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A. Details of VL Models1
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Figure 1: An illustration of ViLT, Unitab, and OFA model structures.

This section gives the details of ViLT, Unitab, and OFA models, and their structures are illustrated2

in Figure 13

• ViLT. We select ViLT [1] as the encoder-only VL model because of its succinct structure and4

prominent performance on multiple downstream tasks. Given an input image I ∈ RH×W×3 and5

a sentence T, ViLT yields M image tokens using a linear transformation on the flattened image6

patches, where each token is a 1D vector and M = HW
P 2 for a given patch resolution (P, P ). Word7

tokens are encoded through a Byte-Pair Encoder (BPE) [2] and a word-vector linear projection.8

Then tokens of two modalities and a special learnable token ⟨cls⟩ are concatenated. By attending9

visual and text tokens and a special token ⟨cls⟩ in a Transformer encoder with twelve layers,10

the output feature from the ⟨cls⟩ token is fed into a task-specific classification head for the final11

output. Taking the VQA task as an example, the VQA classifier adopts a linear layer to output a12

vector with Hs elements, where Hs is the number of all possible choices in the closed answer set13

of the VQA task. The final output is obtained through the element with the highest response in the14

vector.15

• Unitab. Unitab adopts an encoder-decoder framework. It first embeds text T via RoBERTa [3]16

and flats features after encoding image I through ResNet [4]. The attached visual and text token17

features are then fed into a standard Transformer network [5] with six encoder layers and six18

decoder layers. Finally, the sequence predictions [⟨ans1⟩, ⟨ans2⟩, · · · , ⟨end⟩] are obtained auto-19

regressively through a projection head. The network stops regressing when an end token ⟨end⟩20

appears. For different tasks, the output tokens may come from different pre-defined vocabularies.21

Given the REC task as an example, four tokens [(⟨loc x1⟩, ⟨loc x2⟩), (⟨loc x3⟩, ⟨loc x4⟩)] will be22

selected from the location vocabulary, which forms the coordinate of a bounding box. As a result,23

these models can handle both text and grounding tasks.24
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Table 1: An illustration of all datasets and tasks evaluated in our paper.

Datasets Task Task description Attack Model Attack Modality
OFA Unitab ViLT Image Text

VQAv2 VQA Scene Understanding QA ✓ ✓ ✓ ✓ ✓
SNLI-VE VE VL Entailment ✓ ✓ ✓
RefCOCO REC Bounding Box Localization ✓ ✓ ✓ ✓

RefCOCOg REC Bounding Box Localization ✓ ✓ ✓ ✓
RefCOCO+ REC Bounding Box Localization ✓ ✓ ✓ ✓

NLVR2 VR Image-Text Pairs Matching ✓ ✓ ✓
MSCOCO Captioning Image Captioning ✓ ✓

ImageNet-1K Classification Object Classification ✓ ✓

• OFA. As shown in Figure 1 (c), OFA also adopts an encoder-decoder structure. Different from25

Unitab, it adopts the BPE to encode text and extends the linguistic vocabulary by adding image26

quantization tokens [6] ⟨img⟩ for synthesis tasks. Note that the main difference between OFA27

and Unitab lies in their pre-training and fine-tuning strategies rather than the model struc-28

ture. For example, in the pre-training process, Unitab focuses on learning alignments between29

predicted words and boxes through grounding tasks, while OFA captures more general represen-30

tations through multi-task joint training that includes both single-modal and multi-modal tasks.31

Overall, OFA outperforms Unitab in terms of performance improvement.32

B. Dataset and Implementation33

B.1 Tasks and Datasets34

To verify the generalization ability of our proposed VLATTACK, we evaluate a wide array of popular35

vision language tasks summarized in Table 1. Specifically, the selected tasks span from text under-36

standing (visual reasoning, visual entailment, visual question answering) to image understanding37

(image classification, captioning) and localization (referring expression comprehension).38

For each dataset, we randomly select 5K correctly predicted samples in the corresponding valida-39

tion dataset to evaluate the ASR performance. All validation datasets follow the same split settings40

as adopted in the respective attack models. Because VQA is a multiclass classification task, we41

select a correct prediction only if the prediction result is the same as the label with the highest VQA42

score1, and regard the label as the ground truth in Eq. (1). In the REC task, a correct prediction is43

considered when the Intersection-over-Union (IoU) score between the predicted and ground truth44

bounding box is larger than 0.5. We adopt the same IoU threshold as in Unitab [7] and OFA [8].45

B.2 Implementation Details46

For the perturbation parameters of images, we follow the setting in the common transferable image47

attacks [9, 10] and set the maximum perturbation σi of each pixel to 16/255 on all tasks except48

REC. Considering that even a single coordinate change can affect the final grounding results to a49

great extent, the σi of the REC task is 4/255 to better highlight the ASR differences among distinct50

methods. The total iteration number N and step size are set to 40 and 0.01 by following the projected51

gradient decent method [11], and Ns is 20. For the perturbation on the text, the semantic similarity52

constraint σs is set to 0.95, and the number of maximum modified words is set to 1 by following53

the previous text-attack work [12, 13] to ensure the semantic consistency and imperceptibility. All54

experiments are conducted on a single GTX A6000 GPU. The analysis of parameter selection can55

be found in Section B.3.56

B.3 Parameter Sensitivity Analysis57

We discuss the effect of different iteration numbers of N and Ns in VLATTACK. All experiments58

are conducted on the VQAv2 dataset and the ViLT model. The total iteration number N is set from59

1The VQA score calculates the percentage of the predicted answer that appears in 10 reference ground truth
answers. More details can be found via https://visualqa.org/evaluation.html
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10 to 80, Ns is set to N
2 . As depicted in Figure 2(a), the ASR performance is dramatically improved60

by increasing N from 10 to 20 steps and then achieves the best result when N = 40.61

Figure 2: Investigation of iteration
number N and Ns. (a) Various to-
tal iteration number N , where Ns

is set to N
2 . (b) Various initial iter-

ation numbers Ns, where N is set
to 40.

We next investigate the impact of different initial iteration62

numbers Ns. We test Ns from 5 to 40, but the total iteration63

number N is fixed to 40. As shown in Figure 2(b), the ASR64

score reaches the summit when Ns is 5, and it is smoothly65

decreased by continually enlarging Ns. Considering that the66

smaller initial iteration number Ns increases the ratio of text67

perturbations, we set Ns as 20 to obtain the best trade-off be-68

tween attack performance and the naturalness of generated ad-69

versarial samples in our experiments.70

C. More Ablation Results71

In Section 5.4, we conduct an ablation study to show the effec-72

tiveness of each module in our model design on VQA, VE, and73

REC tasks. Here, we conduct additional ablation experiments74

for the remaining tasks, including visual reasoning, image cap-75

tioning, and image classification.76

Figure 3: ViLT-VR. Figure 4: OFA-captioning.

Figure 3 shows the results of the ablation study on the VR task using the ViLT model. We can77

observe that only using the image encoder results in significantly low ASR. However, by combining78

it with the Transformer encoder (TE), BSA can achieve a high ASR. These results show the reason-79

ableness of considering two encoders simultaneously when attacking the image modality. The result80

of BSA+BA demonstrates the usefulness of attacking the text modality. Although BSA+BA+Q out-81

performs other approaches, its performance is still lower than that of the proposed VLATTACK. This82

comparison proves that the proposed iterative cross-search attack (ICSA) strategy is effective for the83

multimodal attack again.84

Figure 4 shows the results of the image captioning task using the OFA model. Because the image85

captioning task only accepts a fixed text prompt for prediction, we only perturb the image and report86

the results on IE, TE, and BSA. For this task, we report BLEU@4 and CIDEr scores. The lower,87

the better. We can observe that the proposed BSA outperforms IE and TE, indicating our model88

design’s effectiveness.89

Figure 5: OFA-classification.

Figure 5 shows the results of the image classification task using the90

OFA model. Similar to the image captioning task, we only attack91

images. The evaluation metric for this task is ASR. The higher,92

the better. We can have the same observations with other abla-93

tion studies, where attacking both encoders outperforms attacking a94

single encoder.95

D. Different Optimization Methods96

VLATTACK can be easily adapted to various optimization methods in image attacks. To demon-97

strate the generalizability of our method, we replace the projected gradient decent [11] in VLAT-98

TACK with Momentum Iterative method (MI) [14] and Diverse Input attack (DI) [15] since they99
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Table 2: Combining VLATTACK with different gradient-based image attack schemes.

Method ViLT Unitab
VQAv2 NLVR2 VQAv2 RefCOCO RefCOCO+ RefCOCOg

BSAMI 65.40 52.32 50.38 86.00 89.20 87.39
VLATTACKMI 78.77 67.16 63.02 92.46 93.10 94.34
BSADI 65.94 52.30 42.74 90.30 91.56 91.00
VLATTACKDI 78.07 67.50 61.22 93.98 94.04 94.76

have shown better performance than traditional iterative attacks [11, 16]. The replaced methods are100

denoted by BSAMI , and VLATTACKMI using MI, BSADI and VLATTACKDI using DI, respec-101

tively. Experiments are developed on ViLT and Unitab. Results are shown in Table 2. Using MI102

and DI optimizations, BSAMI and BSADI still outperform all baselines displayed in Table 1 in the103

main manuscript. Also, VLATTACKMI and VLATTACKDI outperform the image attack method104

BSAMI and BSADI with an average ASR improvement of 9.70% and 9.29% among all datasets.105

The gain of performance demonstrates that the proposed VLATTACK can be further improved by106

combining with stronger gradient-based optimization schemes.107

Figure 6: An adversarial image from BSA. Figure 7: An adversarial sentence from text at-
tack.

Figure 8: An adversarial image-text pair from multi-modal attack.

E. Case Study108

E.1 How does VLATTACK generate adversarial samples?109

The proposed VLATTACK aims to attack multimodal VL tasks starting by attacking single modali-110

ties. If they are failed, VLATTACK uses the proposed interactive cross-search attack (ICSA) strategy111

to generate adversarial samples. In this experiment, we display the generated adversarial cases from112

different attack steps, including the image modality in Figure 6, the text modality in Figure 7, and113

the multimodal attack in Figure 8.114

Single-modal Attacks (Section 4.1). VLATTACK first perturbs the image modality using the pro-115

posed BSA and only outputs the adversarial image if the attack is successful (Algorithm 1 lines116

1-5). As shown in Figure 6, only attacking the image modality, VLATTACK can generate a suc-117

cessful adversarial sample to fool the downstream task. Then, VLATTACK will stop. Otherwise, it118

will perturb the text through BERT-Attack (B&A) and use the clean image as the input, which is119

illustrated in Figure 7 (Algorithm 1, lines 6-15). During the text attack, B&A will generate multiple120

candidates by replacing the synonyms of a word. Since the length of text sentences is very short in121

4



the VL datasets, we only replace one word each time. From Figure 7, we can observe that B&A first122

replaces “kid” with its synonym “child”, but this is not an adversarial sample. B&A then moves to123

the next word “small” and uses its synonym “cute” as the perturbation. By querying the black-box124

downstream task model, VLATTACK successes, and the algorithm will stop.125

Multimodal Attack (Section 4.2). If the single-modal attack fails, VLATTACK moves to the multi-126

modal attack by iteratively cross-updating image and text perturbations, where image perturbations127

are added through BSA, and text perturbations are added according to the semantic similarity. The128

cross-updating process is repeated until an adversarial image-text pair is found (Algorithm 1, lines129

16-24). Figure 8 shows an example. In Step 1 , VLATTACK fails to attack the image modality130

and outputs a perturbed image denoted as I′1. In Step 2 , VLATTACK also fails to attack the text131

modality and outputs a list of text perturbations T . VLATTACK has to use the multimodal attack to132

generate adversarial samples in Step 3 . It first ranks the text perturbations in T according to the133

semantic similarity between the original text and each perturbation. The ranked list is denoted as134

{T̂′
1, · · · , T̂′

K}. Then it equally allocates the iteration number of the image attack to generate the135

image perturbations iteratively. In Figure 8, this number is 6, which means we run BSA with the136

budget 6 to generate a new image perturbation.137

VLATTACK takes the pair (I′1, T̂
′
1) as the input to query the black-box downstream model, where138

T̂′
1 = “What material is the table make of?”. If this pair is not an adversarial sample, then the pro-139

posed ICSA will adopt BSA to generate the new image perturbation I′2. The new pair (I′2, T̂
′
1) will140

be checked again. If it is still not an adversarial sample, VLATTACK will use the next text perturba-141

tion T̂′
2 = “What materials is the table made of?” and the newly generated image perturbation I′2 as142

the input and repeat the previous steps until finding a successful adversarial sample or using up all143

K text perturbations in T . VLATTACK employs a systematic strategy for adversarial attacks on VL144

models, sequentially targeting single-modal and multimodal perturbations to achieve successful ad-145

versarial attacks. Note that we miss one line “if S(I′k+1,T
′
k) ̸= y then return (I′k+1,T

′
k)” between146

Lines 22 and 23 in Algorithm 1 of the main manuscript.147

E.2 Case Study on Different Tasks148

We also provide additional qualitative results from Figure 9 to Figure 14 for experiments on all149

six tasks. For better visualization, we display the adversarial and clean samples side by side in a150

single column. By adding pixel and word perturbations, the fidelity of all samples is still preserved,151

but predictions are dramatically changed. For instance, in the image captioning task of Figure 13,152

all generated captions show no correlation with the input images. Some texts may even include153

replacement Unicode characters, such as “\ufffd”, resulting in incomplete sentence structures.154

Figure 9: Additional quantitative results on visual question answering (VQA).
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Figure 10: Additional quantitative results on visual entailment (VE).

Figure 11: Additional quantitative results on visual reasoning (VR).

F. Limitations155

The limitations of our work can be summarized from the following two aspects. On the one hand,156

in our current model design, for the text modality, we directly apply the existing model instead of157

developing a new one. Therefore, there is no performance improvement on tasks that only accepts158

texts as input, such as text-to-image synthesis. On the other hand, our research problem is formu-159

lated by assuming the pre-trained and downstream models share similar structures. The adversarial160

transferability between different pre-trained and fine-tuned models is worth exploring, which we left161

to our future work.162

G. Broad Impacts163

Our research reveals substantial vulnerabilities in vision-language (VL) pretrained models, underlin-164

ing the importance of adversarial robustness cross pre-trained and fine-tuned models. By exposing165

these vulnerabilities through the VLATTACK strategy, we offer inspiration for developing more ro-166

bust models. Furthermore, our findings underscore the ethical considerations of using VL models167

in real-world applications, especially those dealing with sensitive information and big data. Overall,168

our work emphasizes the necessity of balancing performance and robustness in VL models, with169

implications extending across computer vision, natural language processing, and broader artificial170

intelligence applications.171
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