a given user into a set of hash buckets. We base our cost function (i.e., the "bucks")64

on utility and make B4B add noise to the representations with a magnitude that increases with the65

number of buckets occupied by the given user. While the scale of noise added to legitimate users’66

representations does not harm their downstream performance due to their small embedding space67

coverage, the representations returned to an adversary become increasingly noisy—significantly68

degrading the performance of their stolen encoder. Finally, we rely on a set of transformations69

(e.g., affine transformations, shuffling, padding) that preserve downstream utility [16]. While, as a70

consequence, legitimate users remain unaffected by these transformations, adversaries cannot directly71

combine the representations obtained through different sybil accounts anymore to train their stolen72

2

copy of the encoder. Instead, they first have to remap all representations into the same embedding73

space, which we show causes both query and computation overhead and still reduces the performance74

of the stolen encoder.75

In summary, we make the following contributions:76

1. We present B4B, the first active defense against encoder stealing that does not harm legitimate77

users’ downstream performance. B4B’s three building blocks enable penalizing adversaries whose78

returned representations cover large fractions of the embedding space and prevent sybil attacks.79

2. We propose a concrete instantiation of B4B that relies on local sensitive hashing and decreases the80

quality of representations returned to a user once their representations fill too many hash buckets.81

3. We provide an end-to-end evaluation of our defense to highlight its effectiveness in offering high82

utility representations for legitimate users and degrading the performance of stolen encoders in83

both the single and the sybil-accounts setup.84

2 Related Work85

Model Extraction Attacks. The goal of the model extraction attacks is to replicate the functionality86

of a victim model fv trained on a dataset Dv . An attacker has a black box access to the victim model87

and uses a stealing dataset Ds = {qi, fv(qi)}ni=1, consisting of queries qi and the corresponding88

outputs fv(qi) returned by the victim model, to train a stolen model fs. Model extraction attacks89

have been shown against various types of models including classifiers [23, 38] and encoders [15, 34].90

Self Supervised Learning and Encoders. SSL is an increasingly popular machine learning91

paradigm. It trains encoder models to generate representations from complex inputs without relying92

on explicit labels. These representations encode useful features of a given input, enabling efficient93

learning for multiple downstream tasks. Many SSL frameworks have been proposed [9–11, 21, 22, 42].94

In our work, we focus on the two popular SSL vision encoders, namely SimSiam [11] and DINO [9],95

which return high-quality representations that achieve state-of-the-art performance on downstream96

tasks when assessed by training a linear classifier directly on representations. SimSiam trains with97

two Siamese encoders with directly shared weights. A prediction MLP head is applied to one of the98

encoders f1, and the other encoder f2 has a stop-gradient, where both operations are used for avoiding99

collapsing solutions. In contrast, DINO shares only architecture (not weights) between a student f1100

and a teacher model f2, also with the stop-gradient operation, but not the prediction head. While101

SimSiam uses convolutional neural networks (CNNs), DINO also employs vision transformers (ViTs).102

Both frameworks use a symmetrized loss of the form 1
2g(f1(x1), f2(x2)) +

1
2g(f1(x2), f2(x1))103

in their optimization objectives, where g(·, ·) is negative cosine similarity for SimSiam and cross-104

entropy for DINO. SimSiam and DINO’s similarities and differences demonstrate our method’s broad105

applicability across SSL frameworks. More details can be found in Appendix E.106

Stealing Encoders. The stealing of SSL encoders was shown to be extremely effective [15, 28, 34].107

The goal of extracting encoders is to maximize the similarity of the outputs from the stolen local copy108

and the original representations output by the victim encoder. Therefore, while training the stolen109

copy, the adversary either imitates a self-supervised training using a contrastive loss function, e.g.,110

InfoNCE [10] or SoftNN [20] or directly matches both models’ representations via the Mean Squared111

Error (MSE) loss. To reduce the number of queries sent to the victim encoder, the attack proposed112

in [28] leverages the key observation that the victim encoder returns similar representations for any113

image and its augmented versions. Therefore, a given image can be sent to the victim while the114

stolen copy is trained using many augmentations of this image, where the representation of a given115

augmented image is approximated as the one of the original image produced by the victim encoder.116

Defending Encoders. Recently, watermarking [7, 24, 40] methods have been proposed to detect117

stolen encoders [13, 15, 41]. Many of these approaches use downstream tasks to check if a watermark118

embedded into a victim encoder is present in a suspect encoder. Dataset inference [29] is another type119

of encoder ownership resolution. It uses the victim’s training dataset as a unique signature, leveraging120

the following observation: for a victim encoder trained on its private data as well as for its stolen121

copies, the distribution of the representations generated from the victim’s training data differs from122

the distribution of the representations generated on the test data. In contrast, for an independently123

trained encoder, these two distributions cannot be distinguished, allowing the detection of stolen124

copies [16]. However, all the previous methods are reactive and aim at detecting the stolen encoder125

3

instead of actively preventing the attack. The only preliminary active defenses for encoders were126

proposed by [28]. They either perturb or truncate the answers to poison the training objective of an127

attacker. These operations were shown to harm substantially the performance of legitimate users,128

which renders the defense impractical. In contrast, our B4B has negligible impact on the quality of129

representations returned to legitimate users.130

3 Actively Defending against Model Stealing with B4B131

B4B aims at actively preventing model stealing while preserving high-utility representations for132

legitimate users. Before introducing the three main building blocks of B4B, namely (1) the estimation133

of embedding space coverage, (2) the cost function, and (3) the transformation of representations134

(see Figure 1), we detail our threat model and the observation on embedding space coverage that135

represents the intuition behind our approach.136

3.1 Threat Model and Intuition137

Our setup and the resulting threat model are inspired by public APIs, such as Cohere, OpenAI, or138

Clarify [1–3] that expose encoders to users through a pre-defined interface. These encoders are trained139

using SSL on large amounts of unlabeled data, often crawled from the internet, and therefore from140

diverse distributions. We notice that to provide rich representations to multiple users, the training141

dataset of the encoder needs to be significantly more diverse than the individual downstream tasks142

that the users query for representations. For instance, if the encoder behind the API is trained on the143

ImageNet dataset, then the legitimate users are expected to query the API for downstream tasks, such144

as CIFAR10 or SVHN. Similarly, if the encoder is trained on CIFAR10, the expected downstream145

tasks are MNIST or Fashion MNIST. Yet, in the design of our defense, we consider adversaries who146

can query the encoder with arbitrary inputs to obtain high-dimensional representation vectors from147

the encoder. Our defense is independent of the protected encoder’s architecture and does not rely on148

any assumption about the adversary’s data and query strategy.149

0.05 0.00 0.05 0.10

0.05

0.00

0.05

0.10

Figure 2: Representations
from Different Tasks Oc-
cupy Different Sub-Spaces
of the Embedding Space.
Presented for FashionM-
NIST, SVHN, CIFAR10,
and STL10.

We argue that even in this restricted setup, our defense can distinguish150

between adversaries and legitimate users by analyzing the distribu-151

tion of representations returned to them. In Figure 2, by using PCA152

to project representations for different datasets to a two-dimensional153

space, we visualize that representations for different downstream tasks154

cluster in disjoint and small sub-spaces of the full embedding space.155

The representations were obtained from a SimSiam encoder originally156

trained on ImageNet (we observe similar clustering for DINO shown157

in Appendix F). As a result, legitimate users can be characterized by158

their representations’ small coverage of the embedding space. In con-159

trast, the adversary does not aim at solving a particular downstream160

task. They instead would want to obtain representations that cover161

large fractions of the embedding space. This enables reproducing the162

overall functionality of the encoder (instead of only learning some163

local task-specific behavior). Indeed, it has been empirically shown164

by prior work, such as [15], that stealing with multiple distributions,165

e.g., by relying on the complex ImageNet dataset, yields higher per-166

formance of the stolen encoder on various downstream tasks than167

stealing with a downstream dataset, such as CIFAR10. As a result, intuitively, we can identify and168

penalize adversaries based on their coverage of the embedding space, which will be significantly169

larger than the coverage of legitimate users. We leverage this intuition to build our B4B defense and170

present our three main building blocks in the following sections.171

3.2 Building Block 1: Coverage Estimation of the Embedding Space172

The first building block of our B4B serves to estimate and continuously keep track of the fraction of173

the embedding space occupied by any given user. Let E denote our embedding space of dimension s,174

further, let U be a user with a query dataset D = q1, . . . , qn ∈ D and let fv : D → E be our protected175

victim encoder that maps data points from the input to the embedding space. Assume user U has,176

so far, queried a subset of their data points q1, . . . , qj with j ≤ n to the encoder and obtained the177

4

representations r1, . . . , rj with each ri ∈ Rs. We aim to estimate the true fraction of the embedding178

space EU
f that is covered by all returned representations r1, . . . , rj to user U and denote our estimate179

by ẼU
f .180

Local Sensitive Hashing. One of the methods to approximate the occupied space by representations181

returned to a given user is via Local Sensitive Hashing (LSH) [37]. We rely on this approach for182

the concrete instantiation of our B4B and use it to track per-user coverage of the embedding space.183

Standard (cryptographic) hash functions are characterized by high dispersion such that hash collisions184

are minimized. In contrast, LSH hashes similar data points into the same or proximal, so-called hash185

buckets. This functionality is desired when dealing with searches in high-dimensional spaces or with a186

large number of data points. Formally, an LSH function H is defined for a metric space M = (M,d),187

where d is a distance metric in space M , with a given threshold T > 0, approximation factors f > 1,188

and probabilities P1 and P2, where P1 ≫ P2. H maps elements of the metric space to buckets189

b ∈ B and satisfies the following conditions for any two points q1, q2 ∈ M : (1) If d(q1, q2) ≤ T ,190

then H(q1) = H(q2) (i.e., q1 and q2 collide in the same bucket b) with probability at least P1. (2) If191

d(q1, q2) ≥ fT , then H(q1) = H(q2) with probability at most P2.192

3.3 Building Block 2: Cost Function Design193

Once we can estimate the coverage of an embedding space for a given user U as ẼU
f , we need to design194

a cost function C : R+ → R+ that maps from the estimated coverage to a cost. The cost function195

needs to be designed such that it does not significantly penalize legitimate users while imposing a196

severe penalty on adversaries to effectively prevent the encoder from being stolen. The semantics of197

the cost function’s range depend on the type of costs that the defender wants to enforce. We discuss a198

broad range of options in Appendix C. These include monetary cost functions to adaptively charge199

users on a batch-query basis depending on their current coverage, costs in the form of additional200

computation that users need to perform in order to obtain their representations, similar to the proof of201

work in [17], costs in the form of delay in the interaction with the encoder behind the API [4], or202

costs in form of disk space that needs to be reserved by the user (similar to a proof of space [18, 19]).203

Which type of cost function is most adequate depends on the defender’s objective and setup.204

Exponential Cost Functions to Adjust Utility of Representations. In the concrete instantiation205

of B4B that we present in this work, we rely on costs in the form of the utility of the returned206

representations. We choose this concrete instantiation because it is intuitive, effective, and can be207

directly experimentally assessed. Moreover, it is even suitable for public APIs where, for example,208

no monetary costs are applicable. We adjust utility by adding Gaussian noise with different standard209

deviation σ to the returned representations. Since we do not want to penalize legitimate users with210

small coverage but make stealing for adversaries with growing coverage increasingly prohibitive, we211

instantiate an exponential cost function that maps from the fraction of hash buckets occupied by the212

user to a value for σ. We choose the general form of this function as213

fλ,α,β(ẼU
f) = λ× (expln

α
λ×ẼU

f ×β−1

−1) (1)

where λ < 1 compresses the curve of the function to obtain low function values for small fractions214

of occupied buckets, and then we set a target penalty α for our cost function at a specified fraction215

of filled buckets β. For instance, if we want to enforce a σ of 5 at 90% of filled buckets (i.e., for216

ẼU
f = 0.9), we would need to set α = 5 and β = 0.9.217

3.4 Building Block 3: Per-User Representation Transformations against Sybil Attacks218

Given that our defense discourages users from querying with a wide variety of data points from219

different distributions, an adversary could create multiple fake user accounts (sybils) and query220

different data subsets with more uniform representations from each of these accounts. By combining221

all the obtained representations and using them to train a stolen copy, the adversary could overcome222

the increased costs of stealing. To defend against such sybil attacks, we propose individually223

transforming the representations on a per-user level before returning them. As a result, the adversary224

would first have to map all the representations to one single unified space before being able to jointly225

leverage the representations from different accounts for their stolen copy. Formally, for a given query226

5

qi, the protected victim encoder produces a representation ri = fv(qi), which is transformed by a227

user-specific transformation TU (ri) before being returned to the querying user U . We formulate two228

concrete requirements for the transformations. First, they should preserve utility for legitimate users229

on their downstream tasks, and second, they should be costly to reverse for an adversary.230

Utility Preserving Transformations. As a concrete instantiation for our B4B, we propose a set of231

transformations that fulfill the above-mentioned two requirements: (1) Affine where we apply affine232

transformations to representations, (2) Pad where we pad representations with constant values, (3)233

Add where we add constant values at random positions within representations, (4) Shuffle where we234

shuffle the elements in the representation vectors, and (5) Binary where the original representations235

are mapped to binary vectors relying on a random partitioning of the representation space. To236

preserve the full amount of information contained in the original representations, in our binary237

transformations, we tune the length of binary representations. We visualize the operation of each of238

these transformations in Appendix C. All these transformations can additionally be combined with239

each other, which further increases the possible set of transformations applied per user. This renders240

it impossible for an adversary to correctly guess and reverse the applied representation. Instead, the241

adversary has to remap the representations over all accounts into a single embedding space in order242

to unify them and leverage them for training of their stolen encoder copy. We present an exhaustive243

list of strategies that adversaries can apply for the remapping in Appendix D. All the attack methods244

reduce to the minimum of remapping between representations of a pair of users, i.e., they are at least245

as complex as mapping between two separate accounts. In the next section, we show that our defense246

already impedes stealing for an adversary with two accounts.247

4 Empirical Evaluation248

We first empirically evaluate our instantiation of B4B’s three building blocks and show how to calibrate249

each of them for our defense. Finally, we provide an end-to-end evaluation that highlights B4B’s250

effectiveness in preserving downstream utility for legitimate users while successfully preventing the251

stealing by adversaries.252

Experimental Setup. We conduct experiments on various kinds of downstream tasks and two253

popular SSL encoders. To test our defense, we use FashionMNIST, SVHN, STL10, and CIFAR10 as254

our downstream datasets, each with standard train and test splits. For stealing, we utilize training255

data from ImageNet. We rely on encoder models from the SimSiam [11] and the DINO [9] SSL256

frameworks. As our victim encoders, we use the publicly available ResNet50 model from SimSiam257

trained for 100 epochs on ImageNet and the ViT Small DINO encoder trained for 800 epochs on258

ImageNet, each using batch size 256. The ViT architecture takes as input a grid of non-overlapping259

contiguous image patches of resolution NxN . In this paper, we typically use N = 16. The Simsiam260

encoder has an output representation dimension of 2048, while DINO returns 1536 dimensional261

representations. We examine the utility of downstream classifiers using SimSiam’s or DINO’s262

representations obtained for the respective downstream datasets. To implement LSH, we rely on263

random projections [33] that we implement from scratch. For a detailed description of our stealing264

and downstream training parameters, we refer to Appendix F.265

4.1 Local Sensitive Hashing for Coverage Estimation266

We first observe that the choice of the total number of hash buckets in the LSH influences the267

effectiveness of our method. In the extreme, if we have a too large number of buckets, the number of268

buckets filled will correspond to the number of queries posed by a user which fails to capture that269

similar representations cover similar sub-spaces of the embedding space, and hence does not serve to270

approximate the total fraction of the embedding space covered. However, if we have too few buckets,271

even the representations for simple downstream tasks will fill large fractions of buckets, making it272

impossible to calibrate the cost function such that it only penalizes adversaries. We experimentally273

find that for our evaluated encoders, 212 buckets represent a good trade-off. In Appendix F, we274

present an ablation study on the effect of the number of total buckets.275

Our evaluation of the LSH to track coverage of the embedding space is presented in Figure 7a.276

We observe that representations returned for standard downstream tasks (FashionMNIST, SVHN,277

CIFAR10) occupy a significantly smaller fraction of the total number of buckets than complex data278

6

0 10000 20000 30000 40000 50000
Queries

0

20

40

60

80

100

B
uc

ke
ts

 o
cc

up
ie

d
[%

]

FashionMNIST
SVHN
CIFAR10
ImageNet

(a) Fraction of Occupied Buckets.

0 10 20 30 40 50 60
Buckets [%]

100

101

102

103

Q
ue

ri
es

 p
er

 b
uc

ke
t FashionMNIST

SVHN
CIFAR10
ImageNet

(b) Number of Queries per Bucket.

Figure 3: Estimating Embedding Space Coverage through LSH on SimSiam Encoder. We present
the fraction of buckets occupied by representations of different datasets as a function of the number
of queries posed to the encoder (left). We observe that representations for the downstream datasets
(FashionMNIST, SVHN, CIFAR10) occupy a smaller fraction of buckets than representations from
the complex ImageNet dataset. Our evaluation of the number of queries whose representations are
mapped to the same bucket (right) indicates that our total number of buckets (212) is well calibrated
for the estimation of covered representation space: over all datasets, we experience hash collisions,
i.e., queries whose representations are mapped to the same buckets. This indicates that our LSH is
capable of representing similarities in the representations.

from multiple distributions (ImageNet). We further observe that the fraction of buckets occupied by279

the representations saturates over time. These findings highlight that LSH is successful in capturing280

the differences between legitimate users and adversaries—even in a low-query regime. Finally, we281

note that our total number of buckets (212) is well calibrated since, over all datasets, it successfully282

maps multiple representations to the same hash bucket while still filling various fractions of the total283

number of buckets.284

4.2 Calibrating the Cost Function285

0 20 40 60 80 100
Buckets [%]

0.0

0.2

0.4

0.6

0.8

1.0

St
de

v.
 o

f a
dd

ed
 n

oi
se f30%(n)

f50%(n)
f80%(n)
f100%(n)

Figure 4: Cost Function Calibration.

We experiment with different sets of hyperparameters286

to instantiate the cost function from Equation (1) in287

the previous section (3.3). As described there, we can288

calibrate the function such that a desired penalty (in289

the form of a specific σ) will be assigned at a cer-290

tain fraction of buckets occupied. For B4B, we aim291

at penalizing high embedding space coverage severely.292

Therefore, we need to identify and optimize for two293

components: 1) which value of σ leads to significant294

performance drops, and 2) for what fraction of coverage295

do we want to impose this significant drop. We base296

both components on empirical observations. Our first observation is that for our four downstream297

tasks (FashionMNIST, SVHN, STL10, and CIFAR10), performance drops to 10% (i.e., random298

guessing) at roughly σ = 0.5. In Figure 7a, we further see that with 50k queries, the downstream299

tasks occupy < 30% of the buckets. Ultimately, setting α and β are design choices that an API300

provider needs to make in order to specify what type of query behavior they want to penalize. As301

very loose bounds (weak defense), based on our observation, we consider σ = 1 as a high penalty,302

which leads to α = 1, and select β = 0.8. This β corresponds to considering 80% of buckets filled303

as a too-large coverage of the embedding space. We empirically observe that coverage of 80% of304

buckets occurs, for example, after around 100k of ImageNet queries. By choosing our target β so305

loose, i.e., significantly larger than the observed 30% for downstream tasks, we offer flexibility for306

the API to also provide good representations for more complex downstream tasks. Finally, to obtain a307

flat cost curve close to the origin—which serves to map small fractions of covered buckets to small308

costs—we find that we can set λ = 10−6. In the Appendix, we evaluate our defense end-to-end with309

differently parameterized cost functions.310

7

4.3 Assessing the Effect of Transformations311

Transformations Do Not Harm Utility for Legitimate Users. We evaluate the downstream312

accuracy for transformed representations based on training a linear classifier on top of them. To313

separate the effect of the noise added by our defense from the effect of the transformations, we314

perform the experiments in this subsection without adding noise to the returned representations.315

For example, on the CIFAR10 dataset and a SimSiam encoder pre-trained on ImageNet, without316

any transformations applied, we obtain a downstream accuracy of 90.41% (± 0.02), while, with317

transformations, we obtain 90.24% (± 0.11) for Affine, 90.40% (± 0.05) for Pad+Shuffle, 90.18% (±318

0.06) for Affine+Pad+Shuffle, and 88.78% (± 0.2) for Binary. This highlights that the transformations319

preserve utility for legitimate users. This holds over all datasets we evaluate as we show in Appendix F.320

Adversaries Cannot Perfectly Remap Representations over Multiple Sybil Accounts. To under-321

stand the impact of our per-user account transformations on sybil-attack based encoder stealing, we322

evaluate the difficulty of remapping representations between different sybil accounts. For simplicity,323

and since we established in Section 3.4 that multi-account attacks reduce to a two-account setup, we324

assume an adversary who queries from two sybil accounts and aims at learning to map the transformed325

representations from account #2 to the representation space of account #1. Using more accounts for326

the adversary causes a larger query overhead and potentially more performance loss from remapping.327

Our evaluation here, hence, represents a lower bound on the overhead caused to the adversary through328

our transformations.329

We learn the mapping between different accounts’ representations by training a linear model on330

overlapping representations between the accounts. We assess the fidelity of remapped represen-331

tations as a function of the number of overlapping queries between the accounts. As a fidelity332

metric for our remapping, we compare the cosine distance between representations (a and b de-333

fined as: 1 − aT b
||a||2·||b||2). Once the remapping is trained, we evaluate by querying 10k data334

points from the test dataset through account #1 and then again through account #2. Then, we335

apply the learned remapping to the latter one and compute the pairwise cosine distances be-336

tween the representations from account #1 and their remapped counterparts from account #2.337

0 2000 4000 6000 8000 10000
Queries

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

C
os

in
e

D
is

ta
nc

e

affine
pad_shuffle
affine_pad_shuffle
binary

Figure 5: Quality of Remappings.

Our results are depicted in Figure 5. We show that the largest338

cosine distance is achieved with the binary transformations,339

making them the most protective against the adversary since340

they best prevent perfect remapping, even with an overlap of as341

many as 10k queries between both accounts. However, these342

binary transformations also incur the highest drop in accuracy343

for legitimate users. The defender has the possibility of selecting344

their preferred types of transformations between representations345

taking into account the trade-offs between the effectiveness of346

the defense and the negative impact on legitimate users.347

4.4 End-to-End Stealing of an Encoder under our Defense348

We perform an end-to-end study to showcase how our B4B defense affects legitimate users vs349

adversaries. The hyperparameters for B4B are chosen according to the empirical evaluation of the350

previous sections with 212 as the number of buckets, α = 1, β = 0.8, λ = 10−6 as the hyperparameter351

of the cost function, and different random affine transformations per-user account. Our main results352

are presented in Table 1. We observe that instantiating our framework with B4B has a negligible353

impact on legitimate users while substantially lowering the performance of stolen encoders in the354

case of single-user and sybil attackers.355

Legitimate Users. We compare the accuracy of downstream classifiers trained on top of unprotected356

vs defended encoders. The victim encoder achieves high accuracy on the downstream tasks when no357

defense is employed. With B4B in place, we observe that across all the downstream tasks, the drop in358

performance is below 1%. For example, there is only a slight decrease in the accuracy of CIFAR10359

from 90.41±0.02% to 90.24±0.11%. B4B’s small effect on legitimate users stems from the fact360

that their downstream representations cover a relatively small part of the representations space. This361

results in a very low amount of noise added to their representations which preserves performance.362

8

Table 1: Stealing and Using Encoders With and Without our Defense. The USER column
represents the type of the APIs’ user, where Legit denotes a legitimate user, Attack stands for a
standard single-account adversary, and Sybil represents an adversary using two sybil accounts. We use
InfoNCE loss for encoder extraction. # Queries stands for the number of queries used for stealing. The
TYPE column expresses how the dataset is used. We follow the stealing setup from [16]. In the first
row, we present the undefended victim encoder’s performance as the accuracy for downstream tasks
trained on the encoder’s returned representations. In the following four rows, we show downstream
utility for legitimate users when the victim encoder is defended by our B4B. Finally, (in the remaining
rows) we assess the performance of stolen encoders on the downstream tasks. Our results highlight
that while the performance of the encoder for legitimate users stays high, our B4B renders stealing
inefficient with the stolen encoders obtaining significantly worse performance on downstream tasks.

USER DEFENSE # QUERIES DATASET TYPE CIFAR10 STL10 SVHN F-MNIST

N/A N/A Victim ImageNet Train 90.41±0.02 95.08±0.13 75.47±0.04 91.22±0.11

LEGIT B4B 50K CIFAR10 QUERY 90.24±0.11 N/A N/A N/A
LEGIT B4B 5K STL10 QUERY N/A 95.05±0.1 N/A N/A
LEGIT B4B 73K SVHN QUERY N/A N/A 74.96±0.13 N/A
LEGIT B4B 60K F-MNIST QUERY N/A N/A N/A 91.7±0.01

ATTACK NONE 50K IMAGENET STEAL 65.2 ±0.03 64.9 ±0.01 62.1 ±0.01 88.5 ±0.01

ATTACK B4B 50K IMAGENET STEAL 35.72±0.04 31.54±0.02 19.74±0.02 70.01±0.01

ATTACK NONE 100K IMAGENET STEAL 68.1 ±0.03 63.1 ±0.01 61.5 ±0.01 89.0 ±0.07

ATTACK B4B 100K IMAGENET STEAL 12.01±0.07 13.94±0.05 19.96±0.03 69.63±0.07

SYBIL B4B 50K+50K IMAGENET STEAL 39.56± 0.06 38.50±0.04 23.41±0.02 77.01± 0.08

Adversaries. For adversaries who create a stolen copy of the victim encoder, we make two main363

observations. The most crucial one is that when our B4B is in place, the performance of the stolen364

copies over all downstream tasks significantly drops in comparison to when the victim encoder is365

unprotected (grey rows in Table 1). This highlights that our B4B effectively prevents stealing. Our next366

key observation concerns the number of stealing queries used by the adversary: When no defense is367

applied, the more queries are issued against the API (e.g., 100k instead of 50k), the higher performance368

of the stolen encoder on downstream tasks (e.g., CIFAR10 or FashionMNIST). In contrast, with B4B369

implemented as a defense, the performance decreases when using more stealing queries from a single370

account. This is because with more queries issued, the coverage of embedding space grows which371

renders the returned representations increasingly noisy and harms stealing performance. We also show372

that this performance drop cannot be prevented by sybil attacks. Therefore, we consider an adversary373

who queries from two sybil accounts with 50k queries issued per account and the first 10k queries of374

both accounts used to learn the remapping of representations between them. When the adversary trains375

their stolen encoder copy on all the remapped representations, they increase downstream performance376

over querying from a single account. Yet, their performance is still significantly smaller than the377

performance of the victim encoder for legitimate users, or the encoder stolen from an undefended378

victim. This highlights that our B4B also successfully prevents sybil attacks.379

5 Conclusions380

We design B4B a new and modular active defense framework against stealing SSL encoders. All the381

previous approaches were either reactive, acting after the attack happened to detect stolen encoders, or382

lowered the quality of outputs substantially also for legitimate users which rendered such mechanisms383

impractical. We show that B4B successfully distinguishes between legitimate users and adversaries384

by tracking the embedding space coverage of users’ obtained representations. B4B then leverages this385

tracking to apply a cost function that penalizes users based on the current space coverage, for instance,386

by lowering the quality of their outputs. Finally, B4B prevents sybil attacks by implementing per-user387

transformations for the returned representations. Through our experimental evaluation, we show388

that our defense indeed renders encoder stealing inefficient while preserving downstream utility for389

legitimate users. Our B4B is therefore a valuable contribution to a safer sharing and democratization390

of high-utility encoders over public APIs.391

9

References392

[1] Clarifai, https://www.clarifai.com/. URL https://www.clarifai.com/.393

[2] Cohere, https://cohere.ai. URL https://cohere.ai/.394

[3] Openai, https://openai.com. URL https://openai.com/.395

[4] Poet2, https://labs.hyperledger.org/labs/archived/sawtooth-poet2.html. URL https://labs.396

hyperledger.org/labs/archived/sawtooth-poet2.html.397

[5] Google, https://google.github.io/snappy/. URL https://google.github.io/snappy/.398

[6] Facebook zstd, https://github.com/facebook/zstd. URL https://github.com/facebook/399

zstd.400

[7] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your401

weakness into a strength: Watermarking deep neural networks by backdooring. In 27th USENIX402

Security Symposium (USENIX Security 18), pages 1615–1631, 2018.403

[8] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Kather-404

ine Lee, Adam Roberts, Tom B Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training405

data from large language models. In USENIX Security Symposium, volume 6, 2021.406

[9] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,407

and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings408

of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 9650–9660,409

October 2021.410

[10] Ting Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive411

learning of visual representations. International Conference on Machine Learning, 2020.412

[11] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. 2020.413

[12] Adam Coates, Andrew Ng, and Honglak Lee. An Analysis of Single Layer Networks in414

Unsupervised Feature Learning. In AISTATS, 2011. https://cs.stanford.edu/~acoates/415

papers/coatesleeng_aistats_2011.pdf.416

[13] Tianshuo Cong, Xinlei He, and Yang Zhang. Sslguard: A watermarking scheme for self-417

supervised learning pre-trained encoders. CoRR, abs/2201.11692, 2022. URL https://arxiv.418

org/abs/2201.11692.419

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-420

scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern421

recognition, pages 248–255. Ieee, 2009.422

[15] Adam Dziedzic, Nikita Dhawan, Muhammad Ahmad Kaleem, Jonas Guan, and Nicolas Pa-423

pernot. On the difficulty of defending self-supervised learning against model extraction. In424

International Conference on Machine Learning, 2022.425

[16] Adam Dziedzic, Haonan Duan, Muhammad Ahmad Kaleem, Nikita Dhawan, Jonas Guan,426

Yannis Cattan, Franziska Boenisch, and Nicolas Papernot. Dataset inference for self-supervised427

models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,428

Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/429

forum?id=CCBJf9xJo2X.430

[17] Adam Dziedzic, Muhammad Ahmad Kaleem, Yu Shen Lu, and Nicolas Papernot. Increasing431

the cost of model extraction with calibrated proof of work. In International Conference on432

Learning Representations, 2022. URL https://arxiv.org/abs/2201.09243.433

[18] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak. Proofs of434

space. 2013. URL https://eprint.iacr.org/2013/796. https://eprint.iacr.org/435

2013/796.436

10

https://www.clarifai.com/
https://cohere.ai/
https://openai.com/
https://labs.hyperledger.org/labs/archived/sawtooth-poet2.html
https://labs.hyperledger.org/labs/archived/sawtooth-poet2.html
https://labs.hyperledger.org/labs/archived/sawtooth-poet2.html
https://google.github.io/snappy/
https://github.com/facebook/zstd
https://github.com/facebook/zstd
https://github.com/facebook/zstd
https://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf
https://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf
https://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf
https://arxiv.org/abs/2201.11692
https://arxiv.org/abs/2201.11692
https://arxiv.org/abs/2201.11692
https://openreview.net/forum?id=CCBJf9xJo2X
https://openreview.net/forum?id=CCBJf9xJo2X
https://openreview.net/forum?id=CCBJf9xJo2X
https://arxiv.org/abs/2201.09243
https://eprint.iacr.org/2013/796
https://eprint.iacr.org/2013/796
https://eprint.iacr.org/2013/796
https://eprint.iacr.org/2013/796

[19] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak. Proofs of437

space. In Advances in Cryptology–CRYPTO 2015: 35th Annual Cryptology Conference, Santa438

Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, pages 585–605. Springer, 2015.439

[20] Nicholas Frosst, Nicolas Papernot, and Geoffrey Hinton. Analyzing and improving representa-440

tions with the soft nearest neighbor loss. In Kamalika Chaudhuri and Ruslan Salakhutdinov,441

editors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of442

Proceedings of Machine Learning Research, pages 2012–2020. PMLR, 09–15 Jun 2019. URL443

https://proceedings.mlr.press/v97/frosst19a.html.444

[21] Jean-Bastien Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Doersch,445

B. A. Pires, Z. D. Guo, M. G. Azar, B. Piot, K. Kavukcuoglu, R. Munos, and M. Valko.446

Bootstrap your own latent: A new approach to self-supervised learning. Computer Vision and447

Pattern Recognition, 2020.448

[22] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked449

autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on450

Computer Vision and Pattern Recognition (CVPR), pages 16000–16009, June 2022.451

[23] Matthew Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot. High accuracy and452

high fidelity extraction of neural networks. USENIX Security Symposium, 2020.453

[24] Hengrui Jia, Christopher A Choquette-Choo, Varun Chandrasekaran, and Nicolas Papernot. En-454

tangled watermarks as a defense against model extraction. In 30th USENIX Security Symposium455

(USENIX Security 21), pages 1937–1954, 2021.456

[25] Mika Juuti, Sebastian Szyller, Samuel Marchal, and N Asokan. Prada: protecting against dnn457

model stealing attacks. In 2019 IEEE European Symposium on Security and Privacy (EuroS&P),458

pages 512–527. IEEE, 2019.459

[26] Sanjay Kariyappa, Atul Prakash, and Moinuddin K Qureshi. Maze: Data-free model stealing460

attack using zeroth-order gradient estimation. In Proceedings of the IEEE/CVF Conference on461

Computer Vision and Pattern Recognition, pages 13814–13823, 2021.462

[27] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.463

[28] Yupei Liu, Jinyuan Jia, Hongbin Liu, and Neil Zhenqiang Gong. Stolenencoder: Stealing464

pre-trained encoders in self-supervised learning. In Proceedings of the 2022 ACM SIGSAC465

Conference on Computer and Communications Security, CCS ’22, page 2115–2128, New466

York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450394505. doi:467

10.1145/3548606.3560586. URL https://doi.org/10.1145/3548606.3560586.468

[29] Pratyush Maini, Mohammad Yaghini, and Nicolas Papernot. Dataset inference: Ownership469

resolution in machine learning. In Proceedings of ICLR 2021: 9th International Conference on470

Learning Representationsn, 2021.471

[30] Yuki Nagai, Y. Uchida, S. Sakazawa, and Shin’ichi Satoh. Digital watermarking for deep neural472

networks. International Journal of Multimedia Information Retrieval, 7:3–16, 2018.473

[31] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng.474

Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep475

Learning and Unsupervised Feature Learning 2011, 2011. URL http://ufldl.stanford.476

edu/housenumbers/nips2011_housenumbers.pdf.477

[32] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff nets: Stealing functionality478

of black-box models. In Proceedings of the IEEE/CVF Conference on Computer Vision and479

Pattern Recognition, pages 4954–4963, 2019.480

[33] Loïc Paulevé, Hervé Jégou, and Laurent Amsaleg. Locality sensitive hashing: A comparison of481

hash function types and querying mechanisms. Pattern recognition letters, 31(11):1348–1358,482

2010.483

11

https://proceedings.mlr.press/v97/frosst19a.html
https://doi.org/10.1145/3548606.3560586
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf

[34] Zeyang Sha, Xinlei He, Ning Yu, Michael Backes, and Yang Zhang. Can’t steal? cont-steal!484

contrastive stealing attacks against image encoders. 2022. URL https://arxiv.org/abs/485

2201.07513.486

[35] Yun Shen, Xinlei He, Yufei Han, and Yang Zhang. Model stealing attacks against inductive graph487

neural networks. In 2022 IEEE Symposium on Security and Privacy (SP), pages 1175–1192.488

IEEE, 2022.489

[36] Ram Shankar Siva Kumar, Magnus Nyström, John Lambert, Andrew Marshall, Mario Goertzel,490

Andi Comissoneru, Matt Swann, and Sharon Xia. Adversarial machine learning-industry491

perspectives. In 2020 IEEE Security and Privacy Workshops (SPW), pages 69–75, 2020. doi:492

10.1109/SPW50608.2020.00028.493

[37] Malcolm Slaney and Michael Casey. Locality-sensitive hashing for finding nearest neighbors494

[lecture notes]. IEEE Signal processing magazine, 25(2):128–131, 2008.495

[38] Florian Tramèr, F. Zhang, A. Juels, M. Reiter, and T. Ristenpart. Stealing machine learning496

models via prediction apis. USENIX Security Symposium, 2016.497

[39] Jean-Baptiste Truong, Pratyush Maini, Robert J. Walls, and Nicolas Papernot. Data-free model498

extraction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern499

Recognition (CVPR), June 2021.500

[40] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks501

into deep neural networks. In Proceedings of the 2017 ACM on international conference on502

multimedia retrieval, pages 269–277, 2017.503

[41] Yutong Wu, Han Qiu, Tianwei Zhang, Lin Jiwei, and Meikang Qiu. Watermarking pre-trained504

encoders in contrastive learning. ArXiv, abs/2201.08217, 2022.505

[42] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-506

supervised learning via redundancy reduction. arXiv preprint arXiv:2103.03230, 2021.507

12

https://arxiv.org/abs/2201.07513
https://arxiv.org/abs/2201.07513
https://arxiv.org/abs/2201.07513

A Broader Impacts508

The goal of our work is to actively defend self-supervised encoders against model stealing attacks.509

Since we are directly defending encoders, any negative societal impacts of our work are minimal. One510

potentially negative impact could be the degradation of performance for legitimate users. However,511

as shown in our experimental results, we are able to preserve high utility for standard users.512

B Limitations513

We show how our defense method is tuned for SimSiam and DINO. There are more types of SSL514

encoders that can be tested with our method. The B4B defense method requires tuning the parameters,515

such as the number of occupied buckets that is allowed without any penalty for the cost function, or516

the selection of the transformations. These steps are rather difficult to automate but can be replaced517

with more data-driven approaches. For example, instead of designing a cost function from scratch,518

we could create an ML model to obtain a cost for a given occupation of the representation space. We519

explain more details in the Appendix C.2.520

C Alternative Building Blocks to Instantiate B4B521

While we present a reference implementation of B4B in our work that instantiates the three building522

blocks with (1) Local Sensitive Hashing, (2) Utility of the Representations, and (3) a set of concrete523

transformations, there exists a multitude of alternatives to concretely implement our B4B framework.524

In the following, we present these alternatives, grouped by building block.525

C.1 Alternative Estimation of the Coverage of Embedding Space526

We also explore alternative methods to measure the distances between representations for queries527

sent to an API. One of them is to apply the cosine distance (where for two representations a and b, it528

is defined as: 1− aT b
||a||2·||b||2) since it can be measured between individual data points in a pair-wise529

fashion. If the total pair-wise cosine distance between representations for a given user is small, then530

the user queries presumably come from a single downstream task distribution. Otherwise, a user531

might be malicious and would like to cover a large part of the representation space, then the total532

pair-wise cosine distance for the user’s representations would be high. Note that in this case, the533

cosine distance can be replaced with any other distance measure, such as the Minkowski distance.534

We opt for the LSH in our reference implementation, since it is much less expensive to compute than535

cosine distance. LSH requires only 212 = 4096 buckets that can be expressed as a binary table with536

the same number of elements, which requires in the worst case iterating over all of them to count how537

many are occupied. With more than 4096 queries sent by a given user, the computation on the LSH is538

sublinear < O(n) with respect to the number of user queries. For the cosine distance approach, the539

required computation grows quadratically O(n2) with the number of queries.540

C.2 Alternative Cost Functions541

The cost functions can be designed from scratch manually or learned, for example, via an ML model,542

such as a neural network or SVM. In our initial version, the function was designed manually, where543

the underlying premise is that once a specified number of buckets is occupied, the cost should grow544

exponentially. Instead of defining such a function or providing the high-level parameters for functions545

that we contributed, one could learn an ML model that for a given number of buckets occupied, it546

should output an estimated cost, or even directly, the desired σ (standard deviation) of the noise added547

to representations. This method requires a relatively large number of data points to be provided for548

training the model, however, lowers the burden on a defender to either decide on the specific function549

or adjust its parameters. Thus, it could be more user-friendly, for example, not necessitating any550

mathematical background, but can be precise enough to obtain the desired behavior.551

Note that instead of adding the calibrated noise (proportional to the estimated cost) to the represen-552

tations, we could rather require a given user to pay a higher monetary cost for queries that cover a553

large fraction of the representation space, or force a user to solve a puzzle in a form of the proof-554

of-work [17], wait a specified amount of time via proof-of-elapsed time (PoET) [4], or prove that555

13

a specified amount of disk space was reserved [18, 19]. For example, consider the approach with556

PoET. A user sends queries to the API, which we cost based on their occupation of the embedding557

space. The user is sent a waiting time. The users’ resource (e.g., a CPU) has to be occupied for this558

specific waiting time without performing any work. At the end of the specified amount of time, the559

user sends proof of the elapsed time, which can be easily verified by the server. PoET requires access560

to specialized hardware, for example, secure CPU instructions that are becoming widely available in561

consumer and enterprise processors. If a user does not own such hardware, proof of elapsed time562

could be produced using a service exposed by a cloud provider (e.g., Azure VMs that feature TEE 2).563

Note that if a server sends the time based on the calculated cost, the adversary might learn the cost564

function. Instead, the exact waiting time should be split in random subwaiting times and sent to the565

user one by one. Thus, a server should rather have a few rounds of exchange with the client to incur566

the additional cost.567

C.3 Alternative to Transformations568

a

Affine Pad + Shuffle Affine + Pad + Shuffle Binary

0.7

-0.2

0.3

a

2.4

0.7

-1.1

c

x2 + 1

x-1 + 0.5

x3 - 2

0.7

-0.2

0.3

a

-0.2

0.3

0.7

c

0.5

0.3

-0.4

+ 0.5

+ 0.3

- 0.4

0.7

-0.2

0.3

a

0.7

-1.1

2.4

c

0.5

0.3

-0.4

+ 0.5

+ 0.3

- 0.4

0.7

-0.2

0.3

a

1

0

0

c

1

1

0

x2 + 1

x-1 + 0.5

x3 - 2

Figure 6: Overview on Transformations. We depict the inner-workings of the transformations
considered in this work.

As an alternative to the transformations used within this work (see Figure 6), one could use a different569

set of transformations or combinations thereof. The padding can be done with different constant570

values and combined with adding constant values within the representations. The padding and adding571

the constant values can be followed by shuffling the elements within the representations. We can572

apply the affine of binary transformations on top of the padding and shuffling. Additionally, we can573

also use other pre-defined linear transformations like rotations or shearing.574

The representations could also be compressed to smaller vectors and the compression rate would575

depend on the occupation of the representation space, for example, the higher the number of occupied576

buckets in our hash table, the more compressed the output representations could be. Such representa-577

tions could be compressed via FFT, a cosine transform, or standard compression techniques such578

as snappy [5]. If the information from the representations should not be lost, then the lossless com-579

pression techniques can be applied, for instance, zstd [6]. The only requirement of the compression580

techniques is to ensure that they do not decrease the accuracy on downstream tasks for legitimate581

users.582

Another alternative is to incorporate an additional neural network layer for transforming the returned583

representations. The training of this supplementary layer should primarily focus on preserving584

the usability of the representations for legitimate users. This approach grants the API provider585

with additional capabilities, as it allows for the utilization of customized training objectives. For586

instance, if the API provider employs LSH (Locality-Sensitive Hashing) to estimate the coverage587

of the representation space, they can leverage buckets and train the additional layer to maintain588

high-quality representations exclusively for frequently-used buckets and their surrounding areas,589

while not prioritizing the rest of the representation space. This approach safeguards legitimate users590

14

from any adverse effects, as their coverage of the representation space is minimal. Simultaneously, it591

ensures that adversaries are unable to exploit representations from the entire representation space.592

D Sybil Attacks593

We consider an adversary who generates n sybil accounts to steal the encoder from the API. For each594

of the accounts, the representations are transformed in a different way. Therefore, to replicate the595

victim model using all the obtained representations, the adversary has to map these representations596

into one single space. This can be done, for example, by training a neural network to perform the597

mapping.598

We assume the adversary obtains {N1, N2, . . . , Nn} many representations from the victim for each599

of the n sybil accounts. Without loss of generality, we assume the adversary maps them back to the600

embedding space of the first sybil account. To learn the mapping, the adversary can apply different601

strategies.602

D.1 Sybil Strategies603

We present three potential approaches that Sybils might want to apply to circumvent our defense. Con-604

sider three users: A, B, and C, with their respective datasets DA, DB , and DC , each with different605

distributions to maximize extraction effectiveness. First, user A is selected to unify representations606

from other users B and C. User A would have to query from at least two different datasets DB and607

DC , while other users would act legitimately. Sybil attackers want to deploy as many users as possible608

but with more fake accounts, user A incurs high coverage of the representation space, and this is609

prevented by our single-user defense. In all other cases neither of the sybil users can act legitimately,610

thus they are already affected by the single-user defense. Second, user A would query from their own611

dataset DA and partially from dataset DB . Then user B would query from their own dataset DB and612

partially from dataset DC , and so on. This method is the most inconspicuous but requires a number613

of remappings that scales super-exponentially with the number of fake accounts, which is impractical.614

Finally, each user would query from their respective dataset, for example, user B would query from615

dataset DB and additionally from a remapping dataset, e.g., DA. Representations could be unified616

by mapping them to A’s representations. The last approach as well as all other cases reduce to the617

minimum of remapping between representations of a pair of users. We show that our defense cuts618

such attempts short by ensuring that the remapping between representations is prohibitive even for a619

pair of users.620

E Additional Related Work621

One of the main workhorse techniques used in the encoders is contrastive learning, where the622

representations are trained so that the positive pairs (two augmented versions of the same image)623

have similar representations while negative pairs (augmentations of two different images) have624

representations which are far apart.625

SimSiam utilizes Siamese networks (two encoders with shared weights) but with a simplified training626

process and architecture. In contrast to the previous frameworks, such as SimCLR [10], SimSiam’s627

authors show that negative samples are unnecessary and collapsing solutions can be avoided by628

applying the projection head to of one of the encoders, and a stop-gradient operation to the other.629

SimSiam minimizes the negative cosine similarity between two randomly augmented views of the630

same image from the Siamese encoders, which is expressed via a symmetrized loss [21]. This creates631

a simple yet highly effective representation learning method.632

DINO is another popular representation learning framework. While SimSiam uses CNNs, DINO633

employs vision transformers (ViTs). It trains a student and teacher encoder with the same architec-634

ture, updating the teacher with an (exponential moving) average of the student. Different random635

transformations of the same image are passed through both encoders. The student receives smaller636

image crops, forcing it to generate representations restoring parts of the original image. The training637

objective is minimizing cross-entropy loss between teacher and student representations.638

15

F Additional Experimental Results639

F.1 Details on Experimental Setup640

The end-to-end experiments on stealing SimSiam and ViT DINO encoders were done using 3 A100641

GPUs. Detailed experiments including mapping, transformations and the evaluation was performed642

using a single computer equipped with two Nvidia RTX 2080 Ti GPUs.643

F.2 Datasets Used644

CIFAR10 [27]: The CIFAR10 dataset consists of 32x32 colored images with 10 classes. There are645

50000 training images and 10000 test images.646

SVHN [31]: The SVHN dataset contains 32x32 coloured images with 10 classes. There are roughly647

73000 training images, 26000 test images and 530000 "extra" images.648

ImageNet[14]: Larger sized coloured images with 1000 classes. As is commonly done, we resize649

all images to be of size 224x224. There are approximately 1 million training images and 50000 test650

images.651

STL10 [12]: The STL10 dataset contains 96x96 coloured images with 10 classes. There are 5000652

training images, 8000 test images, and 100000 unlabeled images.653

F.3 More Results for the End2End Empirical Evaluation654

We consider fine-tuning parameters β, λ, and α for our cost function and the intuitive meaning655

behind these parameters. In general, our recommendation is to adjust the parameter β that specifies656

how many buckets are allowed to be filled by users’ downstream tasks. On the other hand, when657

parameter λ is increased, this causes a higher amount of added noise before we reach the number of658

buckets specified by β, which lowers the performance of a given downstream task relatively early.659

For example, a higher value of λ in Figure 4, would cause an increase in the amount of added noise660

much earlier than for the target value of β. Finally, parameter α controls the amount of noise once661

the number of buckets specified by β is reached. Thus, in Figure 4, we set α = 1 and the maximum662

standard deviation of the added Gaussian noise is 1.663

0 20 40 60 80 100
Buckets [%]

0.0

0.2

0.4

0.6

0.8

1.0

St
de

v.
 o

f a
dd

ed
 n

oi
se f10 3(n)

f10 4(n)
f10 5(n)
f10 6(n)

(a) Cost Function for different λ parameter values.

0 20 40 60 80 100
Buckets [%]

0.2

0.4

0.6

0.8

1.0

St
de

v.
 o

f a
dd

ed
 n

oi
se f1(n)

f0.5(n)
f0.2(n)
f0.1(n)

(b) Cost Function for different α parameter values.

Figure 7: Effects of λ and α parameters on the Cost Function. We present the Cost Function for
α=1, β=80 and different values of λ (left) and λ = 10−6, β=80 and different values of α (right).

16

Table 2: Stealing and Using Encoders With and Without our Defense. The model used in the
experiments is Simsiam, with the following parameters for the cost function λ = 10−4, α = 1, and
β = 80%, and the number of buckets equal to 212. Due to the higher value of the parameter λ, we
observe lower performance on downstream tasks for the attackers since the magnitude of noise added
to the representations is higher. However, for more complicated tasks than CIFAR10, this change
might cause a potential drop in accuracy for the legitimate users.

USER DEFENSE # QUERIES DATASET TYPE CIFAR10 STL10 SVHN F-MNIST

N/A N/A Victim ImageNet Train 90.41±0.02 95.08±0.13 75.47±0.04 91.22±0.11

LEGIT B4B 50K CIFAR10 QUERY 90.02 ±0.1 N/A N/A N/A
LEGIT B4B 5K STL10 QUERY N/A 94.88 ±0.17 N/A N/A
LEGIT B4B 73K SVHN QUERY N/A N/A 74.72 ±0.13 N/A
LEGIT B4B 60K F-MNIST QUERY N/A N/A N/A 91.76 ±0.09

ATTACK NONE 50K IMAGENET STEAL 65.2 ±0.03 64.9 ±0.01 62.1 ±0.01 88.5 ±0.01

ATTACK B4B 50K IMAGENET STEAL 28.22 ± 0.04 26.62 ± 0.02 19.62 ± 0.02 78.41 ±0.01

ATTACK NONE 100K IMAGENET STEAL 68.1 ±0.03 63.1 ±0.01 61.5 ±0.01 89.0 ±0.07

ATTACK B4B 100K IMAGENET STEAL 17.73 ± 0.18 15.59 ± 0.61 19.53± 0.01 55.11 ± 0.05

SYBIL B4B 50K+50K IMAGENET STEAL 33.43 ± 0.03 31.18 ± 0.12 22.91 ± 0.01 75.35 ± 0.05

Table 3: Stealing and Using Encoders With and Without our Defense. The model used in the
experiments is Simsiam, with the following parameters for the cost function λ = 10−6, α = 1, and
β = 50%, and the number of buckets equal to 212. This experiment corresponds to considering 50%
of buckets filled as a too-large coverage of the embedding space. This improves the defense but again
might potentially harm the performance of more complicated tasks than CIFAR10 since they could
occupy more buckets than 50%.

USER DEFENSE # QUERIES DATASET TYPE CIFAR10 STL10 SVHN F-MNIST

N/A N/A Victim ImageNet Train 90.41±0.02 95.08±0.13 75.47±0.04 91.22 ±0.11

LEGIT B4B 50K CIFAR10 QUERY 90.27 ±0.07 N/A N/A N/A
LEGIT B4B 5K STL10 QUERY N/A 95.12 ±0.13 N/A N/A
LEGIT B4B 73K SVHN QUERY N/A N/A 74.94 ±0.16 N/A
LEGIT B4B 60K F-MNIST QUERY N/A N/A N/A 91.66 ±0.05

ATTACK NONE 50K IMAGENET STEAL 65.2 ±0.03 64.9 ±0.01 62.1 ±0.01 88.5 ±0.01

ATTACK B4B 50K IMAGENET STEAL 15.52 ± 0.37 12.57 ± 0.23 19.53± 0.01 23.17 ± 0.01

ATTACK NONE 100K IMAGENET STEAL 68.1 ±0.03 63.1 ±0.01 61.5 ±0.01 89.0 ±0.07

ATTACK B4B 100K IMAGENET STEAL 16.27 ± 0.04 13.93 ± 0.35 19.54 ± 0.02 54.69 ± 0.02

SYBIL B4B 50K+50K IMAGENET STEAL 30.14 ± 0.01 29.57 ± 0.08 19.99 ± 0.03 71.72 ± 0.01

17

Table 4: Stealing and Using Encoders With and Without our Defense. The model used in the
experiments is Simsiam, with the following parameters for the cost function λ = 10−6, α = 1, and
β = 30%, and the number of buckets equal to 212. Since the value of parameter β is decreased
substantially to 30%, we observe a drop in accuracy for legitimate users. For example, more than 1%
for CIFAR10. In the next Table 5, we show that by also decreasing the parameter α, we can attenuate
this harmful effect and retain higher accuracy for legitimate users. In case of an attack, for 100k
stealing queries, we observe much lower accuracy levels than for β = 50% shown in Table 3.

USER DEFENSE # QUERIES DATASET TYPE CIFAR10 STL10 SVHN F-MNIST

N/A N/A Victim ImageNet Train 90.41±0.02 95.08±0.13 75.47±0.04 91.22 ±0.11

LEGIT B4B 50K CIFAR10 QUERY 88.1 ±0.11 N/A N/A N/A
LEGIT B4B 5K STL10 QUERY N/A 94.92 ±0.11 N/A N/A
LEGIT B4B 73K SVHN QUERY N/A N/A 74.37 ±0.02 N/A
LEGIT B4B 60K F-MNIST QUERY N/A N/A N/A 91.67 ±0.07

ATTACK NONE 50K IMAGENET STEAL 65.2 ±0.03 64.9 ±0.01 62.1 ±0.01 88.5 ±0.01

ATTACK B4B 50K IMAGENET STEAL 30.82 ± 0.09 26.37 ± 0.07 21.87 ± 0.03 66.0 ± 0.02

ATTACK NONE 100K IMAGENET STEAL 68.1 ±0.03 63.1 ±0.01 61.5 ±0.01 89.0 ±0.07

ATTACK B4B 100K IMAGENET STEAL 9.57 ± 0.17 9.83 ± 0.09 19.57 ± 0.01 27.06 ± 0.46

SYBIL B4B 50K+50K IMAGENET STEAL 29.15 ± 0.02 28.67 ± 0.06 19.98 ± 0.03 70.62 ± 0.03

Table 5: Stealing and Using Encoders With and Without our Defense. The model used in the
experiments is Simsiam, with the following parameters for the cost function λ = 10−6, α = 0.1, and
β = 30%, and the number of buckets equal to 212. Due to the lower performance on downstream
tasks observed in Table 4 while keeping the parameter β fixed to 30% and λ fixed to 10−6, we
decrease the value of parameter α to 0.1, which increases the performance of legitimate users on their
downstream tasks. In this experiment, we also carry out a sybil attack with more accounts (4 instead
of 2), but observe that this modification does not improve the performance of the attacker. With more
accounts, a sybil has to sacrifice more queries for the remappings between the representations from
different accounts. Additionally, note that each account introduces a different remapping error by the
dint of different transformations applied to each account by B4B.

USER DEFENSE # QUERIES DATASET TYPE CIFAR10 STL10 SVHN F-MNIST

N/A N/A Victim ImageNet Train 90.41±0.02 95.08±0.13 75.47±0.04 91.22±0.11

LEGIT B4B 50K CIFAR10 QUERY 90.17 ±0.1 N/A N/A N/A
LEGIT B4B 5K STL10 QUERY N/A 94.92 ±0.09 N/A N/A
LEGIT B4B 73K SVHN QUERY N/A N/A 74.97 ±0.13 N/A
LEGIT B4B 60K F-MNIST QUERY N/A N/A N/A 91.71 ±0.08

ATTACK NONE 50K IMAGENET STEAL 65.2 ±0.03 64.9 ±0.01 62.1 ±0.01 88.5 ±0.01

ATTACK B4B 50K IMAGENET STEAL 19.95 ±0.19 15.54 ± 0.34 19.57 ± 0.01 23.50 ± 0.19

ATTACK NONE 100K IMAGENET STEAL 68.1 ±0.03 63.1 ±0.01 61.5 ±0.01 89.0 ±0.07

ATTACK B4B 100K IMAGENET STEAL 10.35 ± 0.19 12.37 ± 0.69 19.34 ± 0.01 68.93 ± 0.17

SYBIL B4B 4×25K IMAGENET STEAL 33.15 ± 0.04 30.23 ± 0.07 20.87 ± 0.01 72.19 ± 0.02

18

F.4 Setting the number of buckets664

We present our procedure to find an optimal number of buckets in Figure 8.665

0 10000 20000 30000 40000 50000
Queries

0

20

40

60

80

100

B
uc

ke
ts

 o
cc

up
ie

d
[%

]

FashionMNIST
SVHN
CIFAR10
ImageNet

(a) Number of buckets = 28

0 10000 20000 30000 40000 50000
Queries

0

20

40

60

80

100

B
uc

ke
ts

 o
cc

up
ie

d
[%

]

FashionMNIST
SVHN
CIFAR10
ImageNet

(b) Number of buckets = 210

0 10000 20000 30000 40000 50000
Queries

0

20

40

60

80

100

B
uc

ke
ts

 o
cc

up
ie

d
[%

]

FashionMNIST
SVHN
CIFAR10
ImageNet

(c) Number of buckets = 212

0 10000 20000 30000 40000 50000
Queries

0

20

40

60

80

100

B
uc

ke
ts

 o
cc

up
ie

d
[%

]

FashionMNIST
SVHN
CIFAR10
ImageNet

(d) Number of buckets = 214

Figure 8: Estimating Embedding Space Coverage through LSH on SimSiam Encoder. We extend
the results from Figure 7a(a) and present the fraction of buckets occupied by representations of
different datasets as a function of the number of queries posed to the encoder. We consider different
number of buckets in the LSH table. We observe that 28 buckets is to small since queries from the
ImageNet dataset saturate all the buckets after around 50k queries, while the number 214 of buckets
is too large since it is never occupied more than 40%. Thus, the number 212 buckets is a good middle
ground. Subfigure (c) corresponds to Figure 7a from the main paper. We also use the same notation
and carry out our experiments in the same way as in Figure 7a.

F.5 Results DINO666

We show that our defense is also applicable to the DINO encoder. The occupation of the representa-667

tions space is presented visually in Figure 9. We also show that the number of buckets 212 is optimal668

for DINO in Figure 10. The impact of transformation on the representations from DINO is shown669

Table 7. Finally, the end to end experiment for DINO is presented in Table 6.670

200 0 200 400

200

0

200

400
F-MNIST
SVHN
CIFAR10
STL10

Figure 9: Representations from Different Tasks Occupy Different Sub-Spaces of the Embedding
Space. Presented for FashionMNIST, SVHN, CIFAR10, and STL10. In this plot, we used the
DINO ViT Small encoder trained on ImageNet.

19

0 10000 20000 30000 40000 50000
Queries

0

20

40

60

80

100

B
uc

ke
ts

 o
cc

up
ie

d
[%

]

FashionMNIST
SVHN
CIFAR10
ImageNet

Figure 10: Estimating Embedding Space Coverage through LSH on the DINO Encoder. The
number of buckets is set to 212. We also use the same notation and carry out our experiments in the
same way as in Figure 7a.

Table 6: Stealing and Using Encoders With and Without our Defense. The model used in the
experiments is DINO, with the following parameters for the cost function λ = 10−6, α = 1000, and
β = 60%, and the number of buckets equal to 212. We have to increase the value of parameter α by
×1000 since the norms of the DINO representations are also around 103 higher than for SimSiam.
We observe that B4B performs similarly on DINO as for SimSiam.

USER DEFENSE # QUERIES DATASET TYPE CIFAR10 STL10 SVHN F-MNIST

N/A N/A Victim ImageNet Train 94.51 ±0.08 97.98 ±0.04 70.66 ±0.16 89.98 ±0.03

LEGIT B4B 50K CIFAR10 QUERY 94.25 ±0.11 N/A N/A N/A
LEGIT B4B 5K STL10 QUERY N/A 98.05 ±0.04 N/A N/A
LEGIT B4B 73K SVHN QUERY N/A N/A 69.66 ±0.14 N/A
LEGIT B4B 60K F-MNIST QUERY N/A N/A N/A 89.68 ±0.01

ATTACK NONE 50K IMAGENET STEAL 67.92 ± 0.04 66.02 ± 0.22 61.30 ± 0.01 89.46 ± 0.01

ATTACK B4B 50K IMAGENET STEAL 42.02±0.05 38.91±0.06 19.94±0.02 73.33±0.04

ATTACK NONE 100K IMAGENET STEAL 75.07 ± 0.01 76.32 ± 0.02 71.79 ± 0.06 89.76 ± 0.01

ATTACK B4B 100K IMAGENET STEAL 19.27±0.03 21.24±0.03 19.84±0.01 71.01±0.03

SYBIL B4B 50K+50K IMAGENET STEAL 45.56± 0.06 42.50±0.02 24.25±0.03 78.01± 0.08

F.6 Additional evaluation of transformations671

Additionally, we show the impact of transformations on the performance of legitimate users in Table 7672

(for both SimSiam and DINO).673

Table 7: Impact of Transformations on the Performance for Legitimate Users. We show that
the transformations applied per-account do not harm the performance of legitimate users on their
downstream tasks. The victim encoders was trained on the ImageNet dataset using SimSiam and
DINO frameworks.

TRANSFORMATION ENCODER CIFAR10 STL10 SVHN F-MNIST

NONE Victim SimSiam 90.41±0.02 95.08 ±0.13 75.47 ±0.04 91.22 ±0.11

AFFINE SIMSIAM 90.24 ±0.11 95.05 ±0.1 74.96 ±0.18 91.42 ±0.15

PAD+SHUFFLE SIMSIAM 90.4 ±0.05 95.34 ±0.06 75.47 ±0.01 91.38 ±0.15

AFFINE+PAD+SHUFFLE SIMSIAM 90.18 ±0.06 95.03 ±0.05 74.86 ±0.1 91.35 ±0.1

BINARY SIMSIAM 88.78 ±0.2 94.72 ±0.02 68.42 ±0.16 88.91 ±0.34

NONE Victim DINO 94.51 ±0.08 97.98 ±0.04 70.66 ±0.16 89.98 ±0.03

AFFINE DINO 94.25 ±0.11 98.05 ±0.04 69.77 ±0.11 89.68 ±0.01

PAD+SHUFFLE DINO 94.72 ±0.02 98.07 ±0.03 70.44 ±0.1 89.91 ±0.08

AFFINE+PAD+SHUFFLE DINO 94.26 ±0.06 98.02 ±0.01 69.49 ±0.2 89.70 ±0.1

BINARY DINO 92.96 ±0.1 98.03 ±0.03 59.53 ±0.27 88.26 ±0.04

20

0.7

-0.2

0.3

a

User #2

2.4

0.7

-1.1

c

2.1

-0.5

0.2

d

User #1

a

a

a

Reference
classfier

cAPI
call

0.7

-0.2

0.3

a

GENERATE REPRESENTATIONS TRANSFORM REPRESENTATIONS TRAIN REFERENCE CLASSIFIER TRAIN MAPPERS REMAP & ASSESS REPRESENTATIONS

User #2
TRAIN

User #1
TRAIN

Mapper

d c
FIXED FIXED

User #2
TEST

d

Figure 11: Protocol to Evaluate the Mapping Between Representations. We present the protocol
of evaluating remappings for two sybil accounts. 1 API receives inputs from two sybil accounts
and generates corresponding representations. 2 Representations are transformed on a per-user
basis and returned. 3 Adversary trains a reference classifier on representations from account
one. 4 Adversary trains a linear model to find mapping from representations of account two to
representations of account one. 5 To check the quality of obtained mapping representations from
test set of account two are mapped using the fixed mapper (from step 4) to representation space of
account one. This enables the calculation of cosine distance between representations from account
one and their counterparts from account two shown in Figure 5. Additionally, the fixed reference
classifier (from step 3) can be used to measure the accuracy drop caused by remapping .

21

	Introduction
	Related Work
	Actively Defending against Model Stealing with B4B
	Threat Model and Intuition
	Building Block 1: Coverage Estimation of the Embedding Space
	Building Block 2: Cost Function Design
	Building Block 3: Per-User Representation Transformations against Sybil Attacks

	Empirical Evaluation
	Local Sensitive Hashing for Coverage Estimation
	Calibrating the Cost Function
	Assessing the Effect of Transformations
	End-to-End Stealing of an Encoder under our Defense

	Conclusions
	Broader Impacts
	Limitations
	Alternative Building Blocks to Instantiate B4B
	Alternative Estimation of the Coverage of Embedding Space
	Alternative Cost Functions
	Alternative to Transformations

	Sybil Attacks
	Sybil Strategies

	Additional Related Work
	Additional Experimental Results
	Details on Experimental Setup
	Datasets Used
	More Results for the End2End Empirical Evaluation
	Setting the number of buckets
	Results DINO
	Additional evaluation of transformations

