
A Appendix

A.1 Examples of Algorithm Synthesis and Functionality Synthesis

We give examples of algorithm synthesis and functionality synthesis in Figure 7.
The upper part is an instance of algorithm synthesis, where input that describes the problem does not
indicate the solution idea ‘binary search’ in any way. To solve the algorithm synthesis program, the
model needs to come up with the idea related to ‘binary search’ first either implicitly or explicitly
before synthesizing the code.
The lower part is an instance of functionality synthesis, where the input is basically a pseudo-code
program described in natural language that can directly translate into Python code. The model does
not need to come up with the idea because the solution is already clearly stated in the input.

Implement a function incr_list(l: list) that returns the input list with
elements increased by 1.

You are given an integer array
ranks representing the ranks of some
mechanics. ranks[I] is the rank of the
ith mechanic. A mechanic with a rank r
can repair n cars in r * n^2 minutes.

You are also given an integer cars
representing the total number of cars
waiting in the garage to be repaired.

Return the minimum time taken to
repair all the cars.

class Solution:
 def repairCars(self, ranks:
List[int], cars: int) -> int:
 while left < right:
 mid = (left + right) // 2
 if canRepairInTime(mid):
 right = mid
 else:
 left = mid + 1

 return left

Try using binary search on the answer.

Check whether for a fixed time all
cars can be repaired.

This can be done by summing up the
maximum number of cars each mechanic
can repair in the given time.

def incr_list(l: list):
 return [i + 1 for i in l]

Input Code

Algorithm 
Synthesis

Functionality 
Synthesis

IdeaInput Code

Figure 7: Examples of algorithm synthesis (top) and functionality synthesis (bottom). The parts in
solid boxes are given by the problem, while the parts in dotted boxes should be inferred by the model.
Functionality synthesis does not require the model to infer the idea, while algorithm synthesis does.

A.2 Prompts in ALGO and Examples of Generated Programs

A.2.1 LeetCode Examples

We list the prompts we used to generate the solution candidates and the verifier components for
LeetCode problems here.
Figure 8 lists the prompts and examples for generating the naive solution. Figure 9 lists the prompts
and examples for generating solutions guided by instructions that specify the algorithm category.
Figure 10 lists the prompts and examples for generating reference oracle. Figure 11 lists an input
validator example and its prompt. Figure 12 lists the prompt for the input generator that generates a
single test input. Figure 13 lists the prompt for the batch input generator.

Naive Candidiate Generation Prompt
Solve the following problem with python and test it against the example cases only.

You are given an integer array ranks representing the ranks of some mechanics.
ranks[I] is the rank of the ith mechanic. A mechanic with a rank r can repair n
cars in r * n^2 minutes. Mechanics work in parallel.
You are also given an integer cars representing the total number of cars waiting
in the garage to be repaired.
Return the minimum time taken to repair all the cars.
Examples: (omitted)
Constraints: (omitted)

Function definition

``` 
class Solution: 
    def repairCars(self, ranks: List[int], cars: int) -> int: 
 
``` 

Naive Candidate Generated by LLM
class Solution:
 def repairCars(self, ranks: List[int], cars: int) -> int:
 ranks.sort()
 max_repair_time = 0
 assigned_cars = 0
 for rank in ranks:
 num_cars = (cars + len(ranks) - assigned_cars - 1)\
 // (len(ranks) - assigned_cars)
 num_cars = min(num_cars, cars - assigned_cars)
 repair_time = rank * num_cars * num_cars
 max_repair_time = max(max_repair_time, repair_time)
 assigned_cars += num_cars
 return max_repair_time

 num_cars = min(num_cars, cars - assigned_cars)
 repair_time = rank * num_cars * num_cars
 max_repair_time = max(max_repair_time, repair_time)
 assigned_cars += num_cars
 return max_repair_time

Figure 8: The naive prompt without instruction guidance and a candidate program generated with it.
The instructions are in blue. It is a greedy method in linear time but is not suitable for this task. Even
the naive candidate generated can pass the examples in the description, it fails both the system judge
and ALGO verifier.

13

Instruction Guided Generation Prompt
Please solve this problem with the binary search method.
After generating the code, please test it against the example cases given in the
definition. Only use the example cases, don't use your own test cases.

You are given an integer array ranks representing the ranks of some mechanics.
ranks[I] is the rank of the ith mechanic. A mechanic with a rank r can repair n
cars in r * n^2 minutes. Mechanics work in parallel.
You are also given an integer cars representing the total number of cars waiting
in the garage to be repaired.
Return the minimum time taken to repair all the cars.
Examples: (omitted)
Constraints: (omitted)
Function definition
``` 

class Solution: 
    def repairCars(self, ranks: List[int], cars: int) -> int: 
 
``` 
As I said before, please make sure you use the binary search method.

Binary Search Candidate Generated
class Solution:
 def repairCars(self, ranks: List[int], cars: int) -> int:
 def countCarsRepaired(ranks, minutes):
 total_cars = 0
 for rank in ranks:
 n = int((minutes / rank) ** 0.5)
 total_cars += n
 return total_cars
 left = 1
 right = max(ranks) * cars * cars
 while left < right:
 mid = (left + right) // 2
 if countCarsRepaired(ranks, mid) < cars:
 left = mid + 1
 else:
 right = mid
 return left

Figure 9: The prompt with instructions about the specific algorithm category (binary search). Binary
search is the ideal algorithm used by human programmers for this task, with which the coder can
generate both correct and efficient solutions. In general, right algorithm category can efficiently
improve the quality of generated program.

Reference Oracle Generation Prompt
Please solve this problem with a brute-force algorithm. After generating the code,
please test it against the example cases given only, do not generate your own test
cases.When comparing outputs, please do not consider the line breaks and spaces.

You are given an integer array ranks representing the ranks of some mechanics. ranks[I]
is the rank of the ith mechanic. A mechanic with a rank r can repair n cars in r * n^2
minutes.

You are also given an integer cars representing the total number of cars waiting in the
garage to be repaired.

Return the minimum time taken to repair all the cars.

Examples

{examples, omitted}

Instead of defining your function in the Solution class, change your classname to
BruteforceSolution. As I said before, please make sure you use the most straightforward
and brute-force algorithm to solve the algorithm. Do not consider any efficiency issue,
make the solution as brute-force as possible. It's okay for you to enumerate over a very
large search space as long as the solution is correct. What do you think are some
variables that may affect the answer and how do you think they can be enumerated?

Reference Oracle Generated by LLM
class BruteforceSolution:
 def repairCars(self, ranks: List[int], cars: int) -> int:
 num_mechanics = len(ranks)
 min_time = float('inf')
 def generate_allocations(allocation, remaining_cars):
 nonlocal min_time
 if len(allocation) == num_mechanics:
 if sum(allocation) == cars:
 times = [ranks[i] * allocation[i] * allocation[i]
for i in range(num_mechanics)]
 max_time = max(times)
 min_time = min(min_time, max_time)
 return
 for num_cars in range(remaining_cars + 1):
 new_allocation = allocation + [num_cars]
 new_remaining_cars = remaining_cars - num_cars
 generate_allocations(new_allocation,
new_remaining_cars)
 generate_allocations([], cars)
 return min_time

Figure 10: The prompt we used for oracle generation and one oracle generated with it. The instructions
are in blue. The language model is instructed to generate the most straightforward solution by
enumerating over a very large search space of all combinations of relevant variables. The generated
oracle enumerates all the possible ordered partitions of work allocations to find out the optimal one.

Input Validator Generation Prompt
You are given this leetcode problem. Please help me by generating a validator function
`is_valid_input` that takes exactly the same inputs as the solution function and returns
a boolean value indicating whether the input is valid and follows the constraints
defined in the problem description. Please test your data validator by checking the
validity of the example cases given in the problem description.

You are given an integer array ranks representing the ranks of some mechanics. ranks[I]
is the rank of the ith mechanic. A mechanic with a rank r can repair n cars in r * n^2
minutes. Mechanics work in parallel.
You are also given an integer cars representing the total number of cars waiting in the
garage to be repaired.
Return the minimum time taken to repair all the cars.
Examples: (omitted)
Constraints: (omitted)
Function definition (omitted)

Input Validator Generated by LLM

def is_valid_input(ranks: List[int], cars: int) -> bool:
 if not 1 <= len(ranks) <= 10 ** 5:
 return False
 for rank in ranks:
 if not 1 <= rank <= 100:
 return False
 if not 1 <= cars <= 10 ** 6:
 return False
 return True
 
 
 
 
 
 

Figure 11: The prompt is utilized to generate a input validator to verify the validity of the generated
test input, ensuring it aligns with the constraints specified in the description. In practice, this validation
task is a functionality synthesis task, which can be easily solved by LLM.

A.2.2 Codecontests Examples

We list the prompts we used to generate the solution candidates and the verifier components for
Codecontests problems here. Figure 14 lists the prompts and examples for generating the reference
oracle using an exhaustive search. Figure 15 lists the prompt for generating the batch input generator.

14

Input Generator Generation Prompt
You are given this leetcode problem and its test input validator `is_valid_input`.
Please help me by generating an input generator function `gen_input` that randomly
generates test inputs which follow the constraints defined. Your `gen_input` function
should make use of `is_valid_input` by validating the generated input with it. Your
function should only generate test inputs and not test outputs.

You are given an integer array ranks representing the ranks of some mechanics. ranks[I]
is the rank of the ith mechanic. A mechanic with a rank r can repair n cars in r * n^2
minutes. Mechanics work in parallel.
You are also given an integer cars representing the total number of cars waiting in the
garage to be repaired.
Return the minimum time taken to repair all the cars.
Examples: (omitted)
Constraints: (omitted)
Function definition (omitted)

def is_valid_input(ranks: List[int], cars: int) -> bool: (omitted)

Input Generator Generated by LLM

def is_valid_input(ranks: List[int], cars: int) -> bool:
 if not 1 <= len(ranks) <= 10 ** 5:
 return False
 for rank in ranks:
 if not 1 <= rank <= 100:
 return False
 if not 1 <= cars <= 10 ** 6:
 return False
 return True

def gen_input() -> tuple:
 while True:
 n = random.randint(1, 10 ** 5)
 ranks = [random.randint(1, 100) for _ in range(n)]
 cars = random.randint(1, 10 ** 6)
 if is_valid_input(ranks, cars):
 return (ranks, cars)

Figure 12: The prompt is used to generate a data generator, to generate extra test cases when combined
with the reference oracle. In practice, this generator generation task is a functionality synthesis task,
which can be easily solved by LLM.

Batch Generator Generation Prompt
You are given this leetcode problem, its random input generator `gen_input`. Please help
me by generating 5 random inputs with the random input generator `gen_input`. You should
return a function named `random_test()` that takes several arguments to control the
upper limit of the input and returns a list of 5 tuples. You do not need to generate
test outputs, only generate inputs.

You are given an integer array ranks representing the ranks of some mechanics. ranks[I]
is the rank of the ith mechanic. A mechanic with a rank r can repair n cars in r * n^2
minutes. Mechanics work in parallel.
You are also given an integer cars representing the total number of cars waiting in the
garage to be repaired.
Return the minimum time taken to repair all the cars.
Examples: (omitted)
Constraints: (omitted)

def gen_input() -> tuple: (omitted)

Batch Generator Generated by LLM

def random_test(max_ranks_length: int=10 ** 5,
max_rank_value: int=100, max_cars: int=10 ** 6) ->
List[tuple]:

 def gen_input() -> tuple:
 while True:
 n = random.randint(1, min(max_ranks_length, 10 ** 5))
 ranks = [random.randint(1, min(max_rank_value, 100))
for _ in range(n)]
 cars = random.randint(1, min(max_cars, 10 ** 6))
 if is_valid_input(ranks, cars):
 return (ranks, cars)
 random_inputs = []
 for _ in range(5):
 random_inputs.append(gen_input())
 return random_inputs

Figure 13: The prompt is used to generate a batch generator that employs the already generated
gen_input to generate several input cases by calling it multiple times.

Since the test set problems in Codecontests are all from https://codeforces.com/, they originally
require standard input/output. However, we follow the setting in Codecontests by concatenating the
entire standard input as a single string and asking the model to generate reference oracles that map a
string to a string.

Reference Oracle Generation Prompt
Please solve this problem with a brute-force algorithm. After generating the code,
please test it against the example cases given only, do not generate your own test
cases.When comparing outputs, please do not consider the line breaks and spaces.

Andi and Budi were given an assignment to tidy up their bookshelf of n books.
Each book is represented by the book title — a string si numbered from 1 to n,
each with length m. Andi really wants to sort the book lexicographically
ascending, while Budi wants to sort it lexicographically descending.
(https://codeforces.com/problemset/problem/1575/A, remaining part omitted)

Examples

{examples, omitted}

Please feed the example inputs to the function solution as an entire string. As I said
before, please make sure you use the most straightforward and brute-force algorithm to
solve the algorithm. Do not consider any efficiency issue, make the solution as brute-
force as possible. What do you think are some variables that may affect the answer and
how do you think they can be enumerated?

Reference Oracle Generated by LLM
from functools import cmp_to_key
def asc_desc_ending_comparator(a, b):
 for i in range(len(a)):
 if (i + 1) % 2 != 0:
 if a[i] < b[i]:
 return -1
 elif a[i] > b[i]:
 return 1
 elif a[i] > b[i]:
 return -1
 elif a[i] < b[i]:
 return 1
 return 0
def solution(stdin: str) -> str:
 lines = stdin.strip().split('\n')
 (n, m) = map(int, lines[0].split())
 books = [(title, idx) for (idx, title) in
enumerate(lines[1:], start=1)]
 books.sort(key=cmp_to_key(lambda x, y:
asc_desc_ending_comparator(x[0], y[0])))
 output = [str(book[1]) for book in books]
 return ' '.join(output)

Figure 14: The prompt we used for oracle generation and one oracle generated with it. The instructions
are in blue. The language model is instructed to generate the most straightforward solution by
enumerating over a very large search space of all combinations of relevant variables.

A.3 The List of Problems from LeetCode

We list the problems we collected from LeetCode as benchmarks to test ALGO in Table 3, among
them are 10 easy problems, 18 medium problems, and 7 hard problems.

15

https://codeforces.com/

Batch Generator Generation Prompt
You are given this problem.
Andi and Budi were given an assignment to tidy up their bookshelf of n books.
Each book is represented by the book title — a string si numbered from 1 to n,
each with length m. Andi really wants to sort the book lexicographically
ascending, while Budi wants to sort it lexicographically descending.
(https://codeforces.com/problemset/problem/1575/A, remaining part omitted)

You should first create an input generator function `gen_input`.`gen_input` should take
a list of arguments to control the upper limit of the input and return a single string
that represents the input.`gen_input` should only generate test inputs that follow the
problem constraints. `gen_input` should only generate test inputs and not test outputs.

You should then create an extra function `batch_gen_inputs` that takes one argument -
`batch_size`. `batch_gen_inputs` should run `gen_input` for `batch_size` times with a
small upper limit to make sure that it works. `batch_gen_inputs` should return a list of
strings that represent the inputs.

Batch Generator Generated by LLM

def gen_input(n_max: int, m_max: int) -> str:
 n = random.randint(1, n_max)
 m = random.randint(1, min(m_max, 10 ** 6 // n))
 book_titles = set()
 while len(book_titles) < n:
 book_title =
''.join((random.choice(string.ascii_uppercase) for _ in
range(m)))
 book_titles.add(book_title)
 input_string = f'{n} {m}\n' + '\n'.join(book_titles)
 return input_string

def batch_gen_inputs(batch_size,) -> list:
 inputs = []
 for _ in range(batch_size):
 inputs.append(gen_input(5, 10))
 return inputs

Figure 15: The prompt is used to first generate a function gen_input and then generate a batch
generator that employs the already generated gen_input to generate several input cases by calling it
multiple times.

Table 3: The Leetcode problems we use. We only pick problems that were released concurrently or
after GPT-4 to avoid contamination.

Problem ID Problem Name Level

2582 pass-the-pillow easy
2583 kth-largest-sum-in-a-binary-tree medium
2584 split-the-array-to-make-coprime-products hard
2585 number-of-ways-to-earn-points hard
2586 count-the-number-of-vowel-strings-in-range easy
2587 rearrange-array-to-maximize-prefix-score medium
2588 count-the-number-of-beautiful-subarrays medium
2589 minimum-time-to-complete-all-tasks hard
2591 distribute-money-to-maximum-children easy
2592 maximize-greatness-of-an-array medium
2593 find-score-of-an-array-after-marking-all-elements medium
2594 minimum-time-to-repair-cars medium
2595 number-of-even-and-odd-bits easy
2596 check-knight-tour-configuration medium
2597 the-number-of-beautiful-subsets medium
2598 smallest-missing-non-negative-integer-after-operations medium
2600 k-items-with-the-maximum-sum easy
2601 prime-subtraction-operation medium
2602 minimum-operations-to-make-all-array-elements-equal medium
2603 collect-coins-in-a-tree hard
2609 find-the-longest-balanced-substring-of-a-binary-string easy
2610 convert-an-array-into-a-2d-array-with-conditions medium
2611 mice-and-cheese medium
2612 minimum-reverse-operations hard
2614 prime-in-diagonal easy
2615 sum-of-distances medium
2616 minimize-the-maximum-difference-of-pairs medium
2617 minimum-number-of-visited-cells-in-a-grid hard
2639 find-the-width-of-columns-of-a-grid easy
2640 find-the-score-of-all-prefixes-of-an-array medium
2641 cousins-in-binary-tree-ii medium
2643 row-with-maximum-ones easy
2644 find-the-maximum-divisibility-score easy
2645 minimum-additions-to-make-valid-string medium
2646 minimize-the-total-price-of-the-trips hard

16

	Introduction
	The Algo Framework
	Algorithm Synthesis
	Algo
	Verification with Oracle
	Code Synthesis Strategies

	Experiments
	Experiment Setup
	Synthesis Accuracy
	Verification Analysis
	Case Study

	Related Work
	Conclusion and Discussion
	Appendix
	Examples of Algorithm Synthesis and Functionality Synthesis
	Prompts in Algo and Examples of Generated Programs
	LeetCode Examples
	Codecontests Examples

	The List of Problems from LeetCode

