
Behavior Alignment via Reward Function Optimization549

(Supplemental Material)550

Table 1: Notations

Symbol Description
θ Parameters for policy π
φ Parameters for reward function
ϕ Parameters for learned γ

πθ, rφ, γϕ Functional form of policy, reward and γ with their respective parameters
αθ, αφ, αϕ Step sizes for the respective parameters
λθ, λφ, λϕ Regularization for policy, reward and γ function

δ Number of on-policy samples collected between subsequent updates to
φ, ϕ

η Neumann Approximator Eigen value scaling factor
n Number of loops used in Neumann Approximation

optim Any standard optimizer like Adam, RMSprop, SGD, which takes input
as gradients and outputs the appropriate update

E Total Number of episodes to sample from the environment
Ni Number of updates to be performed for updating the π by Alg
N0 Number of initial updates to be peformed

A Proofs for Theoretical Results551

In this section, we provide proofs for Property 1, Property 2, and Property 3. For the purpose of these proofs, we552

introduce some additional notation. To have a unified MDP notation for goal-based and time-based tasks, we553

first consider that in the the time-based task, time is a part of the state such that Markovian dynamics is ensured.554

The (un-normalized) discounted and undiscounted visitation probability is denoted as,555

dπγ (s, a) :=

T∑
t=0

γt Pr(St = s,At = a;π), (9)

d̄π(s, a) :=
T∑
t=0

Pr(St = s,At = a;π). (10)

We can normalize so that it is a distribution as follows :556

dπ(s, a) :=
d̄π(s, a)∑

s′∈S,a′∈A d̄
π(s′, a′)

Property 1. ∆(θ, r̃) = ∆(θ, rp).557

14

Proof.

∆(θ, r̃) = Eπθ

[
T∑
t=0

ψθ(St, At)

T∑
j=t

γj−tr̃(Sj , Aj)

]

= Eπθ

[
T∑
t=0

ψθ(St, At)

(
T∑
j=t

γj−t (rp(Sj , Aj) + γΦ(Sj+1)− Φ(Sj))

)]

= Eπθ

[
T∑
t=0

ψθ(St, At)

T∑
j=t

γj−trp(Sj , Aj)

]
+ Eπθ

[
T∑
t=0

ψθ(St, At)

T∑
j=t

γj−t(γΦ(Sj+1)− Φ(Sj))

]

= ∆(θ, rp) + Eπθ

[
T∑
t=0

ψθ(St, At)

T∑
j=t

γj−t(γΦ(Sj+1)− Φ(Sj))

]

(a)
= ∆(θ, rp) + Eπθ

[
T∑
t=0

ψθ(St, At)(γ
T−t+1Φ(ST+1)− Φ(St))

]
(b)
= ∆(θ, rp) + Eπθ

[
T∑
t=0

ψθ(St, At)(γ
T−t+1c− Φ(St))

]
(c)
= ∆(θ, rp) + Eπθ

[
T∑
t=0

(γT−t+1c− Φ(St))Eπθ [ψθ(St, At)|St]

]
(d)
= ∆(θ, rp),

where (a) holds because on the expansion of future return, intermediate potential values cancel out, (b) holds558

because ST+1 is the terminal state and potential function is defined to be a fixed constant c for the terminal state559

[42], (c) holds from the law of total expectation, and (d) holds because,560

Eπθ [ψθ(St, At)|St] =
∑
a∈A

πθ(St, a)
∂ lnπθ(St, a)

∂θ
=
∑
a∈A

∂πθ(St, a)

∂θ
=

∂

∂θ

∑
a∈A

πθ(St, a) = 0.

In the stochastic setting, i.e., when using sample average estimates instead of the true expectation, γT−t+1c−561

φ(St) is analogous to a state dependent baseline for the sum of discounted future primary rewards. It may reduce562

or increase the variance of ∆(θ, rp), depending on this baseline’s co-variance with
∑T
j=t γ

j−trp(Sj , Aj).563

Note: As we encountered the potential at the terminal state to be c, as it is a constant, we will use the value of564

c = 0 in accordance with [42].565

Vπθ
[
∆̂(θ, r̃)

]
can be more than Vπθ

[
∆̂(θ, rp)

]
.566

Proof. We will first look at a different variant of the update, i.e., ∆(θ, r̃) =567

Eπθ
[∑T

t=0 ψθ(St, At)
∑T
j=t γ

j−tr̃(Sj , Aj)
]

can also be written as follows:568

∆(θ, r̃) = Edπ,π[ψθ(S,A)(qπ(S,A)− Φ(S))] .

This is proved as part of the proof of Property 2. Similarly the baseline update (using rp can be written as,569

∆(θ, rp) = Edπ,π[ψθ(S,A)(qπ(S,A))] .

Let’s put Y = ψθ(S,A)(qπ(S,A)−Φ(S)), X = ψθ(S,A)qπ(S,A) and Z = ψθ(S,A)qπ(S) as our random570

variables and try to understand when the variance of ∆̂(θ, r̃) can be higher than ∆̂(θ, rp). Also note that571

E[Y] = E[X]572

15

Vdπ [Y] =Edπ
[
Y TY

]
− E[Y]T E[Y]

=Edπ
[
(ψθ(S,A)(qπ(S,A)− Φ(S)))T (ψθ(S,A)(qπ(S,A)− Φ(S)))

]
− E[X]T E[X]

=Edπ
[
ψθ(S,A)Tψθ(S,A)((qπ(S,A)− Φ(S)))2

]
− E[X]T E[X]

=Edπ
[
ψθ(S,A)Tψθ(S,A)Φ(S)2

]
− 2Edπ

[
ψθ(S,A)Tψθ(S,A)(qπ(S,A)Φ(S))

]
+

Edπ
[
ψθ(S,A)Tψθ(S,A)qπ(S,A)2

]
− E[X]T E[X]

The last term in above is the variance of the method with primary reward i.e.573

Edπ
[
ψθ(S,A)Tψθ(S,A)qπ(S,A)2

]
− E[X]T E[X] = Vdπ [X]574

Vdπ[Y]− Vdπ[X] = Edπ
[
ψθ(S,A)Tψθ(S,A)Φ(S)2

]
− 2Edπ

[
ψθ(S,A)Tψθ(S,A)(qπ(S,A)Φ(S))

]

Hence variance of Y will be higher than X if Edπ
[
ψθ(S,A)Tψθ(S,A)Φ(S)2

]
−575

2Edπ
[
ψθ(S,A)Tψθ(S,A)(qπ(S,A)Φ(S))

]
> 0576

Now lets look at variance of ∆̂(θ, r̃) and ∆̂(θ, rp), lets use Xi = ψθ(Si, Ai)q
π(Si, Ai), similarly for Yi and577

Zi. Hence we can write ∆̂(θ, r̃) =
∑T
i=0 Yi and ∆̂(θ, rp) =

∑T
i=0 Xi. Hence, as we saw that it is possible578

that V[Y] > V[X], let’s look at the variance of V
[∑T

i=0 Yi
]
> Vdπ

[∑T
i=0 Xi

]
, for simplicity lets assume only579

2-time steps, or states at time i, j.580

V[Yi + Yj] = V[Yi] + V[Yj] + 2Cov(Yi, Yj)

and581

V[Xi +Xj] = V[Xi] + V[Xj] + 2Cov(Xi, Xj)

As we can see that V[Y] > V[X], hence we need to see the relationship between Cov(Yi, Yj) and Cov(Xi, Xj)582

to understand if V[Yi + Yj] > V[Xi +Xj].583

We can write Yi = Xi − Zi, hence584

Cov(Yi, Yj) = E[YiYj]− E[Yi])E[Yj]

= E[(Xi − Zi)(Xj − Zj)]− E[Xi]E[Xj]

= E[XiXj −XiZj −XjZi + ZiZj]− E[Xi]E[Xj]

= E[XiXj]− E[XiZj]− E[XjZi] + E[ZiZj]− E[Xi]E[Xj]

= Cov(Xi, Xj)− E[XiZj]− E[XjZi] + E[ZiZj]

= Cov(Xi, Xj)− E[XiE[Zj |(Si, Ai)]]− E[XjE[Zi|(Sj , Aj)]] + E[ZiE[Zj |Si, Ai]]
And we have seen that E[Zi] = 0∀i, hence585

= Cov(Xi, Xj) + 0

Hence , Cov(Xi, Xj) = Cov(Yi, Yj), hence if V[X] < V[Y] then V[Xi +Xj] < V[Yi + Yj], and hence586

V
[
∆̂(θ, rp)

]
< V

[
∆̂(θ, r̃)

]
.587

588

Examples: Let’s look at some example where the above condition can be true, first, lets consider that we589

have a parameterizing where we separately update the policies for each state, i.e. a tabular representation then,590

in that case, we can consider the variance of the update to the policy at each state separately i.e.591

Vπ[Y |s]− Vπ[X|s] = Φ(s)2Eπ
[
ψθ(s,A)Tψθ(s,A)

]
− 2Φ(s)Eπ

[
ψθ(s,A)Tψθ(s,A)(qπ(s,A))

]

Hence let’s see under what conditions we might get that the variance of the potential-based method might be592

more than the variance only on primary reward, i.e. for that to be true, the difference between the 2 terms should593

16

be positive, i.e.594

Φ(s)2Eπ
[
ψθ(s,A)Tψθ(s,A)

]
− 2Φ(s)Eπ

[
ψθ(s,A)Tψθ(s,A)(qπ(s,A))

]
> 0

Φ(s)2Eπ
[
ψθ(s,A)Tψθ(s,A)

]
> 2Φ(s)Eπ

[
ψθ(s,A)Tψθ(s,A)(qπ(s,A))

]

Further, let’s consider the case where Φ(s) 6= 0, cause otherwise for those states, the variance would be the595

same, and Φ(s) > 0.596

���Φ(s)2Eπ
[
ψθ(s,A)Tψθ(s,A)

]
> 2���Φ(s)Eπ

[
ψθ(s,A)Tψθ(s,A)(qπ(s,A))

]
Φ(s)Eπ

[
ψθ(s,A)Tψθ(s,A)

]
> 2Eπ

[
ψθ(s,A)Tψθ(s,A)(qπ(s,A))

]

We can see that the above condition can easily be satisfied by choosing a potential function that might be overly597

optimistic about the action-value of the state s, i.e. any Φ(s), s.t. Φ(s) > 2qπ(s, a)∀a would lead to an increase598

in variance. A good example of this could be using an optimal value function (as hinted by [42]) as a baseline599

for a bad/mediocre policy initially.600

Property 2. There exists rφ : S ×A → R and γϕ ∈ [0, 1) such that ∆on(θ, φ, ϕ) = ∆γ(θ, rp).601

Proof. Recall the definition of ∆γ(θ, rp) from Section 3.1,602

∆γ(θ, rp) = Eπθ

[
T∑
t=0

γtψθ(St, At)

T∑
j=t

γj−trp(Sj , Aj)

]
.

Using the law of total expectation,603

∆γ(θ, rp) = Eπθ

[
T∑
t=0

γtψθ(St, At)Eπθ

[
T∑
j=t

γj−trp(Sj , Aj)

∣∣∣∣∣St, At
]]

= Eπθ

[
T∑
t=0

γtψθ(St, At)q
πθ (St, At)

]

=
∑

s∈S,a∈A

T∑
t=0

γt Pr(St = s,At = a;πθ)ψθ(s, a)qπθ (s, a)

=
∑

s∈S,a∈A

ψθ(s, a)qπθ (s, a)

T∑
t=0

γt Pr(St = s,At = a;πθ)

=
∑

s∈S,a∈A

ψθ(s, a)qπθ (s, a)dπθγ (s, a). (11)

Notice from (9) and (10) that for any (s, a) pair, if dπθγ (s, a) > 0, then it has to be that d̄πθ (s, a) > 0 as well604

since γ ≥ 0. Therefore, dividing and multiplying by d̄πθ (s, a),605

∆γ(θ, rp) =
∑

s∈S,a∈A

d̄πθ (s, a)ψθ(s, a)qπθ (s, a)
d
πθ
γ (s, a)

d̄πθ (s, a)

=
∑

s∈S,a∈A

T∑
t=0

Pr(St = s,At = a;πθ)ψθ(s, a)qπθ (s, a)
d
πθ
γ (s, a)

d̄πθ (s, a)

= Eπθ

[
T∑
t=0

ψθ(St, At)q
πθ (St, At)

d
πθ
γ (St, At)

d̄πθ (St, At)

]
.

Now, notice that if γϕ = 0 and rφ(s, a) = qπθ (s, a)
d
πθ
γ (s,a)

d̄πθ (s,a)
for all s ∈ S and a ∈ A, then606

∆on(θ, φ, ϕ) = ∆γ(θ, rp).

607

Property 3. There exists rφ : S ×A → R and γϕ ∈ [0, 1) such that ∆off(θ, φ, ϕ) = ∆off(θ, rp).608

17

Proof. This proof follows a similar technique as the proof for Property 2. Recall the definition of ∆off(θ, rp),609

∆off(θ, rp) := Eβ

[
T∑
t=0

γtψθ(St, At)

T∑
j=t

γj−tρjrp(Sj , Aj)

]

:= Eβ

[
T∑
t=0

γtρtψθ(St, At)

T∑
j=t

γj−tρj−trp(Sj , Aj)

]
Now using the law of total expectations,610

∆off(θ, rp) = Eβ

[
T∑
t=0

γtρtψθ(St, At)Eβ

[
T∑
j=t

γj−tρj−trp(Sj , Aj)

∣∣∣∣∣St, At
]]

= Eπθ

[
T∑
t=0

γtψθ(St, At)Eπθ

[
T∑
j=t

γj−trp(Sj , Aj)

∣∣∣∣∣St, At
]]

= Eπθ

[
T∑
t=0

γtψθ(St, At)q
πθ (Sj , Aj)

]
=

∑
s∈S,a∈A

ψθ(s, a)qπθ (s, a)dπθγ (s, a),

where the last line follows similar to (11). Now, notice that for any (s, a) pair, the assumption that611

πθ(s, a)/β(s, a) < ∞ for all s ∈ S, a ∈ A, implies dπθγ (s, a)/dβγ (s, a) < ∞. Further, if dβγ (s, a) > 0612

it has to be that dβ(s, a) > 0 as well. Therefore, dπθγ (s, a)/dβ(s, a) <∞ as well. Multiplying and dividing by613

dβ(s, a),614

∆off(θ, rp) =
∑

s∈S,a∈A

dβ(s, a)ψθ(s, a)qπθ (s, a)
d
πθ
γ (s, a)

dβ(s, a)

=
∑

s∈S,a∈A

T∑
t=0

Pr(St = s,At = a;β)ψθ(s, a)qπθ (s, a)
d
πθ
γ (s, a)

dβ(s, a)

= Eβ

[
T∑
t=0

ψθ(St, At)q
πθ (St, At)

d
πθ
γ (St, At)

dβ(St, At)

]
.

Now, notice that if γϕ = 0 and rφ(s, a) = qπθ (s, a)
d
πθ
γ (s,a)

dβ(s,a)
for all s ∈ S and a ∈ A,615

∆off(θ, φ, ϕ) = ∆off(θ, rp).

616

B Algorithm617

In this section we discuss the algorithm for the proposed method. As the proposed method does behavior618

alignment reward function’s implicit optimization, we name our method Barfi. Pseudo-code for Barfi is619

presented in Algorithm 5. We will first build on some preliminaries to understand the concepts620

B.1 Vector Jacobian Product621

Lets assume the following, x ∈ Rd, y ∈ Rm, f(x, y) ∈ R, then we know that ∂f(x, y)/∂x ∈622

Rd, ∂f(x, y)/∂x ∈ Rm, ∂2f(x, y)/∂y∂x ∈ Rd×m. Let us also assume that we have a vector v ∈ Rd,623

and when we need to calculate the following624

v︸︷︷︸
Rd

∂2f(x, y)

∂y∂x︸ ︷︷ ︸
Rd×m︸ ︷︷ ︸

Rm

=
∂

∂y

〈
v︸︷︷︸
Rd

, ∂f(x,y)
∂x︸ ︷︷ ︸
Rd

〉
︸ ︷︷ ︸

R1︸ ︷︷ ︸
Rm

As we can see the vector jacobian product can actually be broken down into differentiating a vector product but625

shifting the place of multiplication, in which case we assume that the gradient simply passes through v w.r.t. y626

and hence we don’t ever have to deal with large multiplications. Also note, that the outer partial w.r.t can easily627

be handled by autodiff packages. A simple pseudo-code is show in Algorithm 1.628

18

Algorithm 1: Jacobian Vector Product

1 Input: f(x, y) ∈ R1, x ∈ Rd, y ∈ Rm, v ∈ Rd
2 f ′ ← grad(f(x, y), x)
3 jvp← grad(f ′, y,grad_outputs = v)
4 Return: jvp

B.2 Neumann Series Approximation for Hessian Inverse629

Recall, that for a given real number β ∈ R, such that 0 ≤ β < 1, we know that the geomertric series of this has630

a closed form solution, i.e.631

s = 1 + β1 + β2 + β3 + · · ·+

=
1

1− β
Similarly given we have a value α, such that β = 1− α, we can write α−1 as follows632

1

1− β = 1 + β + β2 + β3 + · · ·+

1

1− (1− α)
= 1 + (1− α) + (1− α)2 + (1− α)3 + · · ·+

α−1 = 1 + (1− α) + (1− α)2 + (1− α)3 + · · ·+

α−1 =

∞∑
i=0

(1− α)i

The same can be generalized for a matrix, i.e. given a matrix A ∈ Rd×d, we can write A−1 as follows633

A−1 =

∞∑
i=0

(I−A)i

Note for the above to hold, matrix a, where we represent eig(A) as the eigen values of matrix A, we should634

have the following condition to hold, 0 < eig(A) < 1. Note here we would regularize A to ensure that all635

eigen values are positive, and then we can always scale the matrix A, by its biggest eigen value to ensure that636

the above condition holds. Lets say η = 1/maxeig(A), then we can write the following637

A−1 =
η

η
A−1

= η(ηA)−1

= η

∞∑
i=0

(I− ηA)i

As ηA would always satisfy the above condition.638

B.3 Neumann Approximation for Hessian Vector Product639

Given we have seen how we can approximate the Inverse of a matrix without relying O(d3) operations, through640

Neumann approximation, lets look what needs to be done for our updates. Recall that the update φ, ϕ (7) and (8)641

were,642

∂J(θ(φ, ϕ))

∂φ
= − ∂J(θ(φ, ϕ))

∂θ(φ, ϕ)︸ ︷︷ ︸
v

(
∂∆(θ(φ, ϕ), φ, ϕ)

∂θ(φ, ϕ)︸ ︷︷ ︸
H

)−1
∂∆(θ(φ, ϕ), φ, ϕ)

∂φ︸ ︷︷ ︸
A

and643

∂
(
J(θ(φ, ϕ))− 1

2
‖γϕ‖2

)
∂ϕ

= − ∂J(θ(φ, ϕ))

∂θ(φ, ϕ)︸ ︷︷ ︸
v

(
∂∆(θ(φ, ϕ), φ, ϕ)

∂θ(φ, ϕ)︸ ︷︷ ︸
H

)−1
∂∆(θ(φ, ϕ), φ, ϕ)

∂ϕ︸ ︷︷ ︸
B

−∂γϕ
∂ϕ

.

19

Lets look closely at the update for φ and we can generalize things easily for the case of ϕ.644

∂J(θ(φ, ϕ))

∂φ
= −vH−1A

We first look at how we can approximate the value of vH−1 efficiently as we can always make use of the645

Jacobian Vector product later to get (vH−1)A, as vH−1 becomes a vector. Lets assume we wish to run the646

Neumann approximation upto n steps, i.e. we want to approximate H−1 upto n order Neumann expansion,647

η(ηH−1) ≈ η
n∑
i=0

(I − ηH)i (12)

Over here we are assuming that the outer optimization for update (1) is for the function J(θ(φ, ϕ)) and the inner648

optimization which is represented by the update (4) is f(θ(φ, ϕ), φ, ϕ), i.e.649

∆(θ, rp) =
∂J(θ(φ, ϕ))

∂θ

∆(θ, φ, ϕ) =
∂f(θ(φ, ϕ), φ, ϕ)

∂θ

The most common form in which f(;B) is usually defined is the following:650

f(θ, φ, ϕ;B) :=
1

|B|
∑
τ∈B

[
T∑
t=0

log(πθ(S
τ
t , A

τ
t))

T∑
j=t

γj−tϕ rφ(Sτj , A
τ
j)

]
.

Similalry this can be defined for J , except making use of rp and the actual γ,651

J(θ;B) :=
1

|B|
∑
τ∈B

[
T∑
t=0

log(πθ(S
τ
t , A

τ
t))

T∑
j=t

γj−trp(S
τ
j , A

τ
j)

]
.

Algorithm 2: Vector Hessian Inverse Product for (7) i.e. vH−1

1 Input: θ(φ, ϕ), φ, ϕ, J, f, n, η,Doff,Don
2 v ← grad(J(θ(φ, ϕ);Don), θ)
3 v′ ← η × grad(f(θ(φ, ϕ), φ, ϕ;Doff), θ)
4 Let: v0 ← v, p0 ← v
5 for i ∈ [0, n) do
6 vi+1 ← vi − grad(v′, θ,grad_outputs = vi)
7 pi+1 ← pi + vi+1

8 Return: ηpn ; // Approximation of vH−1 as in (12)

652

Finally once we have vH−1 we can use the Vector Jacobian Product to calculate (vH−1)A as follows:653

Algorithm 3: Update for φ, i.e. (7) i.e. vH−1A

1 Input: θ(φ, ϕ), φ, ϕ, J, f, n, η,Doff,Don
2 v ← Algorithm 2 (θ(φ, ϕ), φ, ϕ, J, f, n, η,Doff,Don)
3 v′ ← grad(f(θ(φ, ϕ), φ, ϕ;Doff), θ)
4 ∆φ ← grad(v′, φ,grad_outputs = v)
5 Return ∆φ

We can similarly derive updates for ϕ. Note we are not including the different forms of regularizers over here to654

reduce clutter, but adding them is simple.655

B.4 Pseduo Code656

Line 8–10 and 21–23 represent the inner optimization process, and the outer optimization process if from lines657

16-17. Lines 8–10 is the initial step of updates to converge to the current values of φ, ϕ, and from there onwards658

after each update of outer optimization, we consequently update the policy in (21–23). The flow of the algorithm659

is show in Figure 6.660

20

Algorithm 4: Update for φ, i.e. (8) i.e. vH−1B

1 Input: θ(φ, ϕ), φ, ϕ, J, f, n, η,Doff,Don
2 v ← Algorithm 2 (θ(φ, ϕ), φ, ϕ, J, f, n, η,Doff,Don)
3 v′ ← grad(f(θ(φ, ϕ), φ, ϕ),Doff), θ)
4 ∆ϕ ← grad(v′, ϕ,grad_outputs = v)
5 Return ∆ϕ

Algorithm 5: Barfi: Behavior Alignment Reward Function’s Implicit optimization
1 Input: J, f, αθ, αφ, αϕ, η, n, δ,optim, E,Ni, N0,
2 Initialize: πθ, rφ, γϕ
3 Initialize: optimθ ← optim(αθ),optimφ ← optim(αφ),optimϕ ← optim(αϕ)
4 Doff ← {}
5 for e ∈ [1, N0] do
6 Generate τe using πθ
7 Save τe in Doff

8 for i ∈ [0, Ni +N0] do
9 Sample a batch of trajectories B from Doff

10 θ ← θ + optimθ(grad(f(θ, φ, ϕ;B), θ)) ; // Make use of B to perform
update rule (4)

11 for e ∈ [N0, E] do
Collect a batch of on-policy data

12 Don ← {}
13 for j ∈ [0, δ) do
14 Generate trajectory τe+j using πθ and save in Don

15 e← e+ δ
Update rφ and γϕ

16 ∆φ ← Algorithm 3(θ(φ, ϕ), φ, ϕ, J, f, n, η,Doff,Don)
17 ∆ϕ ← Algorithm 4(θ(φ, ϕ), φ, ϕ, J, f, n, η,Doff,Don)
18 φ← φ+ optimφ(∆φ)
19 ϕ← ϕ+ optimϕ(∆ϕ)
20 Doff ← Doff ∪ Don
21 for i ∈ [0, Ni] do
22 Sample a batch of trajectories B from Doff
23 θ ← θ + optimθ(grad(f(θ, φ, ϕ;B), θ)) ; // Make use of B to

perform update rule (4)

As discussed in Section C, using regularizers in ∆(θ, φ, ϕ) smoothens the objective J(θ(φ, ϕ)) with respect to661

φ and ϕ. This is helpful as gradual changes in rφ an γϕ can result in gradually changes in the fixed point for662

the inner optimization. Therefore, for computational efficiency, we initialize the policy parameters from the663

fixed-point of the previous inner-optimization procedure such that the inner-optimization process may start close664

to the new fixed-point.665

Line 8-10

Line 16-17 Line 16-17

Line 21-23 Line 21-23

Figure 6: Algorithm Flow: The change in different parameters

21

A

B

C

r [A]

3 2 1 0 1 2 r [C]
3 2 1 0 1 2

J(
(

, 1
))

1.25
1.50
1.75
2.00
2.25
2.50
2.75

r [A]

3 2 1 0 1 2 r [C]
3 2 1 0 1 2

J(
(

, 1
))

1.6
1.8
2.0
2.2
2.4
2.6
2.8

Figure 7: (Left) A bandit problem, where the data is collected from a policy β that samples action A
mostly. (Middle) Each point on the 3D surface corresponds to the performance of θ(φ, 1) returned
by an Alg that uses the update rule ∆off(θ, φ, 1) corresponding to the value of rφ for actions A and
C in the bottom axes; rθ for action B is set to 0 to avoid another variable in a 3D plot. Notice that
small perturbation in rφ may lead to no or sudden changes in J(θ(φ, 1)). (Right) Performance of
θ(φ, 1) returned by an Alg that uses the update rule ∆off(θ, φ, 1)− θ that incorporates gradient of
the L2 regularizer. Vector fields in Figure 1 were also obtained from this setup.

In lines 8–10, the inner optimization for the policy parameters θ are performed till (approximate) convergence.666

Note that only trajectories from past interactions are used and no new-trajectories are sampled for the inner667

optimization.668

In Lines 13–14, a new batch Don of data is sampled using the policy returned by the inner-optimization process.669

This data is used to compute ∂J(θ(φ, ϕ))/∂θ(φ, ϕ). Existing data Doff that was used in the inner-optimization670

process is then used to compute ∂θ(φ, ϕ)/∂φ and ∂θ(φ, ϕ)/∂ϕ. Using these in (7) and (8), the parameters for671

rφ and γϕ are updated in Lines 16 and 17, respectively.672

Finally, the new data Don is merged into the existing data Doff and the entire process continues.673

C Smoothing the objective674

To understand why J(θ(φ, ϕ)) might be ill-conditioned is to note that, often a small perturbation in the reward675

function doesn’t necessarily lead to a change in the corresponding optimal policy. This can lead lack of gradient676

directions in the neighborhood of φ, ϕ for gradient methods to be effective. This issue can be addressed677

by employing common regularization techniques like L2 regularization of the policy parameters or entropy678

regularization for the policy. We discuss two ways to regularize the objective in the upcoming sections.679

C.1 L2 Regularization680

To understand how severely ill-conditioned J(θ(φ, ϕ)) can be, notice that a small perturbation in the reward681

function often does not change the corresponding optimal policies or the outcome of a policy optimization682

algorithm Alg. Therefore, if the parameters of the behavior alignment reward are perturbed from φ to φ′, it may683

often be that J(θ(φ, ϕ)) = J(θ(φ′, ϕ)) and this limits any gradient based optimization for φ as ∂J(θ(φ, ϕ))/∂φ684

is 0. Similarly, minor perturbations in ϕ may result in no change in J(θ(φ, ϕ)) either.685

Fortunately, there exists a remarkably simple solution: incorporate regularization for the policy parameters θ in686

objective for Alg in the inner-level optimization. For example, the optimal policy for the following regularized687

objective Eπθ [
∑T
t=0 γ

t
ϕrφ(St, At)]− λ

2
‖θ‖2 varies smoothly to trade-off between the regularization value of θ688

and the magnitude of the performance characterized by (rφ, γϕ), which changes with the values of rφ and γϕ.689

See Figure 7 for an example with L2 regularization.690

C.2 Entropy Regularized691

In Section C.1, smoothing of J(θ(φ, ϕ)) was done by using L2 regularization on the policy parameters θ in the692

inner-optimization process. However, alternate regularization methods can also be used. For example, in the693

following we present an alternate update rule for θ based on entropy regularization,694

∆(θ, φ, ϕ) := ED

[
T∑
t=0

ψθ(St, At)

T∑
j=t

γj−tϕ (rφ(Sj , Aj)− λ lnπθ(Sj , Aj))

]
.

22

Notice that new update rule for φ and ϕ can be obtained from steps (5) to (8) with the following A, B, and H695

instead, where for shorthand θ∗ = θ(φ, ϕ),696

A = ED

 T∑
t=0

ψθ∗(St, At)

(
T∑
j=t

γj−tϕ
rφ(Sj , Aj)

∂φ

)> ,
B = ED

[
T∑
t=0

ψθ∗(St, At)

(
T∑
j=t

∂γj−tϕ

∂ϕ
(rφ(Sj , Aj)− λ lnπθ∗(Sj , Aj))

)]
,

H = ED

[
T∑
t=0

∂ψθ∗(St, At)

∂θ∗

(
T∑
j=t

γj−tϕ (rφ(Sj , Aj)− λ lnπθ∗(Sj , Aj))

)
− λψθ∗(St, At)

(
T∑
j=t

γj−tϕ ψθ∗(Sj , Aj)
>

)]
.

697

D Meta Learning via Implicit Gradient: Derivation698

The general technique of implicit gradients [14, 34, 19] has been used in a vast range of applications, ranging699

from energy models [13, 36], differentiating through black-box solvers [61], few-shot learning [38, 49], model-700

based RL [50], differentiable convex optimization neural-networks layers [4, 2], to hyper-parameter optimization701

[37, 8, 12, 40]. In this work, we show how implicit gradients can also be useful to efficiently leverage auxiliary702

rewards ra and overcome various sub-optimalities.703

Taking the derivative (6) ∆(θ(φ, ϕ), φ, ϕ) = 0 of the above point of convergence w.r.t to φ and ϕ we get the704

following updates.705

Therefore, taking total derivative in (6) with respect to φ,706

d∆(θ(φ, ϕ), φ, ϕ)

dφ
=
∂∆(θ(φ, ϕ), φ, ϕ)

∂φ
+
∂∆(θ(φ, ϕ), φ, ϕ)

∂θ(φ, ϕ)

∂θ(φ, ϕ)

∂φ
= 0. (13)

Lets try to understand why the above is true, considering the finite difference approach for this derivative,707

d∆(θ(φ, ϕ), φ, ϕ)

dφ
= lim
‖dφ‖→0

∆(θ(φ+ dφ, ϕ), φ+ dφ, ϕ)−∆(θ(φ, ϕ), φ, ϕ)

dφ

∆(θ(φ+ dφ, ϕ), φ+ dφ, ϕ) = ∆(θ(φ, ϕ), φ, ϕ) = 0, as θ(·, ·) defines convergence to fixed point708

=
0− 0

dφ
= 0

By re-arranging terms in (13) we obtain the term (b) in (5),709

∂θ(φ, ϕ)

∂φ
= −

(
∂∆(θ(φ, ϕ), φ, ϕ)

∂θ(φ, ϕ)

)−1
∂∆(θ(φ, ϕ), φ, ϕ)

∂φ
. (14)

On combining (14) with (5) we obtain the desired gradient expression for φ,710

∂J(θ(φ, ϕ))

∂φ
= −∂J(θ(φ, ϕ))

∂θ(φ, ϕ)

(
∂∆(θ(φ, ϕ), φ, ϕ)

∂θ(φ, ϕ)︸ ︷︷ ︸
H

)−1
∂∆(θ(φ, ϕ), φ, ϕ)

∂φ︸ ︷︷ ︸
A

,

and following similar steps, it can be observed that the gradient expression for ϕ,711

∂
(
J(θ(φ, ϕ))− 1

2
‖γϕ‖2

)
∂ϕ

= −∂J(θ(φ, ϕ))

∂θ(φ, ϕ)

(
∂∆(θ(φ, ϕ), φ, ϕ)

∂θ(φ, ϕ)︸ ︷︷ ︸
H

)−1
∂∆(θ(φ, ϕ), φ, ϕ)

∂ϕ︸ ︷︷ ︸
B

−∂γϕ
∂ϕ

,

where using θ∗ as a shorthand for θ(φ, ϕ) the terms A,B and H can be expressed as,712

A = ED

 T∑
t=0

ψθ∗(St, At)

(
T∑
j=t

γj−tϕ
∂rφ(Sj , Aj)

∂φ

)> , B = ED

[
T∑
t=0

ψθ∗(St, At)

(
T∑
j=t

∂γj−tϕ

∂ϕ
rφ(Sj , Aj)

)]
,

H = ED

[
T∑
t=0

∂ψθ∗(St, At)

∂θ∗

(
T∑
j=t

γj−tϕ rφ(Sj , Aj)

)]
− λ.

23

These provide the necessary expressions for updating φ and ϕ in the outer loop. As A involves an outer713

product and H involves second derivatives, computing them exactly might not be practical when dealing with714

high-dimensions. Standard approximation techniques like conjugate-gradients or Neumann series can thus be715

used to make it more tractable [40]. In our experiments, we made use of the Neumann approximation to the716

Hessian Inverse vector product (AH−1, which requires the same magnitude of resources as the baseline policy717

gradient methods that we build on top off.718

Algorithm: Being based on implicit gradients, we call our method Barfi, shorthand for behavior alignment719

reward function’s implicit optimization. Overall, Barfi iteratively solves the bi-level optimization specified in720

(2) by alternating between using (4) till approximate converge of Alg to θ(φ, ϕ) and then updating rφ and γϕ.721

Importantly, being based on (4) for sample efficiency, Alg leverages only the past samples and does not sample722

any new trajectories for the inner level optimization. Further, due to policy regularization which smoothens the723

objective as discussed in C, updates in rφ and γϕ changes the policy resulting from Alg gradually. Therefore,724

for compute efficiency, we start Alg from the policy obtained from the previous inner optimization, such that it725

is in proximity of the new fixed point. This allows Barfi to be both sample and compute efficient while solving726

the bi-level optimization iteratively online. Pseudo-code for Barfi and more details on the approximation727

techniques can be found in Appendix B.728

E Details for the Empirical Results729

E.1 Implementation Details730

In this section we will briefly describe the implementation details around the different environments that were731

used.732

GridWorld(GW): In the case of GridWorld we made use of the Fourier basis (of Order = 3) over the raw coor-733

dinates of agent position in the GridWorld. Details about this could be found in the src/utils/Basis.py734

file.735

MountainCar(MC): For this environment, to reduce the limitation because of the function approximator we736

used TileCoding [58], which offers a suitable representation for the MountainCar problem. We used 4 Tiles and737

Tilings of 5.738

CartPole(CP): For CartPole also make use of Fourier Basis of (Order = 3), with linear function approximator739

on top of that.740

MuJoco(MJ): For this we made use of a neural network with 1 hidden layer of 32 nodes and ReLU activation741

as the function approximator over the raw observations. The output of the policy is continuous actions, hence we742

used a Gaussian representation, where the policy outputs the mean of the multivariate Gaussian and we used a743

fixed diagonal standard deviation, fixed to σ = 0.1.744

General Details: All the outer returns are evaluated without any discounting, whereas all the inner optimizations745

were initialized with γϕ = 0.99. Hence to do this we made ϕ a single bias unit, initialized to 4.6, and passed746

through a sigmoid (i.e., σ(4.6) = 0.99).747

For GW, CP and MC rφ is defined as below748

rφ(s, a) = φ1(s) + φ2(s)rp + φ3(s)ra

Wherein φ1, φ2, φ3 are scalar outputs of a 3-headed function, in this case simply a linear layer over the states749

inputs.750

Whereas in the case of MJ, we have751

rφ(s, a) = φ1 + rp + φ3ra

Wherein φ1 is initialized to zero and φ3 is 1.0 act like bias units.752

Gradient normalization was used for all the cases where Neural Nets were involved (i.e., MJ), and also for MJ753

we modified the Baseline (Reinforce) update to subtract the running average of the performance as a baseline to754

get acceptable performance for the baseline method.755

E.2 Hyper-parameter Selection756

As different make use of different function approximators hence the range of hyper-params can vary we talk757

about all the above over here. All the experiments were conducted on a personal computer with 32 GiB of758

memory and an Intel Core i7 CPU with 12 threads. Total runtime for all the experiments combined was less than759

a day.760

Best-performing Parameters for different methods and environments are listed where761

24

Hyper Parameter Barfi Value Reinforce Value Actor Critic Value

αθ 1× 10−3 1× 10−3 1× 10−3

αφ 5× 10−3 − −
αϕ 5× 10−3 − −
optim RMSprop RMSprop RMSprop
λθ 0.25 0.25 0.25
λφ 0.0625 − −
λϕ 4.0 − −
Buffer 1000 − −
Batch Size 1 1 1
η 0.0005 − −
δ 3 − −
n 5 − −
N0 150 − −
Ni 15 − −

Table 2: Hyper parameters for GridWorld

Hyper Parameter Barfi Value Reinforce Value Actor Critic Value
αθ 0.015625 0.125 0.03125
αφ 0.0625 − −
αϕ 0.0625 − −
optim RMSprop RMSprop RMSprop
λθ 0.0 0.0 0.25
λφ 0.0 − −
λϕ 0.25 − −
Buffer 50 − −
Batch Size 1 1 1
η 0.001 − −
δ 3 − −
n 5 − −
N0 50 − −
Ni 15 − −

Table 3: Hyper parameters for MountainCar

Hyper Parameter Barfi Value Reinforce Value Actor Critic Value

αθ 1× 10−3 1× 10−3 5× 10−4

αφ 1× 10−3 − −
αϕ 5× 10−3 − −
optim RMSprop RMSprop RMSprop
λθ 1.0 1.0 0.0
λφ 0.0 − −
λϕ 4.0 − −
Buffer 10000 − −
Batch Size 1 1 1
η 0.0005 − −
δ 3 − −
n 5 − −
N0 150 − −
Ni 15 − −

Table 4: Hyper parameters for CartPole

Hyperparameter Sweep : Here we list the details about how we swept the values for different hyper-params.762

We used PyTorch [47] for all our implementations. We usually used an optimizer between RMSProp or Adam763

25

Hyper Parameter Barfi Value Reinforce Value Actor Critic Value

αθ 7.5× 10−5 5× 10−4 2.5× 10−4

αφ 2.5× 10−3 − −
αϕ 0.0 − −
optim Adam Adam Adam
λφ 0.0625 − −
λϕ 0.0 − −
Buffer 50 − −
Batch Size 1 1 1
η 0.0005 − −
δ 3 − −
n 5 − −
N0 30 − −
Ni 15 − −

Table 5: Hyper parameters for MuJoco

with default parameters as provided in Pytorch. For αθ ∈ {5× 10−3, 2.5× 10−3, 1× 10−3, 5× 10−4, 2.5×764

10−4, 1× 10−4, 7.5× 10−5} , we use similar ranges for αφ, αϕ (which tend to be larger). For λθ and λφ, we765

sweeped from [0, 0.25, 0.5, 1.0] and for λγ we sweeped from [0, 0.25, 1.0, 4.0, 16.0]. We simply list ranges for766

different values and later we present sensitivity curves showing that these values are usually robust for Barfi767

across different methods as we can see from the tables above. δ ∈ [1, 3, 5], n ∈ [1, 3, 5],Ni ∈ [1, 3, 6, 9, 12, 15],768

η ∈ [1× 10−3, 5× 10−4, 1× 10−4], N0 ∈ [30, 50, 100, 150], buffer ∈ [25, 50, 100, 1000]. α for Tilecoding769

was adopted from [58] and hence similar ranges were sweeped in that case. Most sweeps were done with around770

10 seeds, and later the parameter ranges were reduced and performed with more seeds.771

E.3 Compute772

The computer is used for a cluster where the CPU class is Intel Xeon Gold 6240 CPU @2.60GHz. The total773

compute required for GW was around 3 CPU years2, CP also required around 3 CPU years, and MC required774

around 4 CPU years. For MJ we needed around 5-6 CPU years. In total we utilized around 15-16 CPU years,775

where we needed around 1 GB of memory per thread.776

F Extra Results & Ablations777

Figure 8 and Figure 9 summarize the return based on rφ and the γ learned by the agent across different domains778

and reward specification. We observe that Reinforce often optimizes the naive combination of reward for779

sure, but that doesn’t really lead to a good performance on rp, whereas Barfi does achieve appropriate return780

on rφ, but is also able to successively decay γ as the learning progress across different domains. Particularly781

notice Figure 8 (a) Bottom, where Reinforce does optimize aux return a lot, but actually fails to solve the782

problem, as it simply learns to loop around the center state.783

Ablations: Figure 10 represents the ablation of Barfi on GridWorld with the misspecified reward for its784

different params. We can see that usually having η = 0.001, 0.0005, n = 5 works for the approximation.785

21 CPU year := Compute equal to running a CPU thread for a year.

26

MountainCar Mujoco

CartPoleGridWorld

GridWorld

MountainCar Mujoco

CartPole

Episodes

Au
x

Re
tu

rn
Au

x
Re

tu
rn

Episodes Episodes Episodes
(a) (b) (c) (d)

Figure 8: Learned Reward Returns: This figure illustrates the aux return collected by agent based
on the learned rφ, the curves are chosen based on best performing curves on rp, and averaged over 20
runs (except 40 for GW). (a) Top – r1

aux,GW, Bottom – r2
aux,GW, (b) Top – r1

aux,CP, Bottom – r2
aux,CP,

(c) Top – r2
aux,MC, Bottom – r1

aux,MC, (d) Top – r1
aux,MJ, Bottom – r2

aux,MJ.

MountainCar

MountainCar
GridWorld (Bad)

GridWorld

GridWorld CartPole

CartPole (Good)

CartPole

Episodes Episodes Episodes
(a) (b) (c)

γ

γ

Figure 9: Learned γϕ: This figure illustrates the learned γϕ for Barfi and normal γ for other
methods, the curves are chosen based on best-performing curves on rp, and averaged over 20 runs
(except 40 for GW). (a) Top – r1

aux,GW, Bottom – r2
aux,GW, (b) Top – r1

aux,CP, Bottom – r2
aux,CP, (c)

Top – r2
aux,MC, Bottom – r1

aux,MC.. MJ is not included as the γ was not learned in that case. We can
observe that the agents start to learn to decay γ at the appropriate pace.

27

2 6 2 4 2 2 20 22 24

91

92

93

94

95

96

97

98

R
e
tu
rn
s

R
e
tu
rn
s

R
e
tu
rn
s

2 6 2 4 2 2 20 22 24
91

92

93

94

95

96

97

98

2 9 2 7 2 5 2 3 2 1 21

94

95

96

97

98

2 12 2 10 2 8 2 6 2 4

20

40

60

80

100

2 12 2 10 2 8 2 6 2 4

75

80

85

90

95

2 12 2 10 2 8 2 6 2 4

92

93

94

95

96

97

98

99

20 21 22
94.0

94.5

95.0

95.5

96.0

96.5

97.0

97.5

98.0

20 21 22 23

93

94

95

96

97

98

2 17 2 15 2 13 2 11 2 9 2 7

86

88

90

92

94

96

98

Figure 10: Sensitivity Curves: The set of graphs representing the sensitivity of different hyper-
params keeping all the other params fixed. The sensitivity is for Barfi in GW with r2

aux,GW, i.e.,
the misspecified reward. We choose the best-performing parameters and vary each parameter to see
its influence. The curves are obtained for 50 runs (seeds) in each case, and error bars are standard
errors. We can notice that αθ and αφ can have a large influence, and tend to stay around similar
values. λθ,φ,ϕ tends to help but doesn’t really influence a lot in terms of its magnitude, except larger
values of λϕ seem to do better. Smaller values of η seems to work fine, hence something around
5× 10−4, 1× 10−3 usually should suffice. n, δ can be chosen to around 5 and 3, and usually workout
fine. We also defined Ni = 5× δ in this case.

28

