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Figure 1: The architecture of Gd.

A Technical Details for Generating Hardly-Generalized Domain377

This process is mainly motivated by [33], which leveraged a transformation module with different378

convolution transformations to minimize the mutual information (I) between features from the source379

dataset (i.e., z) and data from the target domain (i.e., ẑ). Our work is also partially inspired by380

previous work on generating unlearnable samples [45], which crafted effective unlearnable samples381

by performing the bi-level optimization within each iteration.382

A.1 The Implementation of Transformation Module383

We follow previous work [33] to implement the transformation module for generating samples384

from a different domain (as shown in Fig. 1). Specifically, we design the transformation module385

as an ensemble of multiple (i.e., 4) convolution operations. Each convolution operation contains a386

convolution layer Conv, a feature shift module, and a corresponding transposed convolution layer387

TranConv. The detailed parameters for each convolution layer Convi are detailed in Tab. 1. Following388

each convolution layer Convi, we add a feature shift module to enhance the diversity of the generated389

samples. Specifically, each feature shift module contains two learnable parameters µi and σi as mean390

shift and variance shift, following:391

σi ·
Convi(x)− µ

σ
+ µi, (1)

where µ and σ represent the mean and covariance value for Convi(x). Notably, µ and σ are not392

learnable parameters. Moreover, the parameters µi and σi has the same dimension as the output393

of Convi(x). After that, we use a transposed convolution layer TranConv to turn the feature maps394

generated by the above operations into a real instance, which has the same dimension as x.395

Putting all above, we generate the hard-generalized domain samples x̂ following:396

x̂ =
1∑
wi

∑
i

wi · tahn(TranConv(σi ·
Convi(x)− µ

σ
+ µi)), (2)

where tahn represents the tahn activation function. wi is a scalar and weights the contribution of397

each activated instance produced by TransposedConv to x̂. wi is randomly sampled from normal398

distribution wi ∼ N(0, 1). Notably, for each input x, we first up-sample it to 224 × 224 size and399

down-sample produced x̂ to the original size for x.400

A.2 The Optimization Process401

During the optimization process of Eq. (2), we first initialized a surrogate model f(·;w) and a402

benign dataset D. Then during each iteration for solving the bi-level optimization Eq. (2), we first403

minimize the I(z; ẑ) and Lc by optimizing the parameters of our proposed transformation module:404

min
θ

Ep(z,ẑ) [I(z(w∗); ẑ(θ,w∗)) + λ1Lc(z(w
∗), ẑ(θ,w∗))] . (3)
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Table 1: The configuration for each Convolution layer Conv.

Model Kernel Size Input Channel Output Channel

Conv1 5x5 3 3
Conv2 9x9 3 3
Conv3 13x13 3 3
Conv4 17x17 3 3

After that, we maximize I(z; ẑ) and minimize the training loss by optimizing the parameters w:405

min
w

[
E(x,y)∼D [L(f(Gd(x;θ);w), y) + L(f(x;w), y)]− λ2Ep(z,ẑ)[I(z(w); ẑ)

]
. (4)

Since I(z; ẑ) is intractable, we propose to optimize its upper bound instead:406

I(z; ẑ) = Ep(z,ẑ)

[
log

p(ẑ|z)
p(ẑ)

]
≤ Ep(z,ẑ)[log p(ẑ|z)]− Ep(z)p(ẑ)[log p(ẑ|z)]. (5)

Since the conditional distribution p(ẑ|z) is also intractable thus the upper bound of I(z; ẑ) can’t be407

optimized, we follow previous work to adopt a variational distribution q(ẑ|z) to approximate the408

upper bound of I(z; ẑ):409

I(z; ẑ) ≤ 1

N

N∑
i=1

[log q(ẑi|zi)−
1

N

N∑
j=1

log q(ẑj |zi)], (6)

where q(ẑ|z) is obtained by employing the backbone neural network to approximate.410

We optimize the above bi-level optimization Eq. (2) with 100 iterations. We set the learning rate as411

0.005 for optimizing the parameters of the proposed transformation module and 0.001 for parameters412

for the backbone model f(·) following [33]. The batch size is 64. For both the transformation413

module and the backbone model f(·), we use SGD [46] as the optimizer with Nesterov momentum414

and weight decay rate of 0.0005. We use ResNet-18 as the backbone model for extracting z and ẑ415

throughout the paper. We introduce λ1 and λ2 for balancing each optimization objective. Following416

the implementation of [33], we set λ1 and λ2 as 0.1 and 1.0 for balancing each optimization objective.417

B The Proof for Theorem 1418

Theorem 1 (Data Quantity Impact). Suppose in PAC Bayesian [35], for a target domain T and a419

source domain S, any set of voters (candidate models) H, any prior π over H before any training,420

any ξ ∈ (0, 1], any c > 0, with a probability at least 1− ξ over the choices of S ∼ Sns and T ∼ T nt

X ,421

for the posterior f over H after the joint training on S and T , we have422

RT (f) ≤ c

2(1− e−c)
R̂T (f) +

c

1− e−c
β∞(T ∥S)R̂S(f) + Ω

+
1

1− e−c

(
1

nt
+

β∞(T ∥S)
ns

)(
2KL(f∥π) + ln

2

ξ

)
,

(7)

where R̂T (f) and R̂S(f) are the target and source empirical risks measured over target and source423

datasets T and S, respectively. Ω is a constant and KL(·) is the Kullback–Leibler divergence.424

β∞(T ∥S) is a measurement of discrepancy between T and S defined as425

β∞(T ∥S) = sup
(x,y)∈SUPP(S)

(P(x,y)∈T

P(x,y)∈S

)
≥ 1, (8)

where SUPP(S) denotes the support of S. When S and T are identical, β∞(T ∥S) = 1.426

Proof. Theorem 6 in Germain et al. ’s work [47] demonstrates that suppose in PAC Bayesian [35],427

for a target domain T and a source domain S, any set of voters (candidate models) H, any prior428
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π over H before any training, any ξ ∈ (0, 1], any c > 0, with a probability at least 1 − ξ over the429

choices of S ∼ Sns and T ∼ T nt

X , for the posterior f over H after the joint training on S and T :430

RT (f) ≤ c

2(1− e−c)
d̂T (f) +

c

1− e−c
β∞(T ∥S)êS(f) + Ω

+
1

1− e−c

(
1

nt
+

β∞(T ∥S)
ns

)(
2KL(f∥π) + ln

2

ξ

)
,

(9)

where RT (f) denotes the expected Gibbs risk of voter f over the target domain. d̂T (f) and êS(f) are431

the empirical estimation of the target voters’ disagreement and the source joint error, measured over432

target and source datasets T and S, respectively. Ω is a constant and KL(·) is the Kullback–Leibler433

divergence. β∞(T ∥S) is a measurement of discrepancy between T and S defined as434

β∞(T ∥S) = sup
(x,y)∈SUPP(S)

(P(x,y)∈T

P(x,y)∈S

)
, (10)

where SUPP(S) denotes the support of S.435

In the following proof, in particular, the Gibbs risk RA(f), the voters’ disagreement dA(f), and the436

joint error eA(f) of a certain domain A are defined as follows437

RA(f) = E
(x,y)∼A

E
h∼f

I[h(x) ̸= y], (11)

438

439

dA(f) = E
x∼AX

E
h∼f

E
h′∼f

I [h(x) ̸= h′(x)] , (12)
440

441

eA(f) = E
(x,y)∼A

E
h∼f

E
h′∼f

I [h(x) ̸= y] I [h′(x) ̸= y] , (13)

where I[True] = 1 if the inner condition is true, and otherwise I[False] = 0, and AX is the marginal442

distribution of domain A. h and h′ are votes sampled from the posterior distribution f over H. With443

these definitions, studies [48, 49] reveal a relationship among the Gibbs risk, the voters’ disagreement,444

and the joint error as445

RA(f) = E
(x,y)∼A

E
h∼f

E
h′∼f

I [h(x) ̸= h′(x)] + 2I [h(x) ̸= y ∧ h′(x) ̸= y]

2
=

1

2
dA(f) + eA(f).

(14)
In this case, we can extend this relationship to the empirical estimations (suppose a dataset A is446

sampled from domain A) as447

R̂A(f) =
1

|A|
∑

(x,y)∼A

E
h∼f

E
h′∼f

I [h(x) ̸= h′(x)] + 2I [h(x) ̸= y ∧ h′(x) ̸= y]

2
=

1

2
d̂A(f)+êA(f).

(15)
Then we can use R̂T (f) and R̂S(f) to replace d̂T (f) and êS(f) in Eq. (9), respectively. In the448

end, we can follow Xu et al. [50] to regard these empirical risks as data quantity-irrelevant when449

analyzing the impact of data quantity.450

Next, we focus on the proof of the numerical relationship β∞(T ∥S) ≥ 1. First of all, β∞(T ∥S)451

comes from a more general definition that is parameterized by a real value q > 0, shown as452

βq(T ∥S) =
[

E
(x,y)∼S

(P(x,y)∈T

P(x,y)∈S

)q] 1
q

. (16)

For any q > 0, βq(T ∥S) can be also written as a Ŕenyi Divergence-based form [47], i.e.,453

βq(T ∥S) = 2
q−1
q Dq(T ∥S), (17)

where Dq(T ∥S) is the Ŕenyi Divergence between T and S with the order q. For Ŕenyi Divergence454

with any order q > 0, there is a property of positivity [51], i.e., Dq(T ∥S) ≥ 0. In this case, when455

q → ∞, Eq. (17) becomes βq(T ∥S) = 2Dq(T ∥S) ≥ 1, and βq(T ∥S) = 2Dq(T ∥S) = 1 when T = S ,456

in other words, Dq(T ∥S) = 0 when T = S [51].457
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C Technical Details for Generating Protected Dataset458

C.1 The Optimization Solution for Generating Protected Dataset459

Recall Eq. (7) is :460

min
δ⊂B

[
E(x̂,y)∼T [L (f(x̂;w(δ)), y)]− λ3 min

{
E(x,y)∼T [L (f(x;w(δ)), y)], λ4

}]
, (18)

s.t. w(δ) = argmin
w

 1

|Ds|
∑

(xi,yi)∈Ds

L (f(xi + δi;w), yi) +
1

|Db|
∑

(xj ,yj)∈Db

L (f(xj ;w), yj)

 ,

where E(x,y)∼T [L (f(x;w(δ)), y)] represents the expected risk for the watermarked model on other461

unseen domains (i.e.,T ) and B = {δ : ||δ||∞ ≤ ϵ} where ϵ is a visibility-related hyper-parameter.462

The aforementioned problem is a standard bi-level problem, we following previous work [52, 53] to463

leverage gradient matching to solving it. Specifically, we first make the following definition:464

Lt = E(x̂,y)∼T [L (f(x̂;w), y)]− λ3 min
{
E(x,y)∼T [L (f(x;w), y)], λ4

}
, (19)

Li =
1

|Ds|
∑

(xi,yi)∈Ds

L (f(xi + δi;w), yi) . (20)

According to the gradient-matching technique [52, 53], we have the Upper-level Sub-problem as:465

max
δ⊂B

▽wLt · ▽wLi

|| ▽w Lt|| · || ▽w Li||
, (21)

where we aim to maximize the gradient matching degree between ▽wLt and ▽wLi using cosine(·)466

similarity as the metric through optimizing δ. We solve the above Upper-level Sub-problem via467

projected gradient ascend (PGA). We here use calculate E(x̂,y)∼T [L (f(x̂;w), y)] following:468

E(x̂,y)∼T [L (f(x̂;w), y)] =
1

N

∑
(x,y)∈D

L(f(Gd(x);w), y). (22)

Regarding the Lower-level Sub-problem, we have:469

min
w

 1

|Ds|
∑

(xi,yi)∈Ds

L (f(xi + δi;w), yi) +
1

|Db|
∑

(xj ,yj)∈Db

L (f(xj ;w), yj)

 . (23)

After obtaining the poisoned dataset (i.e., Ds ∪ Db), we can optimize the model (i.e., ResNet-470

18) parameters w via solving the above Lower-level Upper-sub problem. The above Lower-level471

Upper-sub problem is solved via stochastic gradient descent.472

We optimize the Upper-level and Lower-level Sub-problems alternatively for each optimization473

iteration. Specifically, we first train the model under benign dataset D. Then for each iteration, we474

first optimize the Upper-level Sub-problem based on the trained model and obtain the perturbation δ.475

After that, we optimize the Lower-level Sub-problem based on the obtained poisoned dataset. During476

each iteration for optimizing the above bi-level optimization problems, we optimize the Upper-level477

Sub-problem with 50 iterations, and optimize the Lower-level Sub-problem with 100 iterations.478

We optimize the entire bi-level optimization with five epochs. The other details for optimization479

hyper-parameters as well as configuration are consistent with [53, 23].480

In particular, to ensure the effectiveness of solving the aforementioned bi-level optimization problem,481

we have two additional strategies, as follows:482
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Domain I Domain II Domain III Domain IV Domain V

Figure 2: The example of samples generated from various domain.

• Strategy 1: Instead of randomly selecting samples from benign dataset D, we here choose483

to select training samples with the largest gradient norms, following the previous work [52].484

• Strategy 2: Instead of selecting samples from all classes, we follow the previous work [4]485

to select those from a specific class and the selected class is set as the target label. This486

strategy can enhance the effectiveness for solving the above bi-level optimization problem487

while preserving the verification performance for our approach.488

C.2 The Process of Generating Samples from Other Domains489

In this part, we describe how to generate samples from other domains (i.e., (x, y) ∼ T ).490

After obtaining the transformation module Gd(·), we can generate hard-generalized domain samples491

from a specific domain. We here propose to generate samples from other domains by setting different492

configurations of {wi}41. For example, we can generate samples from the other domain by sampling493

{wi}41 with another values following wi ∼ N(0, 1).494

We here show some demonstration of samples from other domains in Fig. 2.495

We here generated samples from other domains, and estimate E(x,y)∼T [L (f(x;w), y)] following:496

E(x,y)∼T [L (f(x;w(δ)), y)] =
1

N

1

J

∑
j

∑
(x,y)∈T j

L(f(x;w), y), (24)

where T j represents the i-th unseen domain generated by the above approach.497

C.3 The Selection of Hyper-parameters498

After generating other unseen domains T , we here describe the selection of hyper-parameters (i.e., J499

and λ3) for generating protected dataset.500

We here propose a heuristic approach for selecting J and λ3. Specifically, we first keep λ3 fixed501

(i.e.,1) and adjust J . We conduct empirical study on CIFAR-10 tasks, the results are shown in Fig. 3.502

We use ResNet-18 as the evaluated model. We generate several unseen domains using the above503

approach. We randomly select J of these domains for optimizing the Eq. (7), and select 3 unseen504

domains as the validation data. Notably, the validation domains are ensured visually different from505

the domains used for optimization.506

From Fig. 3, we find that using ≥ three unseen domains is sufficient to constrain the generalization507

performance for validation unseen domains. Therefore, we set J as 3 for our approach.508

After that, we keep J fixed, and adjust λ3 gradually, the results are shown in Fig. 4. We find that when509

λ3 becomes smaller, the constraint for performance on other unseen domains reduces. Accordingly,510

we set λ3 as 0.3 for our approach since it can achieve a close generalization capacity compared to the511

benign DNN model (i.e., 24.3%).512
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D The Proof for Theorem 2513

Theorem 2. Let f(x) is the posterior probability of x predicted by the suspicious model, variable514

X denotes the benign sample with label Y , and variable X ′ is the domain-watermarked version of515

X . Assume that Pb ≜ f(X)Y > η. We claim that dataset owners can reject the null hypothesis H0516

at the significance level α, if the verification success rate (VSR) V of f satisfies that517

√
m− 1 · (V − η + τ)− tα ·

√
V − V 2 > 0, (25)

where tα is the α-quantile of t-distribution with (m− 1) degrees of freedom and m is the sample size.518

Proof. Since Pb > η, the original hypothesis H1 can be converted to519

H ′
1 : Pd > η − τ. (26)

Let E indicates the event of whether the suspect model f predicts a watermark sample as its ground-520

truth label y. As such, E ∼ B(1, p), where p = Pr(C(X ′) = Y ) indicates the verification success521

probability and B is the Binomial distribution [36].522

Let x̂1, · · · , x̂m denotes m domain-watermarked samples used for dataset verification and523

E1, · · · , Em denote their prediction events, we know that the verification success rate V satisfies524

V =
1

m

m∑
i=1

Ei, (27)

V ∼ 1

m
B(m, p). (28)

According to the central limit theorem [36], the verification success rate V follows Gaussian distri-525

bution N (p, p(1−p)
m ) when m is sufficiently large. Similarly, (Pd − η + τ) also satisfies Gaussian526

distribution. Accordingly, we can construct the t-statistic as follows:527

T ≜

√
m(W − η + τ)

s
∼ t(m− 1), (29)

where s is the standard deviation of (V − η + τ) and V , i.e.,528

s2 =
1

m− 1

m∑
i=1

(Ei − V )2 =
1

m− 1
(m · V −m · V 2). (30)

To reject the hypothesis H0 at the significance level α, we need to ensure that529

√
m(V − η + τ)

s
> tα, (31)
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Figure 5: The example of domain watermark for CIFAR-10.

where tα is the α-quantile of t-distribution with (m− 1) degrees of freedom.530

According to equation (30)-(31), we have531
√
m− 1 · (V − η + τ)− tα ·

√
V − V 2 > 0. (32)

532

E The Detailed Settings for Experimental Datasets and Configurations533

E.1 Datasets534

We evaluate our approach on three benchmark datasets (i.e., CIFAR-10 [1], Tiny-ImgaeNet [37],535

STL-10 [40]). We here describe each benchmark dataset in detail.536

CIFAR-10. CIFAR-10 dataset contains 10 labels, 50,000 training samples, and 10,000 validation537

samples. The training and validation samples are distributed evenly across each label. Each sample is538

resized as 32× 32 by default.539

Tiny-ImageNet. Tiny-ImageNet dataset contains 200 labels, 100,000 training samples, and 10,000540

validation samples. The training and validation samples are distributed evenly across each label. Each541

sample is resized as 64× 64 by default.542

STL-10. STL-10 dataset contains 10 labels and 13,000 labeled samples and 100,000 unlabeled543

samples. We divide the labeled samples into the training and validation dataset with a ratio of 8 : 2.544

The training and validation samples are distributed evenly across each label. Each sample is resized545

as 96× 96 by default.546
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Figure 6: The example of domain watermark for Tiny-ImageNet.

Table 2: Summary of accuracy (%) on samples from different domains for normal models and ours.

Task Source domain Target domain Other domain
Normal Ours Normal Ours Normal Ours

CIFAR-10 91.89 90.86 13.10 90.45 15.10 10.30
STL-10 85.61 84.58 9.50 82.00 16.00 11.60

Tiny-ImageNet 60.13 59.10 6.00 58.08 12.60 15.40

E.2 The Demonstration of Domain Watermark for Each Dataset547

We here show the domain watermark used for evaluating the effectiveness of our approach in the548

experiments. The demonstrations are shown in Fig. 5, Fig. 6, and Fig. 7 for CIFAR-10, Tiny-ImageNet,549

and STL-10 datasets, respectively.550

E.3 Training Configurations.551

In the experiments, we train each model with 150 epochs with an initialized learning rate of 0.1.552

Following previous work [23], we schedule learning rate drops at epochs 14, 24, and 35 by a factor of553

0.1. For all models, we employ SGD with Nesterov momentum, and we set the momentum coefficient554

to 0.9. We use batches of 128 images and weight decay with a coefficient of 4 × 10−4. For each555

run, we report the verification success rate (VSR) averaged over the last 10 epochs when the models’556

accuracy converges. We report the results for each approach averaged over 5 runs.557
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Figure 7: The example of domain watermark for STL-10.

Table 3: The watermark performance on STL-10 dataset. In particular, we mark harmful watermark
results (i.e., H > 0.5 and Ĥ > 0) in red.

STL-10
Label Type↓ Method↓, Metric→ BA (%) VSR (%) H Ĥ

Poisoned-Label

BadNets 85.61 100 1.00 0.86
Blended 85.21 99.32 1.00 0.84
WaNet 83.17 96.10 0.96 0.79
UBW-P 84.22 80.27 0.80 0.64

Clean-Label

Label-Consistent 84.07 93.48 0.93 0.77
Sleeper Agent 83.72 89.77 0.90 0.73

UBW-C 79.32 82.00 0.82 0.61
DW (Ours) 84.58 82.00 0.18 -0.73

E.4 The Details for Implementing each Approach558

We implement each backdoor technique using Backdoorbox library2 following the default training559

configurations. Specifically, for patch-based triggers, we use 3× 3, 6× 6, and 9× 9 for CIFAR-10,560

Tiny-ImageNet, and STL-10. Following previouw work [4], for each approach, we randomly select a561

label as the target label for ownership verification purposes. For the other input-specific trigger (i.e.,562

WaNet [21]), we follow its default configuration to generate its specific trigger pattern.563

2https://github.com/THUYimingLi/BackdoorBox
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Table 4: The effectiveness of dataset ownership verification via our domain watermark.

STL-10
Independent-D Independent-M Malicious

∆P 0.68 0.78 0.04
p-value 0.95 0.98 10−46

Table 5: Summary of accuracy (%) on samples from different domains for normal models and ours.

Domain Watermarks Source domain Target domain Other domain
Normal Ours Normal Ours Normal Ours

Domain Watermark I 92.46 92.10 18.50 91.40 16.30 17.60
Domain Watermark II 92.46 91.95 18.20 90.24 14.70 15.80
Domain Watermark III 92.46 91.85 19.60 90.64 18.40 14.90

F The Additional Results for the Performance of Domain Watermark564

We first show the summary for the performance of our approach and benign samples on samples565

from different domains. The results are shown in Tab. 2. We also show additional results for STL-10566

dataset with ResNet-34 as shown in Tab. 3.567

G The Detailed Settings for Dataset Ownership Verification568

We evaluate our domain-watermark-based dataset ownership verification under three scenarios, includ-569

ing 1) independent domain (dubbed ‘Independent-D’), 2) independent model (dubbed ‘Independent-570

M’), and 3) unauthorized dataset training (dubbed ‘Malicious’). In the first case, we used domain-571

watermarked samples to query the suspicious model trained with modified samples from another572

domain; In the second case, we test the benign model with our domain-watermarked samples; In the573

last case, we test the domain-watermarked model with corresponding domain-watermarked samples.574

Notice that only the last case should be regarded as having unauthorized dataset adoption. All other575

settings are the same as those used in [4] and are demonstrated in our appendix.576

Consistent with previouw work [4], we adopt the trigger used in the training process of the water-577

marked suspicious model in the last scenario. Moreover, we sample m = 100 samples on CIFAR10,578

STL-10, and Tiny-ImageNet and set τ = 0.25 for the hypothesis-test in each case for our approach.579

Since Tiny-ImageNet has only 50 samples for each class in the validation dataset, we combine580

additional 50 training samples with the validation samples for ownership verification. The additional581

50 training samples are not used in generating the protected dataset.582

H The Additional Results for Dataset Ownership Verification583

We here investigate the effectiveness of ownership verification via our domain watermark. The results584

are shown in Tab. 4. The settings are consistent with Section 5.585

I Additional Results of Discussions586

I.1 The Effects of λ3587

We have investigated the effects of λ3, as shown in Fig. 4. We find that the generalization performance588

decreases on other unseen validation domains with the increase of λ3. When λ3 increases up to589

0.3, the generalization performance on other unseen validation domains decreases close to the590

generalization performance for benign models.591

I.2 Performance under Different Domain Watermarks592

We here investigate the effective of protected dataset generation for different domain watermarks. We593

here craft domain watermarks following the Appendix. A but initialized with different parameters594
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Figure 8: The Demonstration of Domain Watermark I.

Table 6: The performance of our domain watermark with different model structures trained on the
watermarked dataset generated with ResNet-18.

Metric↓, Model→ ResNet-18 ResNet-34 VGG-16-BN VGG-19-BN
BA (%) 91.39 92.54 90.86 92.57

VSR (%) 91.90 90.80 90.48 89.00

for crafting different domain watermarks. The demonstrations for different domain watermarks for595

CIFAR-10 are shown in Figs. 8 to 10.596

We here use CIFAR-10 with ResNet-34 to investigate the performance of our approach for different597

domain watermarks. The results are summarized in Tab. 5. We can see our approach can still achieve598

effectiveness for different domain watermarks.599

I.3 The Transferability of Domain Watermark600

Recall that in the optimization process of our approach, we leverage a surrogate model (i.e., ResNet-601

18) for crafting modified samples. In the experiment section, we test the effectiveness of our approach602

under models (i.e., VGG-16-BN and ResNet-34) having different architectures and parameters603

from the surrogate model. In practice, dataset users may adopt different model structures since604

dataset owners have no information about the model training. In this section, we conduct additional605

experiments on evaluating the effectiveness of our approach under different structures compared to606

the one used for generating modified samples (i.e., transferability).607

Settings. We evaluate the transferability of our approach under CIFAR-10 task. We adopt ResNet-608

18, ResNet-34, VGG-16-BN, and VGG-19-BN to peform domain watermark, based on which to train609
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Figure 9: The Demonstration of Domain Watermark II.

Table 7: The performance of our domain watermark with different model structures trained on the
watermarked dataset generated with ResNet-34.

Metric↓, Model→ ResNet-18 ResNet-34 VGG-16-BN VGG-19-BN
BA (%) 91.22 92.56 90.43 91.79

VSR (%) 90.10 92.44 89.60 90.36

Table 8: The performance of our domain watermark with different model structures trained on the
watermarked dataset generated with VGG-16-BN.

Metric↓, Model→ ResNet-18 ResNet-34 VGG-16-BN VGG-19-BN
BA (%) 91.57 92.10 90.53 92.10

VSR (%) 90.70 91.60 90.44 89.84

Table 9: The performance of our domain watermark with different model structures trained on the
watermarked dataset generated with VGG-19-BN.

Metric↓, Model→ ResNet-18 ResNet-34 VGG-16-BN VGG-19-BN
BA (%) 91.48 91.98 90.77 92.73

VSR (%) 91.30 89.60 90.36 91.94

different models (i.e., ResNet-18, ResNet-34, VGG-16-BN, and VGG-19-BN). Except for the model610

structure, all other settings are the same as those used in Section 5.611

Results. As shown in Tabs. 6 to 9, our approach has high transferability across model structures.612

Accordingly, our methods are practical in protecting open-sourced datasets.613
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Figure 10: The Demonstration of Domain Watermark III.

J Additional Results for the Resistance to Potential Adaptive Methods614

Robustness against ShrinkPad. We here investigate the robustness of our approach against615

ShrinkPad [54], which is a well-known watermarked sample detection approach based on a set of616

input transforamtions. We follow BackdoorBox to implement ShrinkPad for filtering watermarked617

samples. We use CIFAR-10 with ResNet-34 to implement domain watermark and craft 1,000618

watermarked samples based on the validation dataset for investigation. We first filter 900 watermarked619

samples that can be correctly classified. We find ShrinkPad can only filter 87 effective watermarked620

samples among 900 samples (≤ 10%), which means that our domain watermark is robust against621

ShrinkPad.622

Robustness against Scale-UP. We also evaluate our approach with the most recently input-level623

watermark detection approach, Scale-UP [55]. We follow their released code 3 to implement SCALE-624

UP and use the AUROC score as the metric to report the results. We test our approach on SCALE-UP625

with 1,000 watermarked and 1,000 benign samples. We here use CIFAR-10 with ResNet-34.626

We find that SCALE-UP yields around 0.58 AUROC score on our proposed domain watermark.627

Such results imply that SCALE-UP can not perform against our domain watermark, with the filtering628

performance close to random guesses. We think it may be caused by that, different from the previous629

backdoor-inspired watermark causing misclassification, domain watermark leads the watermarked630

model correctly classifying the watermarked samples. Therefore, the watermarked samples would631

have a similar scaled prediction consistency as benign samples, since they all belong to the ground-632

truth label and can be clustered closely as shown in Section 5.3.2.633

3https://github.com/JunfengGo/SCALE-UP
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Figure 11: The reversed trigger maps for each label produced by Neural Cleanse.
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Figure 12: The anomaly index for ℓ1 norm computed on the reversed trigger maps for each label
produced by Neural Cleanse.

Robustness against Neural Cleanse. Following previous work [52], we also evaluate our approach634

against Neural Cleanse [56]. We select label 0 as the target label and use CIFAR-10 with ResNet-34.635

The results are shown in Fig. 11 and Fig. 12. We can see the reversed trigger pattern produced636

by Neural Cleanse for the target label is extremely dense. We further follow [56] to calculate the637

anomaly index for each label using MAD outlier detection approach. We find that the target label’s638

anomaly index is smaller than 2, thus it would not be detected.639

K Reproducibility Statement640

In the appendix, we provide detailed descriptions of the datasets, models, training and evaluation641

settings, and computational facilities. The codes and model checkpoints for reproducing the main642

experiments of our evaluation are also provided in the supplementary material. We will release the643

training codes of our methods upon the acceptance of this paper.644

L Societal Impacts645

In this paper, we focus on the copyright protection of (open-sourced) datasets. Specifically, we reveal646

the harmful nature of backdoor-based dataset ownership verification (DOV) and proposed the first647

non-backdoor-based DOV method that is truly harmless. This work has no ethical issues in general648

since our method is purely defensive and does not reveal any new vulnerabilities of DNNs. However,649

we need to mention that our method requires a sufficiently large watermarking rate and therefore650

can not be used to protect a few or a single image. In addition, although our method is resistant to651

existing adaptive methods, adversaries may try to develop more effective attacks against our DOV652

method given the exposure of this paper. People should not be too optimistic about dataset protection.653
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M Discussions about Adopted Data654

In this paper, all adopted samples are from the open-sourced datasets (i.e., CIFAR-10, Tiny-ImageNet,655

and STL-10). The Tiny-ImageNet dataset may contain a few human-related images. We admit that we656

modified a few samples for watermarking and verification. However, our research treats all samples657

the same and the verification samples and modified samples have no offensive content. Accordingly,658

our work fulfills the requirements of these datasets and has no privacy violation.659

References660

[1] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.661

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale662

hierarchical image database. In CVPR, 2009.663

[3] Yuchen Sun, Tianpeng Liu, Panhe Hu, Qing Liao, Shouling Ji, Nenghai Yu, Deke Guo, and664

Li Liu. Deep intellectual property: A survey. arXiv preprint arXiv:2304.14613, 2023.665

[4] Yiming Li, Yang Bai, Yong Jiang, Yong Yang, Shu-Tao Xia, and Bo Li. Untargeted backdoor666

watermark: Towards harmless and stealthy dataset copyright protection. In NeurIPS, 2022.667

[5] Ruixiang Tang, Qizhang Feng, Ninghao Liu, Fan Yang, and Xia Hu. Did you train on my668

dataset? towards public dataset protection with clean-label backdoor watermarking. arXiv669

preprint arXiv:2303.11470, 2023.670

[6] Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing. In CRYPTO,671

2001.672

[7] Paulo Martins, Leonel Sousa, and Artur Mariano. A survey on fully homomorphic encryption:673

An engineering perspective. ACM Computing Surveys, 2017.674

[8] Hua Deng, Zheng Qin, Qianhong Wu, Zhenyu Guan, Robert H Deng, Yujue Wang, and Yunya675

Zhou. Identity-based encryption transformation for flexible sharing of encrypted data in public676

cloud. IEEE Transactions on Information Forensics and Security, 2020.677

[9] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In NeurIPS, 2019.678

[10] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference679

attacks against machine learning models. In IEEE S&P, 2017.680

[11] Jiawang Bai, Yiming Li, Jiawei Li, Xue Yang, Yong Jiang, and Shu-Tao Xia. Multinomial681

random forest. Pattern Recognition, 2022.682

[12] Sahar Haddad, Gouenou Coatrieux, Alexandre Moreau-Gaudry, and Michel Cozic. Joint683

watermarking-encryption-jpeg-ls for medical image reliability control in encrypted and com-684

pressed domains. IEEE Transactions on Information Forensics and Security, 2020.685

[13] Run Wang, Felix Juefei-Xu, Meng Luo, Yang Liu, and Lina Wang. Faketagger: Robust686

safeguards against deepfake dissemination via provenance tracking. In ACM MM, 2021.687

[14] Zhenyu Guan, Junpeng Jing, Xin Deng, Mai Xu, Lai Jiang, Zhou Zhang, and Yipeng Li.688

Deepmih: Deep invertible network for multiple image hiding. IEEE Transactions on Pattern689

Analysis and Machine Intelligence, 2022.690

[15] Yiming Li, Ziqi Zhang, Jiawang Bai, Baoyuan Wu, Yong Jiang, and Shu-Tao Xia. Open-sourced691

dataset protection via backdoor watermarking. In NeurIPS Workshop, 2020.692

[16] Yiming Li, Mingyan Zhu, Xue Yang, Yong Jiang, Tao Wei, and Shu-Tao Xia. Black-box dataset693

ownership verification via backdoor watermarking. IEEE Transactions on Information Forensics694

and Security, 2023.695

[17] Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey. IEEE696

Transactions on Neural Networks and Learning Systems, 2022.697

25



[18] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating698

backdooring attacks on deep neural networks. IEEE Access, 2019.699

[19] Xiangyu Qi, Tinghao Xie, Yiming Li, Saeed Mahloujifar, and Prateek Mittal. Revisiting the700

assumption of latent separability for backdoor defenses. In ICLR, 2023.701

[20] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on702

deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.703

[21] Anh Nguyen and Anh Tran. Wanet–imperceptible warping-based backdoor attack. In ICLR,704

2021.705

[22] Yinghua Gao, Yiming Li, Linghui Zhu, Dongxian Wu, Yong Jiang, and Shu-Tao Xia. Not all706

samples are born equal: Towards effective clean-label backdoor attacks. Pattern Recognition,707

2023.708

[23] Hossein Souri, Liam H Fowl, Rama Chellappa, Micah Goldblum, and Tom Goldstein. Sleeper709

agent: Scalable hidden trigger backdoors for neural networks trained from scratch. In NeurIPS,710

2022.711

[24] Ronald Rivest. The md5 message-digest algorithm. Technical report, 1992.712

[25] Chiou-Ting Hsu and Ja-Ling Wu. Hidden digital watermarks in images. IEEE Transactions on713

image processing, 1999.714

[26] Ming-Shing Hsieh, Din-Chang Tseng, and Yong-Huai Huang. Hiding digital watermarks using715

multiresolution wavelet transform. IEEE Transactions on industrial electronics, 2001.716

[27] Yuanfang Guo, Oscar C Au, Rui Wang, Lu Fang, and Xiaochun Cao. Halftone image wa-717

termarking by content aware double-sided embedding error diffusion. IEEE Transactions on718

Image Processing, 2018.719

[28] Zuobin Xiong, Zhipeng Cai, Qilong Han, Arwa Alrawais, and Wei Li. Adgan: Protect your720

location privacy in camera data of auto-driving vehicles. IEEE Transactions on Industrial721

Informatics, 17(9):6200–6210, 2020.722

[29] Yiming Li, Peidong Liu, Yong Jiang, and Shu-Tao Xia. Visual privacy protection via mapping723

distortion. In ICASSP, 2021.724

[30] Honghui Xu, Zhipeng Cai, Daniel Takabi, and Wei Li. Audio-visual autoencoding for privacy-725

preserving video streaming. IEEE Internet of Things Journal, 2021.726

[31] Linghui Zhu, Xinyi Liu, Yiming Li, Xue Yang, Shu-Tao Xia, and Rongxing Lu. A fine-grained727

differentially private federated learning against leakage from gradients. IEEE Internet of Things728

Journal, 2021.729

[32] Haiteng Zhao, Chang Ma, Qinyu Chen, and Zhi-Hong Deng. Domain adaptation via maximizing730

surrogate mutual information. In IJCAI, 2022.731

[33] Zijian Wang, Yadan Luo, Ruihong Qiu, Zi Huang, and Mahsa Baktashmotlagh. Learning to732

diversify for single domain generalization. In ICCV, 2021.733

[34] Pengyu Cheng, Weituo Hao, Shuyang Dai, Jiachang Liu, Zhe Gan, and Lawrence Carin. Club:734

A contrastive log-ratio upper bound of mutual information. In ICML, 2020.735

[35] David A McAllester. Some pac-bayesian theorems. In COLT, 1998.736

[36] Leopold Schmetterer. Introduction to mathematical statistics, volume 202. Springer Science &737

Business Media, 2012.738

[37] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 2015.739

[38] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale740

image recognition. ICLR, 2014.741

26



[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image742

recognition. In CVPR, 2016.743

[40] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsuper-744

vised feature learning. In AISTATS, 2011.745

[41] Yiming Li, Mengxi Ya, Yang Bai, Yong Jiang, and Shu-Tao Xia. BackdoorBox: A python746

toolbox for backdoor learning. In ICLR Workshop, 2023.747

[42] Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural trojans. In ICCD, 2017.748

[43] Dongxian Wu and Yisen Wang. Adversarial neuron pruning purifies backdoored deep models.749

In NeurIPS, 2021.750

[44] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine751

learning research, 2008.752

[45] Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, James Bailey, and Yisen Wang. Unlearn-753

able examples: Making personal data unexploitable. ICLR, 2021.754

[46] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In ICCS, 2010.755

[47] Pascal Germain, Amaury Habrard, François Laviolette, and Emilie Morvant. A new pac-756

bayesian perspective on domain adaptation. In ICML, 2016.757

[48] Alexandre Lacasse, François Laviolette, Mario Marchand, Pascal Germain, and Nicolas Usunier.758

Pac-bayes bounds for the risk of the majority vote and the variance of the gibbs classifier.759

NeurIPS, 2006.760

[49] Pascal Germain, Alexandre Lacasse, Francois Laviolette, Mario March, and Jean-Francis Roy.761

Risk bounds for the majority vote: From a pac-bayesian analysis to a learning algorithm. Journal762

of Machine Learning Research, 2015.763

[50] Shichao Xu, Lixu Wang, Yixuan Wang, and Qi Zhu. Weak adaptation learning: Addressing764

cross-domain data insufficiency with weak annotator. In ICCV, 2021.765

[51] Tim Van Erven and Peter Harremos. Rényi divergence and kullback-leibler divergence. IEEE766

Transactions on Information Theory, 2014.767

[52] Hossein Souri, Micah Goldblum, Liam Fowl, Rama Chellappa, and Tom Goldstein. Sleeper768

agent: Scalable hidden trigger backdoors for neural networks trained from scratch. In NeurIPS,769

2022.770

[53] Jonas Geiping, Liam Fowl, W Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael Moeller,771

and Tom Goldstein. Witches’ brew: Industrial scale data poisoning via gradient matching. In772

ICLR, 2021.773

[54] Yiming Li, Tongqing Zhai, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor attack in the774

physical world. In ICLR Workshop, 2021.775

[55] Junfeng Guo, Yiming Li, Xun Chen, Hanqing Guo, Lichao Sun, and Cong Liu. SCALE-UP: An776

efficient black-box input-level backdoor detection via analyzing scaled prediction consistency.777

In ICLR, 2023.778

[56] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and779

Ben Y Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks.780

In IEEE S&P, 2019.781

782

27


