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A Proof

In Theorem 3.1, Corollary 3.3 and Remark 3.4, we deal with an arm with index k 2 [K]. To simplify notations,
we drop the subscript k in st,k, wt,k, xt,k, b✓ALEE,k and ✓

⇤
k throughout the proof, and use st, wt, xt, b✓ALEE and

✓
⇤, respectively.

A.1 Proof of Theorem 3.1

Condition (17) serves as an important role in proving (18). Therefore, we start our proof by verifying the
condition (17). Since function f is a positive decreasing function, we first have

max
1tn

f
2(

st

s0
)
x
2
t

s0
 f

2(1)
1
s0

. (32)

Furthermore, since function f
0
/f is increasing, we have

max
1tn

✓
1� f(st/s0)

f(st�1/s0)

◆
= max

1tn

f(st�1/s0)� f(st/s0)
f(st�1/s0)

(i)

 1
s0

max
1tn

�f
0(st�1/s0)

f(st�1/s0)
=

1
s0

�f
0(1)

f(1)
,

(33)

where inequality (i) follows from mean value theorem and the monotonicity of the function f
0
/f . Thus,

by assuming 1/s0 = op(1) and s0/sn = op(1), condition (17) follows directly from equation (32) and
equation (33).

By the construction of ALEE estimator, we have
⇢ nX

t=1

wtxt

�
· (b✓ALEE � ✓

⇤) =
nX

t=1

wt✏t. (34)

Note that
nX

t=1

wtxt =
p
s0

nX

t=1

f(st/s0)
x
2
t

s0
=

p
s0

Z sn/s0

1

f(x)dx ·
P

tn f(st/s0)x
2
t/s0

R sn/s0
1

f(x)dx
. (35)

By the mean value theorem, we have that for t 2 [n], ⇠t 2 [st�1, st]

Z st/s0

st�1/s0

f(x)dx = f(⇠t/s0)
x
2
t

s0
.
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Therefore, we have

P
tn f(st/s0)x

2
t/s0

R sn/s0
1

f(x)dx
= 1 +

P
tn(

f(st/s0)
f(⇠t/s0)

� 1)f(⇠t/s0)x
2
t/s0P

tn f(⇠t/s0)x2
t/s0| {z }

�
=R

.

Observe that

|R| 
P

tn | f(st/s0)f(⇠t/s0)
� 1|f(⇠t/s0)x2

t/s0P
tn f(⇠t/s0)x2

t/s0


P

tn | f(st/s0)
f(st�1/s0)

� 1|f(⇠t/s0)x2
t/s0

P
tn f(⇠t/s0)x2

t/s0

 max
1tn

✓
1� f(st/s0)

f(st�1/s0)

◆
(ii)
= op(1).

Equality (ii) follows from condition (17). Consequently, applying Slutsky’s theorem yields
Pn

i=1 wtxt
p
s0

R sn/s0
1

f(x)dx

p�! 1.

Similarly, we can derive

nX

t=1

w
2
t =

nX

t=1

f
2(st/s0)

x
2
t

s0
= (1 + op(1))

Z sn/s0

1

f
2(x)dx = 1 + op(1). (36)

Knowing max1tn w
2
t = max1tn f

2(st/s0)x
2
t/s0 = op(1), which is a consequence of equation (17),

martingale central limit theorem together with an application of Slutsky’s theorem yields

(b✓ALEE � ✓
⇤) ·
Z sn/s0

1

p
s0

b� f(x)dx
d�! N (0, 1).

Lastly, we recall that

b✓ALEE � ✓
⇤

b�
qP

tn w2
t

·
✓ nX

t=1

wtxt

◆
=

1

b�
qP

tn w2
t

nX

t=1

wt✏t.

Therefore, equation (19) follows from martingale central limit theorem and Slutsky’s theorem.

Remark A.1. Equation (18) sheds light on the asymptotic variance of the ALEE estimator, thereby aiding in the
selection of a suitable function f to improve the efficiency of ALEE estimator. On the other hand, equation (19)
offers a practical approach to obtaining an asymptotically precise confidence interval.

Remark A.2. Condition (17) is a general requirement that governs equation (18), and is not specific to bandit
problems. However, the difficulty in verifying (17) can vary depending on the problem at hand.

A.2 Proof of Remark 3.4

Corollary 3.3 follows directly from Theorem 1 in [1]. In this section, we provide a proof of Remark 3.4. By
considering �0 = 1 in Corollary 3.3, we have with probability at least 1� �

�����

nX

t=1

wtxt

����� · |
b✓ALEE � ✓

⇤|  �g

vuut(1 +
nX

t=1

w2
t ) · log

✓
1 +

Pn
t=1 w

2
t

�2

◆
. (37)

By the construction of the weights in Corollary 3.2, we have

nX

t=1

w
2
t =

nX

t=1

f
2(

st

s0
)
x
2
t

s0

Z 1

1

f
2(x)dx = 1. (38)
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Therefore, to complete the proof, it suffices to characterize a lower bound for
P

1tn wtxt. By definition, we
have

nX

t=1

wtxt =
nX

t=1

f(st/s0)
x
2
tp
s0

(i)
=

nX

t=1

x
2
t

(st log(e2st/s0))1/2 log log(e2st/s0)

� 1

(2 + log(sn/s0))1/2 log(2 + log(sn/s0))

nX

t=1

x
2
tp
st

(ii)

� 1

(2 + log(sn/s0))1/2 log(2 + log(sn/s0))
· 2(

p
sn �

p
s0)

r
s0

1 + s0

(iii)

� 1

(2 + log(sn/s0))1/2 log(2 + log(sn/s0))
·
p
2(
p
sn �

p
s0).

(39)

In equation (i), we plug in the expression of function f and hence
p
s0 cancels out. Since xt is either 0 or 1,

inequality (ii) follows from the integration of the function h(x) = 1/
p
x. Inequality (iii) follows from s0 > 1.

Putting things together, we have

|b✓ALEE � ✓
⇤|  �g

p
2 log(2/�2)P
1tn wtxt

 �g

p
log(2/�2)

p
2 + log(sn/s0) log{2 + log(sn/s0)}p

sn �p
s0

.

(40)

This completes our proof of Remark 3.4.

A.3 Proof of Corollary 3.5

Note that it suffices to verify the following condition (41)

max
1tn

f
2
⇣
st

s0

⌘
y
2
t�1

s0
+ max

1tn

✓
1� f(st/s0)

f(st�1/s0)

◆
+

Z 1

sn/s0

f
2(x)dx = op(1) (41)

for ✓⇤ 2 [�1, 1] in order to complete the proof of Corollary 3.5. The other part of the proof can be adapted from
the proof of Theorem 3.1. To simplify notations, we let

T1
�
= max

1tn
f
2
⇣
st

s0

⌘
y
2
t�1

s0
, T2

�
= max

1tn

✓
1� f(st/s0)

f(st�1/s0)

◆
, and T3

�
=

Z 1

sn/s0

f
2(x)dx.

Therefore, proving equation (41) is equivalent to showing that T1, T2, and T3 converge to zero in probability.
We will now demonstrate the convergence of each of these three terms to zero in probability.

T1 with ✓⇤ = 1: To prove T1 = op(1), we make use of a result in [19, Equation 3.23], which is

P
 
lim inf
n!1

n
�2(log log n)

nX

t=1

y
2
t�1 = �

2
/4

!
= 1. (42)

Observe that

T1 = max
1tn

f
2(

st

s0
)
y
2
t�1

s0
= max

1tn

y
2
t�1

st log(e2st/s0){log log(e2st/s0)}1+�

 max
1tn

y
2
t�1

st log(e2){log log(e2)}1+�

=
1

2(log 2)1+�
max
1tn

y
2
t�1

st

 1
2(log 2)1+�

max{ max
1tbn2/3c

y
2
t�1

s0
, max
bn2/3c+1tn

y
2
t�1

sbn2/3c � s0
}

(43)

In equation (43), we split the sequence into two parts and set different lower bounds for st. The major
benefit of this step is to help us derive a better choice of s0. Now we bound max1tbn2/3c y

2
t�1 and
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maxbn2/3c+1tn y
2
t�1. Note that

P
✓

max
1tbn2/3c

y
2
t�1 � ✏

◆

=P
✓
max{ max

1tbn2/3c
yt�1, max

1tbn2/3c
�yt�1} �

p
✏

◆


E
h
max{max1tbn2/3c yt�1,max1tbn2/3c �yt�1}

i

p
✏

(i)


r

2n2/3�2
g log(2n2/3)

✏
,

(44)

where inequality is derived from [33, Exercise 2.12] and the fact that yi is sub-Gaussian with sub-Gaussian
parameter �2

gn
2/3 for i  bn2/3c. Therefore, we conclude that

max
1tbn2/3c

y
2
t�1 = Op(n

2/3 log n).

Consequently, we have

max
1tbn2/3c

y
2
t�1

s0
=

n
2/3 log n

n/ log log n
·Op(1) = op(1). (45)

By applying the same trick to maxbn2/3c+1tn y
2
t�1, we can derive

max
bn2/3c+1tn

y
2
t�1 = Op(n log n).

Hence we have

max
bn2/3c+1tn

y
2
t�1

sbn2/3c � s0
=

Op(n log n)

n4/3/ log log n2/3
· n

4/3
/ log log n2/3

sbn2/3c � s0

(ii)
= op(1) ·Op(1) = op(1). (46)

Equality (ii) makes use of equation (42). Combining equation (44) with equations (45) and (46), we conclude
that T1 = op(1).

T1 with ✓⇤ = �1: When ✓
⇤ = �1, the proof is essentially the same as the case when ✓

⇤ = �1. The only
difference lies in the order of

P
1in y

2
i�1. However, by pairing ✏2t�1 with ✏2t for t 2 N+, we can arrive at

the same result. Specifically, for t 2 N+, we let ✏0t = ✏2t � ✏2t�1 and define

y
0
t =

tX

k=1

✏
0
k

where y0
0

�
= 0 and {✏0t}t�1 are random variables with mean zero, variance 2�2 and sub-Gaussian parameter 2�2

g .
Therefore, applying equation (44) yields

lim inf
n!1

n
�2(log log n)

nX

t=1

(y0
t�1)

2 = �
2
. (47)

Setting n0 = b(bn2/3c � 1)/2c, we have

sbn2/3c � s0 =

bn2/3c�1X

t=1

y
2
t �

n0X

t=1

(y0
t)

2 =
n0+1X

t=1

(y0
t�1)

2
. (48)

According to equation (47) and equation (48), we have

max
bn2/3c+1tn

y
2
t�1

sbn2/3c � s0


maxbn2/3c+1tn y
2
t�1P

1tn0+1(y
0
t�1)

2

=
maxbn2/3c+1tn y

2
t�1

(n0 + 1)2/ log log(n0 + 1)
· (n0 + 1)2/ log log(n0 + 1)P

1tn0+1(y
0
t�1)

2

= op(1) ·Op(1) = op(1),

(49)

which completes the proof of T1 = op(1) for the case when ✓
⇤ = �1.
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T1 with ✓⇤ 2 (�1, 1): Given ✓
⇤ 2 (�1, 1), we observe that yt is a sub-Gaussian random variable with

sub-Gaussian parameter
�2
g

1�(✓⇤)2 for any t 2 N+. Therefore, following equation (43), we have

T1  1
2(log 2)1+�

max
1tn

y
2
t�1

s0
(50)

where in the above inequality we use s0 as a lower bound for st. By applying [33, Exercise 2.12], we have

max
1tn

y
2
t�1 = Op(log n), (51)

leading to the conclusion that T1 = op(1).

T2 with ✓⇤ 2 [�1, 1]: Similar to equation (33), we have

T2 = max
1tn

✓
1� f(st/s0)

f(st�1/s0)

◆
= max

1tn

f(st�1/s0)� f(st/s0)
f(st�1/s0)

 max
1tn

�f
0(st�1/s0)

f(st�1/s0)

y
2
t�1

s0
.

Define g(x) = �f
0(x)/f(x) and we can compute that

Z
g(x)dx = �

Z
f
0(x)
f(x)

dx = �
Z

1
f
df = � log f + C,

where C is some constant. Doing some calculation yields

g(x) =
d

dx
� log f =

d

dx

⇢
1
2
(log(x) + log log(e2x)) + (1 + �) log log log(e2x))

�

=
1
2x

⇢
1 +

1
log(e2x)

+
1 + �

log(e2x)
· 1
log log(e2x)

�
.

Therefore, we have

T2  max
1tn

�f
0(st�1/s0)

f(st�1/s0)

y
2
t�1

s0
= max

1tn
g(st�1/s0)

y
2
t�1

s0

 1
2

✓
3
2
+

1 + �

2 log 2

◆
max
1tn

y
2
t�1

st�1
.

We note that demonstrating max1tn y
2
t�1/st�1 = op(1) follows the same approach as the proof of

max1tn y
2
t�1/st = op(1). Hence, we omit it. To conclude, we show that T2 = op(1) for ✓⇤ 2 [�1, 1].

T3 with ✓⇤ 2 [�1, 1]: To prove T3 = op(1), it suffices to verify that
s0P

1tn y2
t

= op(1). (52)

For convenience, in equation (52) we use yt instead of yt�1. Note that when ✓
⇤ = 1 or ✓⇤ = �1, we have

provided almost sure lower bounds for
P

1tn y
2
t in the proof of T1 = op(1). Therefore, equation (52) follows

from these lower bounds. To prove equation (52) when ✓
⇤ 2 (�1, 1), we begin by rewriting

P
1tn y

2
t in

quadratic form. Without confusion and loss of generality, we replace ✓
⇤ by ✓, consider var(✏t) = 1, and set

"n = (✏1, ✏2, . . . , ✏n)
>. For t 2 [n], we have

yt =
tX

k=1

✓
t�k

✏k = a>
t "n,

where at 2 Rn and at,j = ✓
t�j for j  t and at,j = 0 for j > t. Therefore,

P
1tn y

2
t can be written as

X

1tn

y
2
t =

X

1tn

">
nata

>
t "n = ">

nA"n, (53)

where A =
P

1tn ata
>
t . Applying Hanson-Wright inequality (e.g. see [32]), we have

P
⇣
|">

nA"n � E">
nA"n| > t

⌘
 2 exp


�cmin

✓
t
2

K4|||A|||2F
,

t

K2|||A|||F

◆�
, (54)
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where c and K are some universal constants. Observe that

E">
nA"n = trace(A) = trace(

X

1tn

ata
>
t ) = trace(

X

1tn

a>
t at)

=
X

1tn

(1 + ✓
2 + · · ·+ ✓

2(t�1))

=
X

1tn

1� ✓
2t

1� ✓2

=
n

1� ✓2
� ✓

2(1� ✓
2n)

(1� ✓2)2
.

Furthermore, we have

|||A|||2F = trace(A>A) = trace(
X

1in

aia
>
i ·

X

1jn

aja
>
j )

=
X

1in

X

1jn

(a>
i aj)

2

=
X

1in

kaik42 + 2
X

1i<jn

kaik42 · ✓2(j�i)
.

(55)

Subsequently, we have X

1in

kaik42  |||A|||2F  (1 +
2

1� ✓2
)
X

1in

kaik42, (56)

where X

1in

kaik42 =
n

(1� ✓2)2
� 2✓2(1� ✓

2n)
(1� ✓2)3

+
✓
4(1� ✓

4n)
(1� ✓2)2(1� ✓4)

.

Assuming �  2e�c and t = 1
cK

2|||A|||F log( 2� ), we have with probability at least 1� �,

">
nA"n � E">

nA"n � 1
c
K

2|||A|||F log(
2
�
). (57)

We note that the term on the right hand side of equation (57) has order n. For any ✏ > 0, consider the following
probability

lim sup
n!1

P
✓

s0

">
nA"n

> ✏

◆
 lim sup

n!1
P
✓

s0

">
nA"n

> ✏, ">
nA"n � E">

nA"n � 1
c
K

2|||A|||F log(
2
�
)

◆

+ lim sup
n!1

P
✓
">
nA"n < E">

nA"n � 1
c
K

2|||A|||F log(
2
�
)

◆

 lim sup
n!1

P
✓

s0

E">
nA"n � 1

cK
2|||A|||F log( 2� )

> ✏

◆
+ �.

(58)

By fixing � and comparing the order of s0 with the order of ">
nA"n � 1

cK
2|||A|||F log( 2� ), we have

lim sup
n!1

P
✓

s0

E">
nA"n � 1

cK
2|||A|||F log( 2� )

> ✏

◆
= 0.

Since � can be arbitrarily small, we conclude that
s0

">
nA"n

= op(1), (59)

which completes the proof of T3 = op(1).

A.4 Proof of Theorem 3.6

Note that for any t � 1, we have

kVtkop  1 and Vt = Vt�1 �Vt�1ztz
>
t Vt�1/(1 + z>

t Vt�1zt). (60)

The second part of equation (60) follows from the Sherman–Morrison formula. Let ut = Vtzt and we adopt
the notation V0 = Id. By multiplying zt on the right hand side of Vt, we have

Vtzt = Vt�1zt �Vt�1ztz
>
t Vt�1zt/(1 + z>

t Vt�1zt)

= Vt�1zt

✓
1� z>

t Vt�1zt

1 + z>
t Vt�1zt

◆
=

Vt�1zt

1 + z>
t Vt�1zt

.

(61)
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Therefore, following the definition of ut, we have (1 + z>
t Vt�1zt)ut = Vt�1zt. Consequently,

nX

t=1

(1 + z>
t Vt�1zt)utu

>
t =

nX

t=1

Vt�1(V
�1
t �V�1

t�1)Vt = Id �Vn. (62)

By recognizing wt =
p

1 + z>
t Vt�1zt · ut, we come to

nX

t=1

wtw
>
t =

nX

t=1

Vt�1(V
�1
t �V�1

t�1)Vt = Id �Vn.

What remains now is to verify conditions in (6). Notably, assumption kVnkop = op(1) implies
nX

t=1

wtw
>
t

p�! Id. (63)

Since k⌃�1
0 kop = op(1), kVtkop  1 and kxtk2  1, we can show

max
1tn

z>
t Vtzt = max

1tn
x>

t ⌃
� 1

2
t�1Vt⌃

� 1
2

t�1xt = op(1). (64)

Besides, equation (61) together with equation (64) implies

max
1tn

z>
t Vt�1zt = max

1tn

z>
t Vtzt

1� z>
t Vtzt

= op(1). (65)

Thus, it follows that

max
1tn

kwtk2 = max
1tn

����
q

1 + z>
t Vt�1zt ·Vtzt

����
2

 max
1tn

✓q
1 + z>

t Vt�1zt · kV
1
2
t kop · kV

1
2
t ztk2

◆



s✓
1 + max

1tn
z>
t Vt�1zt

◆
· max
1tn

z>
t Vtzt = op(1).

(66)

Combining equations (66) and (63) yields (6). Hence we complete the proof by applying Proposition 2.1.
Remark A.3. The detailed proof of Lemma 3.7 can be found in the proof of Theorem 3.6.

B Generalized Theorem 3.6

In Theorem 3.6, we impose the following condition (67) so that the ALEE estimator with weights specified in
equation (28) achieves asymptotic normality:

kVnkop = op(1). (67)

However, it is typically difficult to directly verify the above condition in practice. To tackle this problem, in this
section, we provide a modified version of ALEE estimator which achieves asymptotic normality without requiring
condition (67). In this section, we use the same notations ⌃t, zt,Vt, and wt as defined in equations (26), (27)
and (28), respectively. Furthermore, we let �1 � . . . � �n be the eigenvalues of the matrix V�1

n and a1, . . . ,an

be the corresponding eigenvectors.

At a high level, we construct additional mn vectors {zt}n+1tn+mn so that the minimum eigenvalue of the
resulting matrix V�1

n+mn
is greater than a pre-specified constant n, which satisfies limn!1 n = 1. It is

easy to see that by construction (see Algorithm 1), the matrix Vn+mn satisfies

kVn+mnkop  1
n

p�! 0 where mn =
dX

k=1

nk. (69)

Remark B.1. Parameter n is set to ensure condition (69) holds. In practice, we set n = d log(n).
Remark B.2. It’s worth mentioning that the number of extra {zt}t>n is a random variable. Therefore, in order
to prove a similar asymptotic normality theorem to Theorem 3.6, we have to apply martingale central limit
theorem with stopping times [11, Theorem 2.1].
Theorem B.3 (Theorem 2.1 in [11]). Let {⇠n,k}k�1,n�1 be an array of random variables defined on a
probability space (⌦,F , P ) and let {Fn,k}n�1,k�0 be an array of �-fields such that ⇠n,k is Fn,k-measurable
and Fn,k�1 ⇢ Fn,k ⇢ F for each n and k > 1. For each n, let kn be a stopping time with respect to
{Fn,k}k�0. Suppose that
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Algorithm 1: Modified ALEE estimate
1: Input:{(xt, yt)}nt=1 and tuning parameter n

2: Compute {(zt,Vt,wt)}nt=1, {(�k,ak)}dk=1, and obtain a consistent estimate b�2 of �2

3: Initiate t = n and set ⌧n = 1/k⌃�1/2
0 kop

4: for k = 1, . . . , d do
5: Compute nk = dmax{n � �k, 0} · ⌧ne
6: if nk > 0 then
7: for i = 1, . . . , nk do
8: Set t = t+ 1
9: Simulate ✏t ⇠ N (0, b�2)

10: Define zt = ak/⌧n
11: Compute

Vt = Vt�1 �
Vt�1ztz>

t Vt�1

1 + z>
t Vt�1zt

and wt =
q
1 + z>

t Vt�1zt ·Vtzt

12: end for
13: end if
14: end for
15: Obtain b✓ALEE from equation

nX

i=1

wi(yi � x>
i
b✓ALEE) +

tX

i=n+1

wi✏i = 0 (68)

16: Output: b✓ALEE

knX

k=1

E [⇠n,k | Fn,k�1]
p�! 0, (70a)

knX

k=1

Var [⇠n,k | Fn,k�1]
p�! 1, (70b)

knX

k=1

E
h
|⇠n,k|2+� | Fn,k�1

i
p�! 0 for some � > 0, (70c)

then
Pkn

k=1 ⇠n,k
d�! N (0, 1).

With this setup, we are now ready to prove the asymptotic normality of b✓ALEE from (68).

Theorem B.4 (Generalized Theorem 3.6). Suppose condition (3) holds. Then, for any tuning parameters
⌃0 and n that satisfy k⌃�1

0 kop = op(1) and limn!1 n = 1, the ALEE estimator b✓ALEE obtained from
equation (68) satisfies

 
nX

t=1

wtxt

!
·
b✓ALEE � ✓⇤

b�
d�! N

�
0, Id

�
,

where b� is a consistent estimator of �.

Remark B.5. We would like to reiterate that the asymptotic variance of of the modified ALEE estimator obtained
from (68) is the same as the one mentioned in Theorem 3.6. Additionally, this modified version does not require
the condition kVnkop = op(1) hold and hence is more applicable in practice with theoretical guarantee.

Proof. Rewriting equation (68), we have

nX

t=1

wtx
>
t (b✓ALEE � ✓⇤) =

n+mnX

t=1

wt✏t. (71)
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Therefore, by Cramér–Wold theorem, it suffices to show that for any unit vector v,
n+mnX

t=1

v>wt✏t
d�! N (0,�2). (72)

The proof now follows by verifying the conditions (70a)-(70c) of Theorem B.3 with ⇠n,k = v>wk✏k. We begin
by verifying conditions (70a)-(70c). By Lemma 3.7, we have

n+mnX

t=1

wtw
>
t = Id �Vn+mn . (73)

Note that
n+mnX

t=1

Var[wt✏t | Ft�1] =
n+mnX

t=1

�
2wtw

>
t + �

2

✓
b�2

�2
� 1

◆ n+mnX

t=n+1

wtw
>
t . (74)

By equation (73) and the fact that b�2 is consistent, we have
n+mnX

t=n+1

wtw
>
t � Id and

b�2

�2
� 1

p�! 0. (75)

Combining equations (69), (73), (74) and (75), we conclude
n+mnX

t=1

Var[wt✏t | Ft�1]
p�! �

2Id. (76)

On the other hand, we have

max
1tn+mn

kwtk2
(i)

 max
1tn+mn

✓q
1 + z>

t Vt�1zt · kVtkop · kztk2
◆

(ii)

 max
1tn+mn

p
2kztk2

(iii)


p
2k⌃�1/2

0 kop.

Inequality (i) follows from the definition of wt. In inequality (ii), we use the assumption that ⌃0 ⌫ Id and
the fact that kztk2  1 and kVtkop  1. The last inequality (iii) follows from the definition of zt and the
condition that k⌃�1

0 kop = op(1). Hence, we can see that

max
1tn+mn

kwtk2
p�! 0. (77)

Therefore, we have

max
1tn+mn

|v>wt|
p�! 0 and

n+mnX

t=1

Var[v>wt✏t | Ft�1]
p�! �

2
. (78)

Note that condition (70a) holds because {v>wk✏k}k�1 is a martingale difference sequence by construction.
Condition (70b) follows from statement (78). It remains to verify condition (70c). Observe that

n+mnX

t=1

E[|v>wt✏t|2+� | Ft�1] =
n+mnX

t=1

|v>wt|2+�E[|✏t|2+� | Ft�1]


✓

max
1tn+mn

|v>wt|�
◆
·
✓
sup
t�1

E[|✏t|2+� | Ft�1]

◆
·max{ 1

�2
,
1
b�2

}
n+mnX

t=1

Var[v>wt✏t | Ft�1]

(iv)
= op(1) ·Op(1) ·Op(1) = op(1).

Equation (iv) follows from condition (3), equation (78) and the fact that b�2 is a consistent estimator. Lastly, by
applying Slutsky’s theorem, we prove that

1
b�

nX

t=1

wtx
>
t (b✓ALEE � ✓

⇤)
d�! N (0, Id). (79)
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C Simulation

In this section, we provide additional comparisons among the ALEE method, the OLS, the W-decorrelation [8],
and the concentration inequality based bounds [1]. The code can be found at https://github.com/
mufangying/ALEE.

C.1 Simulation details

Throughout our experiments, we utilize b�2 from equation (9) as an (consistent) estimate of of �2 [19].

OLS: When data are i.i.d, the least squares estimator satisfies the following condition

1
�2

(b✓LS � ✓⇤)>Sn(b✓LS � ✓⇤)
d�! �

2
d.

Therefore, we consider 1� ↵ confidence region to be

CLS =

⇢
✓ 2 Rd :

1
b�2

(b✓LS � ✓)>Sn(b✓LS � ✓)  �
2
d,1�↵

�
. (80)

We point out that the above confidence region is not guaranteed to be accurate when the data is collected in an
adaptive manner, as will also be highlighted in our experiments.

W-decorrelation: The W-decorrelation method is borrowed from Algorithm 1 in [8]. Specifically, the
estimator takes the form

b✓W = b✓LS +
nX

t=1

wt(yt � x>
t
b✓LS). (81)

Given a parameter �, weights {wt}1tn are set as follows

wt =

✓
Id �

t�1X

i=1

wtx
>
t

◆
xt/(�+ kxtk22). (82)

Following the recommendations from the paper [8], in order to set � appropriately, we first run the
bandit algorithm or time series with N replications and record the corresponding minimum eigenvalues
{�min(S

(1)
n ), . . . ,�min(S

(N)
n )}. We choose � to be the 0.1-quantile of {�min(S

(1)
n ), . . . ,�min(S

(N)
n )}. Finally,

we obtain a 1� ↵ confidence region for ✓⇤ as

CW =

⇢
✓ 2 Rd :

1
b�2

(b✓W � ✓)>W>W(b✓W � ✓)  �
2
d,1�↵

�
, (83)

where W = (w1, . . . ,wn)
>.

Concentration based on self-normalized martingales: We consider [1, Theorem 1] for a single
coordinate in two-armed bandit problem and AR(1) model. For contextual bandits, we apply [1, Theorem 2].
Applying concentration bounds requires a sub-Gaussian parameter, for which we use b� from equation (9) as an
estimate. We point out that this estimate of the sub-Gaussian parameter is conservative, as the sub-Gaussian
parameter of a sub-Gaussian random variable is always lower bounded by its variance [33, Chapter 2]. This
variance estimate is accurate for Gaussian noise random variables.

• For one dimensional examples, we have that for any � > 0, with probability at least 1� ↵:

|b✓LS � ✓
⇤| 

b�
p

�+
Pn

t=1 x
2
tPn

t=1 x
2
t

s

log

✓
�+

Pn
t=1 x

2
t

�↵2

◆
. (84)

In two-armed bandit problem, xt is simply xt,1 for ✓⇤1 or xt,2 for ✓⇤2 . Here we consider � = 1.

• For the contextual bandit examples, we apply Theorem 2 from [1], and set S =
p
d; we set a small

value of � = 0.01 to mimic the performance of an OLS estimators. Specifically, we utilize the
following 1� ↵ confidence region

Ccon =

⇢
✓ 2 Rd : (b✓r � ✓)>(�Id + Sn)(b✓r � ✓) 

✓
b�

s

log

✓
det(�Id + Sn)

�d↵2

◆
+ �

1
2 S

◆2�
,

(85)
where b✓r = (X>

nXn + �Id)
�1X>

nYn and Yn = (y1, . . . , yn)
>.
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C.2 Tables for contextual bandits

In all the contextual bandit simulations, we consider noises that are generated from a centered Poisson distribution
(i.e. Poisson(1)�1). We would like to highlight that the centered Poisson random variable is not sub-Gaussian.
Therefore, it is important to note that concentration inequality-based bounds [1] may not be guaranteed to work.
In the simulations of this section, we set the number of samples as n = 1000, and the tables below show results
over 1000 replications. The tables below clearly show that the average log-volume of the confidence regions
are smallest for ALEE among methods which yield valid confidence regions (empirical coverage is more than
the target coverage). The volume of the confidence region obtained from the OLS estimate is the smallest, but
they under-cover the true parameter. The confidence regions for ALEE are obtained from Theorem B.4 with
⌃0 = log(n) · Id and n = d log(n).

Table 2: Contextual bandit: d = 10
Method Level of confidence

0.8 0.85 0.9

Avg. Coverage Avg. log(Volumn) Avg. Coverage Avg. log(Volumn) Avg. Coverage Avg. log(Volumn)
ALEE 0.819 (± 0.385) -2.761 (± 0.263) 0.872 (± 0.334) -2.370 (± 0.263) 0.920 (± 0.271) -1.894 (± 0.263)
OLS 0.807 (± 0.395) -7.306 (± 0.262) 0.863 (± 0.344) -6.915 (± 0.262) 0.905 (± 0.293) -6.439 (± 0.262)
W-Decorrelation 0.785 (± 0.411) 8.382 (± 0.252) 0.827 (± 0.378) 8.773 (± 0.252) 0.868 (± 0.338) 9.249 (± 0.252)
Concentration 1.000 (± 0.000) 2.517 (± 0.252) 1.000 (± 0.000) 2.548 (± 0.252) 1.000 (± 0.000) 2.591 (± 0.252)

Table 3: Contextual bandit: d = 50
Method Level of confidence

0.8 0.85 0.9

Avg. Coverage Avg. log(Volumn) Avg. Coverage Avg. log(Volumn) Avg. Coverage Avg. log(Volumn)
ALEE 0.744 (± 0.436) 72.759 (± 1.403) 0.809 (± 0.393) 73.680 (± 1.403) 0.875 (± 0.331) 74.822 (± 1.403)
OLS 0.730 (± 0.444) 44.640 (± 1.370) 0.791 (± 0.407) 45.560 (± 1.370) 0.847 (± 0.360) 46.703 (± 1.370)
W-Decorrelation 0.192 (± 0.394) 97.559 (± 1.337) 0.225 (± 0.418) 98.479 (± 1.337) 0.276 (± 0.447) 99.622 (± 1.337)
Concentration 1.000 (± 0.000) 90.964 (± 1.312) 1.000 (± 0.000) 91.004 (± 1.312) 1.000 (± 0.000) 91.060 (± 1.312)

C.3 Asymptotic normality with centered Poisson noise variables

Figure 4: Same setting as Figure 1 but with noise variables {✏t} distributed as centered Poisson(1).
We set n = 3000 and the number of replications is set to 1000. The simulations show that the
asymptotic distribution of ALEE is in good accordance with the asymptotic normality proved in
Corollary 3.5 and Theorem 3.1.
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