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Abstract

Unrestricted adversarial attacks typically manipulate the semantic content of an
image (e.g., color or texture) to create adversarial examples that are both effec-
tive and photorealistic, demonstrating their ability to deceive human perception
and deep neural networks with stealth and success. However, current works usu-
ally sacrifice unrestricted degrees and subjectively select some image content to
guarantee the photorealism of unrestricted adversarial examples, which limits
its attack performance. To ensure the photorealism of adversarial examples and
boost attack performance, we propose a novel unrestricted attack framework called
Content-based Unrestricted Adversarial Attack. By leveraging a low-dimensional
manifold that represents natural images, we map the images onto the manifold and
optimize them along its adversarial direction. Therefore, within this framework,
we implement Adversarial Content Attack (ACA) based on Stable Diffusion and
can generate high transferable unrestricted adversarial examples with various ad-
versarial contents. Extensive experimentation and visualization demonstrate the
efficacy of ACA, particularly in surpassing state-of-the-art attacks by an average
of 13.3-50.4% and 16.8-48.0% in normally trained models and defense methods,
respectively.

1 Introduction

Deep neural networks (DNNs) have significantly progressed in many tasks [18, 7]. However, with
the rise of adversarial examples, the robustness of DNNs has been dramatically challenged [16].
Adversarial examples show the vulnerability of DNNs and expose security vulnerabilities in many
security-sensitive applications. To avoid potential risks and further research the robustness of DNNs,
it is of great value to expose as many “blind spots” of DNNs as possible at the current research stage.

Nowadays, various methods are proposed to generate adversarial examples [4, 5, 6]. To maintain
human visual imperceptibility and images’ photorealism, adversarial perturbations within the con-
straint of lp norm are generated by these adversarial attacks. However, it is well known that the
adversarial examples generated under lp norm have obvious limitations: firstly, they are not ideal in
terms of perceptual similarity and are still easily perceptible by humans [24, 23, 62]; secondly, these
adversarial perturbations are not natural enough and have an inevitable domain shift with the noise
in the natural world, resulting in the adversarial examples being different from the hard examples
that appear in the real world [64]. In addition, current defense methods against lp norm adversarial
examples overestimate their abilities, known as the Dunning-Kruger effect [28]. It can effectively
defend against lp norm adversarial examples but is not robust enough when facing new and unknown
attacks [25]. Therefore, unrestricted adversarial attacks are beginning to emerge, using unrestricted
but natural changes to replace small lp norm perturbations, which are more practically meaningful.
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Existing unrestricted adversarial attacks generate adversarial examples based on image content such as
shape, texture, and color. Shape-based unrestricted attacks [56, 1] iteratively apply small deformations
to the image through a gradient descent step. Then, texture-based unrestricted attacks [2, 40] are
introduced, which manipulate an image’s general attributes (texture or style) to generate adversarial
examples. However, texture-based attacks result in unnatural results and have low adversarial
transferability. Researchers then discover that manipulating pixel values along dimensions generates
more natural adversarial examples, leading to the rise of color-based unrestricted attacks [20, 30, 2, 61,
47, 60]. Nonetheless, color-based unrestricted attacks tend to compromise flexibility in unconstrained
settings to guarantee the photorealism of adversarial examples. They are achieved either through
reliance on subjective intuition and objective metrics or by implementing minor modifications, thereby
constraining their potential for adversarial transferability.

Considering the aforementioned reasons, we argue that an ideal unrestricted attack should meet three
criteria: i) it needs to maintain human visual imperceptibility and the photorealism of the images; ii)
the attack content should be diverse, allowing for unrestricted modifications of image contents such
as texture and color, while ensuring semantic consistency; iii) the adversarial examples should have a
high attack performance so that they can transfer between different models. However, there is still a
substantial disparity between the current and ideal attacks.

To address this gap, we propose a novel unrestricted attack framework called Content-based Unre-
stricted Adversarial Attack. Firstly, we consider mapping images onto a low-dimensional manifold.
This low-dimensional manifold is represented by a generative model and expressed as a latent space.
This generative model is trained on millions of natural images, possessing two characteristics: i)
sufficient capacity to ensure the photorealism of generated images; ii) well-alignment of image
contents with latent space ensures a diversity of content. Subsequently, more generalized images can
be generated by walking along the low-dimensional manifold. Optimizing the adversarial objective
on this latent space allows us to achieve more diverse adversarial contents. In this paper, we propose
Adversarial Content Attack (ACA) utilizing the diffusion model as a low-dimensional manifold.
Specifically, we employ Image Latent Mapping (ILM) to map images onto the latent space, and
utilize Adversarial Latent Optimization (ALO) to optimize the latents, thereby generating unrestricted
adversarial examples with high transferability. In conclusion, our main contributions are:

•We propose a novel attack framework called Content-based Unrestricted Adversarial Attack,
which utilizes high-capacity and well-aligned low-dimensional manifolds to generate adversarial
examples that are more diverse and natural in content.

•We achieve an unrestricted content attack, known as the Adversarial Content Attack. By utilizing
Image Latent Mapping and Adversarial Latent Optimization techniques, we optimize latents in a
diffusion model, generating high transferable unrestricted adversarial examples.

• The effectiveness of our attack has been validated through experimentation and visualization.
Notably, we have achieved a significant improvement of 13.3∼50.4% over state-of-the-art attacks in
terms of adversarial transferability.

2 Background and Preliminary

Problem Definition. For a deep learning classifierFθ(·) with parameters θ, we denote the clean image
as x and the corresponding true label as y. Formally, unrestricted adversarial attacks aim to create
imperceptible adversarial perturbations (such as image distortions, texture or color modifications,
etc.) for a given input x to generate an adversarial example xadv that can mislead the classifier Fθ(·):

max
xadv

L(Fθ(xadv), y), s.t. xadv is natural, (1)

where L(·) is the loss function. Because existing unrestricted attacks are limited by their attack
contents, it prevents them from generating sufficiently natural adversarial examples and restricts their
attack performance on different models. We hope that unrestricted adversarial examples are more
natural and possess higher transferability. Therefore, we consider a more challenging and practical
black-box setting to evaluate the attack performance of unrestricted adversarial examples. In contrast
to the white-box setting, the black-box setting has no access to any information about the target model
(i.e., architectures, network weights, and gradients). It can only generate adversarial examples by
using a substitute model Fϕ(·) and exploiting their transferability to fool the target model Fθ(·).
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Content-based Unrestricted Adversarial Attack. Existing unconstrained attacks tend to modify
fixed content in images, such as textures or colors, compromising flexibility in unconstrained settings
to ensure the photorealism of adversarial examples. For instance, ColorFool [47] manually selects
the parts of the image that are sensitive to human perception in order to modify the colors, and its
effectiveness is greatly influenced by human intuition. Natural Color Fool [60], utilizes ADE20K [63]
to construct the distribution of color distributions, resulting in its performance being restricted
by the selected dataset. These methods subjectively choose the content to be modified for minor
modifications, but this sacrifices the flexibility under unrestricted settings and limits the emergence of
more "unrestricted" attacks. Taking this into consideration, we contemplate whether it is possible to
achieve an unrestricted adversarial attack that can adaptively modify the content of an image while
ensuring the semantic consistency of the image.

Figure 1: Adversarial examples are generated along
the adversarial direction of the low-dimensional man-
ifold of natural images. This manifold represents
many contents of natural images, so the generated
unrestricted adversarial examples combine multiple
adversarial contents (shape, texture and color).

An ideal unrestricted attack should ensure the
photorealism of adversarial examples, pos-
sess diverse adversarial contents, and exhibit
potential attack performance. To address
this gap, we propose a novel unrestricted at-
tack framework called Content-based Un-
restricted Adversarial Attack. Within this
framework, we assume that natural images
can be mapped onto a low-dimensional man-
ifold by a generative model. As this low-
dimensional manifold is well-trained on nat-
ural images, it naturally ensures the photo-
realism of the images and possesses the rich
content present in natural images. Once we
map an image onto a low-dimensional mani-
fold, moving it along the adversarial direction
on the manifold yields an unrestricted adver-
sarial example. We argue that such a frame-
work is closer to the ideal of unrestricted ad-
versarial attacks, as it inherently guarantees
the photorealism of adversarial examples and
rich image content. Moreover, since the clas-
sifier itself fits the distribution of this low-dimensional manifold, adversarial examples generated
along the manifold have more adversarial contents and the potential for strong attack performance, as
shown in Figure 1.

Naturally, selecting a low-dimensional manifold represented by a generative model necessitates
careful consideration. There are two characteristics taken into account: i) sufficient capacity to
ensure photorealism in the generated images; and ii) well-alignment ensures that image attributes
are aligned with the latent space, thereby promoting diversity in content generation. Recently,
diffusion models have emerged as a leading approach for generating high-quality images across
varied datasets, frequently outperforming GANs [9]. However, several large-scale text-to-image
diffusion models, including Imagen [44], DALL-E2 [41], and Stable Diffusion [42], have only
recently come to the fore, exhibiting unparalleled semantic generation capabilities. Considering the
trade-off between computational cost and high-fidelity image generation, we select Stable Diffusion
as the low-dimensional manifold in this paper. It is based on prompt input and is capable of generating
highly realistic natural images that conform to the semantics of the prompts.

3 Adversarial Content Attack

Based on the aforementioned framework and the full utilization of the diffusion model’s capability,
we achieve the unrestricted content-based attack known as Adversarial Content Attack (ACA),
as shown in Figure 2. Specifically, we first employ Image Latent Mapping (ILM) to map images
onto the latent space represented by this low-dimensional manifold. Subsequently, we introduce
an Adversarial Latent Optimization (ALO) technique that moves the latent representations of
images along the adversarial direction on the manifold. Finally, based on iterative optimization, ACA
can generate highly transferable unrestricted adversarial examples that appear quite natural. The
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Figure 2: Pipeline of Adversarial Content Attack. First, we use Image Latent Mapping to map images
into latent space. Next, Adversarial Latent Optimization is used to generate adversarial examples.
Eventually, the generated adversarial examples can fool the target classifier.

algorithm for ACA is presented in Algorithm 1, and we further combine the diffusion model to design
the corresponding mapping and optimization methods.

3.1 Image Latent Mapping

For the diffusion model, the easiest image mapping is the inverse process of DDIM sampling [9, 48]
with the condition embedding C = ψ(P) of prompts P , based on the assumption that the ordinary
differential equation (ODE) process can be reversed in the limit of small steps:

zt+1 =

√
αt+1

αt
zt +

√
αt+1(

√
1

αt+1
− 1−

√
1

αt
− 1) · ϵθ(zt, t, C), (2)

where z0 is the given real image, a schedule {β0, ..., βT } ∈ (0, 1) and αt =
∏t

1(1− βi). In general,
this process is the reverse direction of the denoising process (z0 → zT instead of zT → z0), which
can map the image z0 to zT in the latent space. Image prompts are automatically generated using
image caption models (e.g., BLIP v2 [31]). For simplicity, the encoding of the VAE is ignored.

Text-to-image synthesis usually emphasizes the effect of the prompt. Therefore, a classifier-free
guidance technique [19] is proposed. Its prediction is also performed unconditionally, which is
then extrapolated with the conditioned prediction. Given w as the guidance scale parameter and
∅ = ψ(””) as the embedding of a null text, the classifier-free guidance prediction is expressed by:

ϵ̃θ(zt, t, C,∅) = w · ϵθ(zt, t, C) + (1− w) · ϵθ(zt, t,∅), (3)

where w = 7.5 is the default value for Stable Diffusion. However, since the noise is predicted by the
model ϵθ in the inverse process of DDIM sampling, a slight error is incorporated in every step. Due
to the existence of a large guidance scale parameter w in the classifier-free guidance technique, slight
errors are amplified and lead to cumulative errors. Consequently, executing the inverse process of
DDIM sampling with classifier-free guidance not only disrupts the Gaussian distribution of noises
but also induces visual artifacts of unreality [37].

To mitigate cumulative errors, we follow [37] and optimize a null text embedding ∅t for each
timestamp t. First, the inverse process of DDIM sampling with w = 1 outputs a series of consecutive
latents {z∗0 , ..., z∗T } where z∗0 = z0. Then, we conduct the following optimization with w = 7.5 (the
default value for Stable Diffusion) and z̄T = zt during N iterations for the timestamps t = {T, ..., 1}:

min
∅t

||z∗t−1 − zt−1(z̄t, t, C,∅t)||22, (4)

zt−1(z̄t, t, C,∅t) =

√
αt−1

αt
z̄t +

√
αt−1

(√
1

αt−1
− 1−

√
1

αt
− 1

)
· ϵ̃θ(zt, t, C,∅t). (5)

At the end of each step, we update ¯zt−1 to zt−1(z̄t, t, C,∅t). Finally, we obtain the latent of the
given image in the low-dimensional manifold, consisting of the noise z̄T , the null text embedding
∅t, and the text embedding C = ψ(P). Note that compared to other strategies [12, 43, 26, 54], the
current strategy is simple and effective and does not require fine-tuning to obtain high-quality image
reconstruction. Next, we exploit this latent to generate unrestricted adversarial examples.
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3.2 Adversarial Latent Optimization

In this section, we propose an optimization method for latents to maximize the attack performance
on unrestricted adversarial examples. In the latent space of a given image after ILM, the null text
embedding ∅t ensures the quality of the reconstructed image, while the text embedding C ensures
the semantic information of the image. Therefore, optimizing both embeddings may not be ideal.
Considering that the noise z̄T largely represents the image’s information in the latent space, we
choose to optimize it instead. However, this optimization is still challenged by complex gradient
calculations and the overflow of the value range.

Based on the latents generated by ILM, we define the denoising process of diffusion models as Ω(·)
through Equation 5, and it involves T iterations:

Ω(zT , T, C, {∅t}Tt=1) = z0 (z1 (..., (zT−1, T − 1, C,∅T−1) , ..., 1, C,∅1) , 0, C,∅0) . (6)

Therefore, the reconstructed image is denoted as z̄0 = Ω(zT , T, C, {∅t}). The computational process
of VAE is disregarded herein, as it is differentiable. Combining Equation 7, our adversarial objective
optimization is expressed by:

max
δ
L (Fθ(z̄0), y) , s.t. ||δ||∞ ≤ κ, z̄0 = Ω(zT + δ, T, C, {∅t}) and z̄0 is natural, (7)

where δ is the adversarial perturbation on the latent space. Our loss function consists of two parts: i)
cross-entropy loss Lce, which mainly guides adversarial examples toward misclassification. ii) mean
square error loss Lmse mainly guides the generated adversarial examples to be as close as possible to
clean images on l2 distance. Therefore, the total loss function L is expressed as:

L(Fθ(z̄0), y, z0) = Lce(Fθ(z̄0), y))− β · Lmse(z̄0, z0), (8)

where β is 0.1 in this paper. The loss function L aims to maximize the cross-entropy loss and
minimize the l2 distance between the adversarial example z̄0 and the clean image z0.

To ensure the consistency of z0 and z̄0, we assume that δ does not change the consistency when δ
is extremely small, i.e., ||δ||∞ ≤ κ. The crux pertains to determining the optimal δ that yields the
maximum classification loss. Analogous to conventional adversarial attacks, we employ gradient-
based techniques to estimate δ through: δ ≃ η∇zTL (Fθ(z̄0), y), where η denotes the magnitude of
perturbations that occur in the direction of the gradient. To expand∇zTL (Fθ(z̄0), y) by the chain
rule, we can have these derivative terms as follows:

∇zTL (Fθ(z̄0), y) =
∂L
∂z̄0
· ∂z̄0
∂z1
· ∂z1
∂z2
· · · ∂zT−1

∂zT
. (9)

Skip Gradient. After observing the items, we find that although each item is differentiable, it is not
feasible to derive the entire calculation graph. First, we analyze the term ∂L

∂z̄0
, which represents the

derivative of the classifier with respect to the reconstructed image z̄0 and provides the adversarial
gradient direction. Then, for ∂zt

∂zt+1
, each calculation of the derivative represents the calculation of

a backpropagation. Furthermore, a complete denoising process accumulates T calculation graphs,
resulting in memory overflow (similar phenomena are also found in [45]). Therefore, the gradient of
the denoising process cannot be directly calculated.

Fortunately, we propose a skip gradient to approximate ∂z0
∂zT

= ∂z̄0
∂z1
· ∂z1∂z2

· · · ∂zT−1

∂zT
. Recalling

the diffusion process, the denoising process aims to eliminate the Gaussian noise added in DDIM
sampling [48, 9, 42]. DDIM samples zt at any arbitrary time step t in a closed form using reparame-
terization trick:

zt =
√
αtz0 +

√
1− αtε, ε ∼ N (0, I). (10)

Consequently, we perform a manipulation by rearranging Equation 10 to obtain z0 = 1√
αt
zt −√

1−αt

αt
ε. Hence, we further obtain ∂z0

∂zt
= 1√

αt
. In Stable Diffusion, timestep t is at most 1000, so

lim
t→1000

∂z0
∂zt

= lim
t→1000

1√
αt
≈ 14.58. In summary, ∂z0

∂zt
can be regarded as a constant ρ and Equation 9

can be re-expressed as ∇zTL (Fθ(z̄0), y) = ρ ∂L
∂z̄0

. In summary, skip gradients approximate the
gradients of the denoising process while reducing the computation and memory usage.

Differentiable Boundary Processing. Since the diffusion model does not explicitly constrain the
value range of z̄0, the modification of zT may cause the value range to be exceeded. So we introduce
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Algorithm 1 Adversarial Content Attack
Input: a input image z0 with the label y, a text embedding C = ψ(P), a classifier Fθ(·), DDIM

steps T , image mapping iteration Ni, attack iterations Na, and momentum factor µ
1: Calculate latents {z∗0 , ..., z∗T } using Equation 5 over z0 with w = 1
2: Initialize w = 7.5, z̄T ← z∗T , ∅← ψ(””), δ0 ← 0, g0 ← 0
3: // Image Latent Mapping
4: for t = T, T − 1 . . . , 1 do
5: for j = 1, . . . , Ni do
6: ∅t ← ∅t − ζ∇∅t

||z∗t−1 − zt−1(z̄t, t, C,∅t)||22
7: end for
8: ¯zt−1 ← zt−1(z̄t, t, C,∅t), ∅t−1 ← ∅t

9: end for
10: // Adversarial Latent Optimization
11: for k = 1, . . . , Na do
12: z̄0 ← Ω

(
z̄T + δk−1, T, C, {∅t}Tt=1

)
13: gk ← µ · gk−1 +

∇zT
L(Fθ(ϱ(z̄0),y))

||∇zT
L(Fθ(ϱ(z̄0),y))||1

14: δk ← Πκ (δk−1 + η · sign(gk))
15: end for
16: z̄0 ← ϱ

(
Ω
(
z̄T + δNa , T, C, {∅t}Tt=1

))
Output: The unrestricted adversarial example z̄0.

differentiable boundary processing ϱ(·) to solve this problem. ϱ(·) constrains the values outside [0, 1]
to the range of [0, 1]. The mathematical expression of DPB is as follows:

ϱ(x) =


tanh(1000x)/10000, x < 0,

x, 0 ≤ x ≤ 1,

tanh(1000(x− 1))/10001, x > 1.

(11)

Next, we define Πκ as the projection of the adversarial perturbation δ onto κ-ball. We introduce
momentum g and express the optimization adversarial latents as:

gk ← µ · gk−1 +
∇zTL (Fθ ((ϱ(z̄0), y))

||∇zTL (Fθ (ϱ(z̄0), y)) ||1
, (12)

δk ← Πκ (δk−1 + η · sign(gk)) . (13)

In general, Adversarial Latent Optimization (ALO) employs skip gradient to determine the gradient
of the denoising process, and integrates differentiable boundary processing to regulate the value
range of adversarial examples, and finally performs iterative optimization according to the gradient.
Combined with Image Latent Mapping, Adversarial Content Attack is illustrated in Algorithm 1.

4 Experiments

4.1 Experimental Setup

Datasets. Our experiments are conducted on the ImageNet-compatible Dataset [29]. The dataset
consists of 1,000 images from ImageNet’s validation set [8], and is widely used in [10, 13, 58, 60].

Attack Evaluation. We choose SAE [20], ADer [1], ReColorAdv [30], cAdv [2], tAdv [2], ACE [61],
ColorFool [47], NCF [60] as comparison methods of Adversarial Content Attack (ACA). The
parameters for these unrestricted attacks follow the corresponding default settings. Our attack
evaluation metric is the attack success rate (ASR, %), which is the percentage of misclassified images.

Models. To evaluate the adversarial robustness of network architectures, we select convolutional
neural networks (CNNs) and vision transformers (ViTs) as the attacked models, respectively. For
CNNs, we choose normally trained MoblieNet-V2 (MN-v2) [46], Inception-v3 (Inc-v3) [50], ResNet-
50 (RN-50) and ResNet-152 (RN-152) [18], Densenet-161 (Dense-161) [22], and EfficientNet-b7 (EF-
b7) [52]. For ViTs, we consider normally trained MoblieViT (MobViT-s) [35], Vision Transformer
(ViT-B) [11], Swin Transformer (Swin-B) [34], and Pyramid Vision Transformer (PVT-v2) [55].
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Table 1: Performance comparison of adversarial transferability on normally trained CNNs and ViTs.
We report attack success rates (%) of each method (“*” means white-box attack results).

Surrogate
Model Attack

Models Avg.
ASR (%)CNNs Transformers

MN-v2 Inc-v3 RN-50 Dense-161 RN-152 EF-b7 MobViT-s ViT-B Swin-B PVT-v2

- Clean 12.1 4.8 7.0 6.3 5.6 8.7 7.8 8.9 3.5 3.6 6.83
ILM 13.5 5.5 8.0 6.3 5.9 8.3 8.3 9.0 4.8 4.0 7.36

MobViT-s

SAE 60.2 21.2 54.6 42.7 44.9 30.2 82.5* 38.6 21.1 20.2 37.08
ADef 14.5 6.6 9.0 8.0 7.1 9.8 80.8* 9.7 5.1 4.6 8.27

ReColorAdv 37.4 14.7 26.7 22.4 21.0 20.8 96.1* 21.5 16.3 16.7 21.94
cAdv 41.9 25.4 33.2 31.2 28.2 34.7 84.3* 32.6 22.7 22.0 30.21
tAdv 33.6 18.8 22.1 18.7 18.7 15.8 97.4* 15.3 11.2 13.7 18.66
ACE 30.7 9.7 20.3 16.3 14.4 13.8 99.2* 16.5 6.8 5.8 14.92

ColorFool 47.1 12.0 40.0 28.1 30.7 19.3 81.7* 24.3 9.7 10.0 24.58
NCF 67.7 31.2 60.3 41.8 52.2 32.2 74.5* 39.1 20.8 23.1 40.93

ACA (Ours) 66.2 56.6 60.6 58.1 55.9 55.5 89.8* 51.4 52.7 55.1 56.90

MN-v2

SAE 90.8* 22.5 53.2 38.0 41.9 26.9 44.6 33.6 16.8 18.3 32.87
ADer 56.6* 7.6 8.4 7.7 7.1 10.9 11.7 9.5 4.5 4.5 7.99

ReColorAdv 97.7* 18.6 33.7 24.7 26.4 20.7 31.8 17.7 12.2 12.6 22.04
cAdv 96.6* 26.8 39.6 33.9 29.9 32.7 41.9 33.1 20.6 19.7 30.91
tAdv 99.9* 27.2 31.5 24.3 24.5 22.4 40.5 16.1 15.9 15.1 24.17
ACE 99.1* 9.5 17.9 12.4 12.6 11.7 16.3 12.1 5.4 5.6 11.50

ColorFool 93.3* 9.5 25.7 15.3 15.4 13.4 15.7 14.2 5.9 6.4 13.50
NCF 93.2* 33.6 65.9 43.5 56.3 33.0 52.6 35.8 21.2 20.6 40.28

ACA (Ours) 93.1* 56.8 62.6 55.7 56.0 51.0 59.6 48.7 48.6 50.4 54.38

RN-50

SAE 63.2 25.9 88.0* 41.9 46.5 28.8 45.9 35.3 20.3 19.6 36.38
ADer 15.5 7.7 55.7* 8.4 7.8 11.4 12.3 9.2 4.6 4.9 9.09

ReColorAdv 40.6 17.7 96.4* 28.3 33.3 19.2 29.3 18.8 12.9 13.4 23.72
cAdv 44.2 25.3 97.2* 36.8 37.0 34.9 40.1 30.6 19.3 20.2 32.04
tAdv 43.4 27.0 99.0* 28.8 30.2 21.6 35.9 16.5 15.2 15.1 25.97
ACE 32.8 9.4 99.1* 16.1 15.2 12.7 20.5 13.1 6.1 5.3 14.58

ColorFool 41.6 9.8 90.1* 18.6 21.0 15.4 20.4 15.4 5.9 6.8 17.21
NCF 71.2 33.6 91.4* 48.5 60.5 32.4 52.6 36.8 19.8 21.7 41.90

ACA (Ours) 69.3 61.6 88.3* 61.9 61.7 60.3 62.6 52.9 51.9 53.2 59.49

ViT-B

SAE 54.5 26.9 49.7 38.4 41.4 30.4 46.1 78.4* 19.9 18.1 36.16
ADer 15.3 8.3 9.9 8.4 7.6 12.0 12.4 81.5* 5.3 5.5 9.41

ReColorAdv 25.5 12.1 17.5 13.9 14.4 15.4 22.9 97.7* 10.9 8.6 15.69
cAdv 31.4 27.0 26.1 22.5 19.9 26.1 32.9 96.5* 18.4 16.9 24.58
tAdv 39.5 22.8 25.8 23.2 22.3 20.8 34.1 93.5* 16.3 15.3 24.46
ACE 30.9 11.4 22.0 15.5 15.2 13.0 17.0 98.6* 6.5 6.3 15.31

ColorFool 45.3 13.9 35.7 24.3 28.8 19.8 27.0 83.1* 8.9 9.3 23.67
NCF 55.9 25.3 50.6 34.8 42.3 29.9 40.6 81.0* 20.0 19.1 35.39

ACA (Ours) 64.6 58.8 60.2 58.1 58.1 57.1 60.8 87.7* 55.5 54.9 58.68

Implementation Details. Our experiments are run on an NVIDIA Tesla A100 with Pytorch. DDIM
steps T = 50, image mapping iteration Ni = 10, attack iterations Na = 10, β = 0.1, ζ = 0.01,
η = 0.04, κ = 0.1, and µ = 1. The version of Stable Diffusion [42] is v1.4. Prompts for images are
automatically generated using BLIP v2 [31].

4.2 Attacks on Normally Trained Models

In this section, we assess the adversarial transferability of normally trained convolutional neural
networks (CNNs) and vision transformers (ViTs), including methods such as SAE [20], ADer [1],
ReColorAdv [30], cAdv [2], tAdv [2], ACE [61], ColorFool [47], NCF [60], and our ACA. Adver-
sarial examples are crafted via MobViT-s, MN-v2, RN-50, and ViT-B, respectively. Avg. ASR (%)
refers to the average attack success rate on non-substitute models.

Table 1 illustrates the performance comparison of adversarial transferability on normally trained
CNNs and ViTs. It can be observed that adversarial examples by ours generally exhibit superior
transferability compared to those generated by state-of-the-art competitors and the impact of ILM
on ASR is exceedingly marginal. When CNNs (RN-50 and MN-v2) are used as surrogate models,
our ACA exhibits minimal differences with state-of-the-art NCF in MN-v2, RN-50, and RN-152.
However, in Inc-v3, Dense-161, and EF-b7, such as when RN-50 is used as the surrogate model, we
significantly outperform NCF by 28.0%, 13.4% and 27.9%, respectively. This indicates that our
ACA has higher transferability in heterogeneous CNNs. Furthermore, our ACA demonstrates state-of-
the-art transferability in current unconstrained attacks under the more challenging cross-architecture
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Table 2: Performance comparison of adversarial transferability on adversarial defense methods.

Attack HGD R&P NIPS-r3 JPEG Bit-Red DiffPure Inc-v3ens3 Inc-v3ens4 IncRes-v2ens Res-De Shape-Res Avg. ASR (%)

Clean 1.2 1.8 3.2 6.2 17.6 15.4 6.8 8.9 2.6 4.1 6.7 6.77
ILM 1.5 1.9 3.5 7.1 18.5 16.1 6.8 9.8 3.0 5.1 8.1 7.40

SAE 21.4 19.0 25.2 25.7 43.5 39.8 25.7 29.6 20.0 35.1 49.6 30.42
ADer 2.9 3.6 6.9 10.4 27.5 18.1 10.1 12.1 5.6 6.0 9.7 10.26

ReColorAdv 5.1 7.0 10.0 20.0 24.3 20.0 11.1 15.5 7.4 11.6 18.4 13.67
cAdv 12.2 14.0 17.7 11.1 33.9 32.9 19.9 23.2 14.6 16.2 25.3 20.09
tAdv 10.9 12.4 14.4 17.8 29.6 21.2 17.7 19.0 12.5 16.4 25.4 17.94
ACE 4.9 5.9 11.1 12.6 28.1 24.9 12.4 15.4 7.6 11.6 21.0 14.14

ColorFool 9.1 9.6 15.3 18.0 37.9 33.8 17.8 21.3 10.5 20.3 35.0 20.78
NCF 22.8 21.1 25.8 26.8 43.9 39.6 27.4 31.9 21.8 34.4 47.5 31.18

ACA (Ours) 52.2 53.6 53.9 59.7 63.4 63.7 59.8 62.2 53.6 55.6 60.8 58.05

setting. Specifically, when the surrogate model is RN-50, we surpass NCF by significant margins of
10.0%, 16.1%, 32.1%, and 32.5% in MobViT-s, ViT-B, Swin-B, and PVT-v2, respectively. There
are two primary reasons for this phenomenon: i) our ACA utilizes a low-dimensional manifold search
of natural images for adversarial examples, with the manifold itself determining the transferability of
the adversarial examples, independent of the model’s architecture; ii) the diffusion model incorporates
the self-attention structure, exhibiting a certain degree of architectural similarity.

Overall, the deformation-based attack (ADer) exhibits lower attack performance in both white-box
and black-box settings. Texture-based attacks (tAdv) show better white-box attack performance,
but are less transferable than existing color-based attacks (NCF and SAE). Our ACA leverages the
low-dimensional manifold of natural images to adaptively combine image attributes and generate
unrestricted adversarial examples, resulting in a significant outperformance of state-of-the-art methods
by 13.3%∼50.4% on average. These results convincingly demonstrate the effectiveness of our
method in fooling normally trained models.

4.3 Attacks on Adversarial Defense Methods

The situation in that adversarial defense methods can effectively protect against current adversarial
attacks exhibits the Dunning-Kruger effect [28]. Actually, such defense methods demonstrate efficacy
in defending against adversarial examples within the lp norm, yet their robustness falters in the
face of novel and unseen attacks [25]. Therefore, we investigate whether unrestricted attacks can
break through existing defenses. Here, we choose input pre-process defenses (HGD [33], R&P [57],
NIPS-r33, JPEG [17], Bit-Red [59], and DiffPure [39]) and adversarial training models (Inc-v3ens3,
Inc-v3ens4, and Inc-v2ens [53]). Considering that some unrestricted attacks are carried out from the
perspective of shape and texture, we also choose shape-texture debaised models (ResNet50-Debaised
(Res-De) [32] and Shape-ResNet (Shape-Res) [14]).

The results of black-box transferability in adversarial defense methods are demonstrated in Table 2.
the surrogate model is ViT-B, and the target model is Inc-v3ens3 for input pre-process defenses. Our
method displays persistent superiority over other advanced attacks by a significant margin. Our ACA
surpasses NCF, SAE, ColorFool by 27.13%, 27.63%, and 37.27% on average ASR. In robust models,
based on lp adversarial training and shape-texture debiased models are not particularly effective
and can still be easily broken by unrestricted adversarial examples. Our approach can adaptively
generate various combinations of adversarial examples based on the manifold, thus exhibiting high
transferability to different defense methods. Additionally, Bit-Red and Diffpure reduce the ground-
truth class’s confidence and increase the adversarial examples’ transferability. These findings further
reveal the incompleteness and vulnerability of existing adversarial defense methods.

4.4 Visualization

Quantitative Comparison. Following [47] and [60], we quantitatively assess the image quality
using the non-reference perceptual image quality measure. Therefore, we choose NIMA [51],
HyperIQA [49], MUSIQ [27], and TReS [15]. NIMA-AVA and MUSIQ-AVA are trained on AVA [38],
and MUSIQ-KonIQ is trained on KonIQ-10K [21], following PyIQA [3]. As illustrated in Table 3,
our ILM maintains the same image quality as clean images, and ACA achieves the best results in

3https://github.com/anlthms/nips-2017/tree/master/mmd
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Clean ILM SAE cAdv tAdv ColorFool NCF ACA (Ours)

(a) Visualization of state-of-the-art unrestricted attacks

(b) Adversarial examples of Adversarial Content Attack (ACA) (c) Case Study

Figure 3: (a) Compared with other attacks, ACA generates the most natural adversarial examples; (b)
ACA can generate images with various adversarial content, which can combine shape, texture, and
color changes; (c) In some cases, ACA may slightly modify the semantic subject.

image quality assessment. ColorFool obtains equal or higher image quality than the clean images
because it requires manually selecting several human-sensitive semantic classes and adds uncontrolled
perturbations on human-insensitive semantic classes. In other words, ColorFool is bound by human
intuition, so do not deteriorate the perceived image quality (our results are similar to [47]). ACA
even surpasses ColorFool, mainly because: i) Our adversarial examples are generated based on the
low-dimensional manifold of natural images, which can adaptively combine the adversarial content
and ensure photorealism; ii) Stable Diffusion itself is an extremely powerful generation model, which
produces images with very high image quality; iii) These no-reference image metrics are often trained
on aesthetic datasets, such as AVA [38] or KonIQ-10K [21]. Some of the images in these datasets
are post-processed (such as Photoshop), which is more in line with human aesthetics. Because ACA
adaptively generates adversarial examples on a low-dimensional manifold, this kind of minor image
editing is similar to post-processing, which is more in line with human aesthetic perception and better
image quality.

Table 3: Image quality assessment.

Attack NIMA
-AVA↑HyperIQA↑MUSIQ

-AVA↑
MUSIQ
-KonIQ↑ TReS↑

Clean 5.15 0.667 4.07 52.66 82.01
ILM 5.15 0.672 4.08 52.55 81.80

SAE 5.05 0.597 3.79 47.24 71.88
ADer 4.89 0.608 3.89 47.39 72.10

ReColorAdv 5.07 0.668 3.97 51.08 80.32
cAdv 4.97 0.623 3.87 48.32 75.12
tAdv 4.83 0.525 3.78 44.71 67.07
ACE 5.12 0.648 3.96 50.49 77.25

ColorFool 5.24 0.662 4.05 52.27 78.54
NCF 4.96 0.634 3.87 50.33 74.10

ACA (Ours) 5.54 0.691 4.37 56.08 85.11

Qualitative Comparison. We visualize unrestricted
attacks of Top-5 black-box transferability, including
SAE, cAdv, tAdv, ColorFool, and NCF. In Figure 3(a),
we visualize adversarial examples generated by dif-
ferent unrestricted attacks. In night scenes and food,
color and texture changes are easily perceptible, while
our method still keeps image photorealism. Next, we
give more adversarial examples generated by ACA.
It is clearly observed that our method can adaptively
combine content to generate adversarial examples, as
shown in Figure 3(b). For example, the hot air balloon
in the lower left corner modifies both the color of the
sky and the texture of the hot air balloon. The straw-
berry in the lower right corner has some changes in shape and color while keeping the semantics
unchanged. However, in some cases, the body of semantics changes, as shown in Figure 3(c). It may
be because the prompts generated by BLIP v2 cannot describe the content of the image well.

4.5 Time Analysis

In this section, we illustrate the attack speed of various unrestricted attacks. We choose MN-v2 [46]
as the surrogate model and evaluate the inference time on an NVIDIA Tesla A100. Table 4 shows the
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Table 4: Attack speed of unrestricted attacks. We choose MN-v2 as the surrogate model and evaluate
the inference time on an NVIDIA Tesla A100.

Attack SAE ADer ReColorAdv cAdv tAdv ACE ColorFool NCF ACA (Ours)

Time (sec) 8.80 0.41 3.86 18.67 4.88 6.64 12.18 10.45 60.0+65.33=125.33

average time (in seconds) required to generate an adversarial example per image. ACA does have
a significant time cost compared to other attacks. Further, we analyze the time cost and find that
Image Latent Mapping (ILM) and Adversarial Latent Optimization (ALO) each accounted for 50%
of the time cost. However, most of the time cost of ILM and ALO lies in the sampling process of the
diffusion model. In this paper, our main contribution is to propose a new unrestricted attack paradigm.
Therefore, we focus on the improvement of the attack framework, rather than the optimization of time
cost. Since the time cost is mainly focused on the sampling of the diffusion model, we have noticed
that many recent works have accelerated or distilled the diffusion model, which can greatly reduce
the time of the sampling process. For example, [36] can reduce the total number of sampling steps by
at least 20 times. If these acceleration technologies are applied to our ACA, ACA can theoretically
achieve an attack speed of close to 6 seconds and we think this is a valuable optimization direction.

4.6 Ablation Study

Figure 4: Ablation studies of momentum (MO) and
differentiable boundary processing (DBP).

The ablation studies of momentum (MO) and
differentiable boundary processing (DBP) are
shown in Figure 4 and the surrogate model is
ViT-B [11]. Origin stands for ACA without
MO and DBP. MO is Origin with momentum,
and it can be observed that the adversarial
transferability is significantly improved after
the introduction of momentum. MO+DBP
is Origin with momentum and DBP. Since
DBP further optimizes the effectiveness of
the adversarial examples and constrains the
image within the range of values, it can still
improve the adversarial transferability. Although the above strategies are not the main contribution of
this paper, the above experiments illustrate that they can boost adversarial transferability.

5 Conclusions

In this paper, we propose a novel unrestricted attack framework called Content-based Unrestricted
Adversarial Attack. We map the image onto a low-dimensional manifold of natural images. When
images are moved along the adversarial gradient on the manifold, unrestricted adversarial examples
with diverse adversarial content and photorealistic can be adaptively generated. Based on the
diffusion model, we implement Adversarial Content Attack. Experiments show that the existing
defense methods are not very effective against unrestricted content-based attacks. We propose a new
form of unrestricted attack, hoping to draw attention to the threat posed by unrestricted attacks.

Limitations. Due to the inherent limitations of diffusion models, a considerable number of sampling
steps are required in the inference process, resulting in a relatively longer runtime, taking ∼ 2.5
minutes using a single A100 GPU. Additionally, the current adaptive generation of unrestricted
adversarial examples does not allow for fine-grained image editing. These issues are expected to be
resolved in the future with further advancements in diffusion models.

Negative Social Impacts. Adversarial examples from our method exhibit a high photorealism and
strong black-box transferability, which raises concerns about the robustness of DNNs, as malicious
adversaries may exploit this technique to mount attacks against security-sensitive applications.

Acknowledgements. This work was supported by National Natural Science Foundation of China
(No.62072112), Scientific and Technological innovation action plan of Shanghai Science and Tech-
nology Committee (No.22511102202).
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