
A Experimental details514

Datasets: We considered the MNIST [10], Fashion-MNIST [64], and CIFAR-10 [42] datasets. We515

standardized the images and used one-hot encoding for the labels.516

Models: We considered fully connected networks (FCNs), Myrtle family CNNs [58] and ResNets517

(version 1) [28] trained using the JAX [7], and Flax libraries [29]. We use d and w to denote the518

depth and width of the network. Below, we provide additional details of the models and clarify what519

width corresponds to for CNNs and ResNets.520

1. FCNs: We considered ReLU FCNs with constant width w in Neural Tangent Parameteriza-521

tion (NTP) / Standard Parameterization (SP), initialized at criticality [52]. The models do522

not include bias or normalization. The forward pass of the pre-activations from layer l to523

l + 1 is given by524
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where �(.) is the ReLU activation and �
l is a constant. For NTP, �

l = 2/
p
w and the weights525

W
l are initialized using normal distribution, i.e., W

l

ij
⇠ N (0, 1). For SP, �

l = 1 and the526

weights W
l are initialized as W

l

ij
⇠ N (0, 2/w). For the last layer, we have �

L = 1/
p
w for527

NTP and W
L

ij
⇠ N (0, 1/w) for SP.528

We considered d 2 {4, 8, 16} and w 2 {256, 512, 1024, 2048}. For d/w & 1/16, the529

dynamics is noisier, and it becomes challenging to separate the underlying deterministic530

dynamics from random fluctuations (see Appendix E).531

2. CNNs: We considered Myrtle family ReLU CNNs [58] without any bias or normalization532

in Standard Parameterization (SP), initialized using He initialization [28]. The above model533

uses a fixed number of channels in each layer, which we refer to as the width of the network.534

In this case, the forward pass equations for the pre-activations from layer l to layer l + 1 are535

given by536

h
l+1
i

(↵) =
wX

j

X

�2ker

W
l+1
ij

(�)�(hl

i
(↵ + �)), (3)

where ↵, � label the spacial location. The weights are initialized as W
l

ij
(�) ⇠ N (0, 2/k2

w),537

where k is the filter size. We considered d 2 {5, 7, 10} and w 2 {64, 128, 256}.538

3. ResNets: We considered version 1 ResNet [28] implementations from Flax examples539

without Batch Norm or regularization. For ResNets, width corresponds to the number of540

channels in the first block. For example, the standard ResNet-18 has four blocks with widths541

[w, 2w, 4w, 8w], with w = 64. We refer to w as the width or the widening factor. We542

considered ResNet-18 and ResNet-34 with w 2 {32, 64, 128}.543

All the models are trained with the average loss over the batch DB = {(xµ, yµ)}Bµ=1, i.e.,544

L(x, yDB
) = 1/B

P
B

µ=1 `(xµ, yµ), where `(.) is the loss function. This normalization, along with545

initialization, ensures that the loss is O(1) at initialization.546

Bias: Throughout this work, we have primarily focused on models without any bias for simplicity. In547

Appendix K, we demonstrate that bias does not have an appreciable impact on the results.548

Batch size: We use a batch size of 512 and scale the learning rate as ⌘ = c/�H

0 in all our experiments,549

unless specified. Appendix J shows results for a smaller batch size B = 32.550

Learning rate: We scale the learning rate constant as c = 2x, with x 2 {�1.0, . . . xmax} in steps of551

0.1. Here, xmax is related to the maximum learning rate constant as cmax = 2xmax .552

Sharpness measurement: We measure sharpness using the power iteration method with 20 iterations.553

We found that 20 iterations suffice both for MSE and cross-entropy loss. For MSE loss, we use m =554

2048 randomly selected training examples for evaluating sharpness at each step. In comparison, we555
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found that cross-entropy requires a large number of training examples to obtain a good approximation556

of sharpness. Given the computational constraints, we use 4096 training examples to approximate557

sharpness for cross-entropy loss.558

Averages over initialization and SGD runs: All the critical constants depend on both the random559

initializations and the SGD runs. In our experiments, we found that the fluctuations from initial-560

ization at large d/w outweigh the randomness coming from different SGD runs. Thus, we focus on561

initialization averages in all our experiments.562

A.1 Compute usage563

We utilized different computational resources depending on the task complexity. For less demanding564

tasks, we performed computation for a total of 2800 hours, utilizing a seventh of an NVIDIA A100565

GPU. For more computationally intensive tasks, we utilized a full NVIDIA A100 GPU for a total566

300 hours.567

A.2 Reproducibility568

We provide a notebook in the supplementary material that reproduces the main results of the paper.569

A.3 Details of Figures in the main text:570

Figure 1: A shallow CNN (d = 5, w = 128) in SP trained on the CIFAR-10 dataset with MSE571

loss for 1000 epochs using SGD with learning rates ⌘ = c/�H

0 and batch size B = 512. We measure572

sharpness at every step for the first epoch, every epoch between 10 and 100 epochs, and every 10573

epochs beyond 100.574

Figure 2: (top panel) A wide (d = 5, w = 512) and (bottom panel) a deep CNN (d = 10, w = 128)575

in SP trained on the CIFAR-10 dataset with MSE loss for t = 10 steps using vanilla SGD with576

learning rates ⌘ = c/�H

0 and batch size B = 512.577

Figure 3: (a) FCNs in NTP with d = 8 and w 2 {256, 512, 1024, 2048}trained on the MNIST578

dataset, (b) CNNs in SP with d = 7 and w 2 {64, 128, 256, 512} trained on the Fashion-MNIST579

dataset, (c) ResNet in SP with d = 18 and w 2 {32, 64, 128} trained on the CIFAR-10 dataset580

(without batch normalization). Each data point in the figure represents an average of ten distinct581

initialization, and the solid lines represent a two-degree polynomial y = a + bx + cx
2 fitted to the582

raw data points. Here, where x = 1/w, and y can take on one of three values: closs, csharp and583

cmax. We show the error bars in Appendix C only as they may give an impression that the inequality584

closs  csharp  cmax can be violated.585

Figure 4: (a) FCNs in NTP with d 2 {4, 8, 16} and w 2 {256, 512, 1024, 2048}trained on the586

MNIST dataset, (b) CNNs in SP with d 2 {5, 7, 10} and w 2 {64, 128, 256, 512} trained on the587

Fashion-MNIST dataset, (c) ResNet in SP with d 2 {18, 34} and w 2 {32, 64, 128} trained on the588

CIFAR-10 dataset (without batch normalization).589

Figure 5: Normalized sharpness measured at c⌧ = 200 against the learning rate constant for 7-layer590

CNNs in SP trained on the CIFAR-10 dataset, with w 2 {128, 256, 512}. Each data point is an591

average over five random initialization. Smoothening details are provided in Appendix I.2.592

Figure 6: The phase diagram of the uv model trained with MSE loss using gradient descent with (a)593

the top eigenvalue of Hessian �
H

t
, (b) the trace of Hessian tr(Ht) and (c) the square of the Frobenius594

norm tr(HT

t
Ht) used as a measure of sharpness. In (a), the learning rate is scaled as ⌘ = c/�H

0 ,595

while in (b) and (c), the learning rate is scaled as ⌘ = k/tr(H0). The vertical dashed line shows c = 2596

(k = 2) for reference. Each data point is an average over 500 random initializations.597

Figure 7: Training trajectories of the uv model with (a, b) large (w = 512) and (c, d) small (w = 2)598

width, trained for t = 10 training steps on a single example (x, y) = (1, 0) with MSE loss using599

vanilla gradient descent with learning rates (a, c) c = 0.5 and (b, d) c = 2.50.600
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Figure 8: Training trajectories of the uv model with (a) large (w = 512) and (v) a small (w = 2)
widths trained for t = 10 training steps on a single example (x, y) = (1, 0). For the wide network,
closs = 2.1, csharp = 2.6, cmax = 4.0, and for the narrow network, closs = 3.74, csharp = 4.63,
cmax = 4.93.

B Additional results for the uv model601

B.1 Details of the model602

Consider a two-layer linear network in (NTP) with unit input-output dimensions603

f(x) =
1

p
w

v
T
ux, (4)

where x, f(x) 2 R. Here, u, v 2 Rw are trainable parameters, with each element initialized using604

the normal distribution, ui, vi ⇠ N (0, 1) for i 2 {1, . . . , w}. The model is trained using MSE loss605

on a single training example (x, y) = (1, 0), which simplifies the loss to606

L(u, v) =
1

2
f
2
. (5)

The trace of the Hessian tr(H) has a simple expression in terms of the norms of the weight vectors607

tr(H) =
x
2

w

�
kuk

2 + kvk
2
�
, (6)

which is equivalent to the NTK for this model. The Frobenius norm of the Hessian kHkF can be608

written in terms of the loss L and tr(H)609

kHk
2
F
= tr(H)2 + 2f2

✓
1 +

2

w

◆
= tr(H)2 + 4L

✓
1 +

2

w

◆
(7)

The gradient descent updates of the model trained using MSE loss on a single training example610

(x, y) = (1, 0) are given by611
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Figure 9: (a) Normalized sharpness measured at ⌧ = 100 steps against the learning rate constant for
the uv model trained on (x, y) = (1, 0), with varying widths. Each data point is an average of over
500 initializations, where the shaded region depicts the standard deviation around the mean trend. (b,
c) Smooth estimations of the first two derivatives, �⌧ and �

0
⌧

, of the, averaged normalized sharpness
wrt the learning rate constant. The vertical dashed lines denote ccrit estimated for each width, using
the maximum of �

0
⌧
. Here, we have removed the points beyond c = 3.5 for the calculation of

derivatives to avoid large fluctuations near the divergent phase. Smoothening details are described in
Appendix I.2.

vt+1 = vt � ⌘ft
1

p
w

utx (8)

ut+1 = ut � ⌘ft
1

p
w

vtx (9)

The update equations in function space can be written in terms of the trace of the Hessian tr(H).612

ft+1 = ft

✓
1 � ⌘ tr(Ht) +

⌘
2
f
2
t

w

◆

tr(Ht+1) = tr(Ht) +
⌘f

2
t

w
(⌘ tr(Ht) � 4) .

(10)

Figure 8 shows the training trajectories of the uv model trained on (x, y) = (1, 0) using MSE loss613

for 10 training steps. The model shows similar dynamics to those presented in Section 2. It is worth614

mentioning that the above equations have been analyzed in [47] at large width. In the following615

subsections, we extend their analysis by incorporating the higher-order terms to analyze the effect of616

finite width.617

B.2 The intermediate saturation regime618

The uv model trained on (x, y) = (1, 0) does not show the progressive sharpening and late-time619

regimes (iii) and (iv) described in Section 1. Hence, we can measure sharpness at the end of training620

to analyze how it is reduced upon increasing the learning rate and to compare it with the intermediate621

saturation regime results in Section 3.622

Figure 9(a) shows the normalized sharpness measured at ⌧ = 100 steps for various widths. This623

behavior reproduces the results observed in the intermediate saturation regime in Section 3. In624

particular, we can see stages (1) and (2), where �
H

⌧ /�H

0 starts off fairly independent of learning rate625

constant c, and then dramatically reduces when c > 2; stage (3), where �
H

⌧ /�H

0 plateaus at a small626

value as a function of c is too close to the divergent phase in this model to be clearly observed. The627

corresponding derivatives of the averaged normalized sharpness, �⌧ , and �
0
⌧
, are shown in Figure628

9(b, c). The vertical dashed lines denote ccrit estimated for each width, using the maximum of �
0
⌧
.629

We observe that ccrit = 2 for all widths.630
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Figure 10: (a, b) The averaged loss at the first step hL1/L0i against the learning rate constant k for
varying widths obtained from (a) inequality 16 and (b) numerical experiments. The intersection of
hL1/L0i with the horizontal line y = 1 depicts kloss. The two vertical lines k = 2 and k = 4 mark the
endpoints of kloss at small and large widths. The shaded region in (b) shows the standard deviation
around the mean trend. (c) The scaling of �

H

0 and tr(H0) with width.

B.3 Opening of the sharpness reduction phase in the uv model631

This section shows that O(1/w) terms in Equation (10) effectively lead to the opening of the sharpness632

reduction phase with 1/w in the uv model. In Appendix B.2, we demonstrated that for the uv model,633

ccrit = 2 for all values of widths. Hence, it suffices to show that closs increases from the value 2634

as 1/w increases. We do so by finding the smallest k such that the averaged loss over initializations635

increases during early training.636

It follows from Equation 10 that the averaged loss increases in the first training step if the following637

holds638

⌧
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2
f
2
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◆2
+
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where h.i denotes the average over initializations. On scaling the learning rate with trace as ⌘ =639
k/tr(H0), we have640
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The required two averages have the following expressions as shown in Appendix B.8.641

⌧
f
2
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Tr(H0)2

�
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w
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(14)

⌧
f
4
0

Tr(H0)4

�
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16

�(w)

�(w + 4)
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Inserting the above expressions in Equation 13, on average the loss increases in the very first step if642

the following inequality holds643
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�
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k
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3k4
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The graphical representation of the above inequality shown in Figure 10(a) is in excellent agreement644

with the experimental results presented in Figure 10(b).645

Let us denote k
0
loss

as the minimum learning rate constant such that the average loss increases in the646

first step. Similarly, let kloss denote the learning rate constant if the loss increases in the first 10 steps.647

Then, k
0
loss

increases from the value 2 as 1/w increases as shown in Figure 10(a). By comparison, the648

trace reduces at any step if ⌘ tr(Ht) < 4. At initialization, this condition becomes k < 4. Hence, for649

k < k
0
loss

, both the loss and trace monotonically decrease in the first training step. These arguments650

can be extended to later training steps, revealing that the loss and trace will continue to decrease for651

k < k
0
loss

.652

Next, let ⌘loss denote the learning rate corresponding to closs. Then, we have ⌘loss =
closs

�
H

0
= kloss

tr(H0)
,653

implying654

closs = kloss
�
H

0

tr(H0)
. (17)

Figure 10(c) shows that �
H

0 � tr(H0) for all widths, implying closs � kloss. Hence, closs increases655

with 1/w as observed in Figure 6(a). In Appendix B.2, we demonstrated that for the uv model,656

ccrit = 2 for all values of widths. Incorporating this with closs increases with 1/w, we have sharpness657

reduction phase opening up as 1/w increases.658

B.4 Opening of the loss catapult phase at finite width659

In this section, we use the Frobenius norm of the Hessian kHkF as a proxy for the sharpness and660

demonstrate the emergence of the loss-sharpness catapult phase at finite width. In particular, We661

analyze the expectation value htr(HT
H)i after the first training step near k = kloss and show that662

kloss  kfrob, with the difference increasing with 1/w. First, we write tr(HT

t
Ht) in terms of Lt and663

tr(Ht)664

tr(HT

t
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2 + 4
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w

◆
Lt. (18)

Next, using Equations 1, we write down the change in tr(HT

t
Ht) after the first training step in terms665

of tr(H0) and L0666
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Next, we substitute ⌘ = k/ tr(H0) to obtain the above equation as a function of k667
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Finally, we calculate the expectation value of h� tr(HT

1 H1)i668
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Figure 11: The relationship between the critical constants for the uv model trained on a single training
examples (x, y) = (1, 0) with MSE loss using gradient descent. Each data point corresponds to a
random initialization

by estimating
D

f
4
0

tr(H0)2

E
using the approach demonstrated in the previous section669
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Inserting
D

f
4
0

tr(H0)2

E
in Equation 21 along with hf

2
0 i = 1, we have670
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At infinite width, the above equation reduces to
⌦
� tr(HT

1 H1)
↵
= 4 hL1 � L0i, and hence, kfrob =671

kloss. For any finite width, I(k, w) < 0 for 0 < k < 4. At k  kloss, L1 � L0  0, and therefore672 ⌦
� tr(HT

1 H1)
↵

< 0. In order for the sharpness to catapult, we require
⌦
� tr(HT

1 H1)
↵

> 0 and673

therefore kfrob > kloss. As 1/w increases |I(k, w)| also increases, which means a higher value of674

L1 � L0 is required to reach a point where
⌦
� tr(HT

1 H1)
↵

� 0. Thus kfrob � kloss increases with675

1/w.676

B.5 The early training trajectories677

Figure 8 shows the early training trajectories of the uv model with large (w = 512) and small (w = 2)678

widths. The dynamics depicted show several similarities with early training dynamics of real-world679

models shown in Figure 2. At small widths, the loss catapults at relatively higher learning rates680

(specifically, at closs = 3.74, which is significantly higher than the critical value of ccrit = 2).681

B.6 Relationship between critical constants682

Figure 11 shows the relationship between various critical constants for the uv model. The data show683

that the inequality closs  csharp  cmax holds for every random initialization of the uv model.684

B.7 Phase diagrams with error bars685

This section shows the variation in the phase diagram boundaries of the uv model shown in Figure 6(a,686

b). Figure 12 shows these phase diagrams. Each data point is an average of over 500 initializations.687

The horizontal bars around each data point indicate the region between 25% and 75% quantile.688

B.8 Derivation of the expectation values689

Here, we provide the detailed derivation of the averages
D

f
2
0

Tr(H0)2

E
and

D
f
4
0

Tr(H0)4

E
. We begin by690

finding the average
D

f
2
0

Tr(H0)2

E
691
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Figure 12: The phase diagram of the uv model trained with MSE loss using gradient descent with (a)
sharpness �

H

t
(b) trace of Hessian trH0 and (c) the square of the Frobenius norm tr(HT

t
Ht) used as a

measure of sharpness. In (a), the learning rate is scaled as ⌘ = c/�H

0 , while in (b) and (c), the learning
rate is scaled as ⌘ = k/tr(H0). Each data point denotes an average of over 500 initialization, and the
smooth curve represents a 2-degree polynomial fitted to the raw data. The horizontal bars around the
average data point indicate the region between 25% and 75% quantile.
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where k.k denotes the norm of the vectors.692

The above integral is non-zero only if j = k. Hence, it is a sum of w identical integrals. Without any693

loss of generality, we solve this integral for j = 1 and multiply by w to obtain the final result, i.e.,694
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Consider a transformation of u, v 2 Rw into w dimensional spherical coordinates such that695

u1 = ru cos'u1 , v1 = rv cos'v1 , (26)

which yields,696
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where d⌦ denotes the w dimensional solid angle element. Here, we denote the radial and angular697

integrals by Ir and I' respectively. The radial integral Ir is698
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Let ru = R cos ✓ and rv = R sin ✓ with R 2 [0, 1) and ✓ 2 [�⇡

2 ,
⇡

2 ], then we have699

Ir =

Z 1

0
dR R

2w�1
e
�R

2
/2

Z
⇡/2

0
d✓ cosw+1

✓ sinw+1
✓ (31)

Ir =

p
⇡

23
�(w) �

�
w+2
2

�

�
�
w+3
2

� , (32)

where �(.) denotes the Gamma function. The angular integral I' is700
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Plugging in Equations 32 and 35 into Equation 29, we obtain a very simple expression701
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The other integral
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can be obtained by generalizing the above approach as described below702
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The integral is zero if either j = k and l = m or j = k = l = m, which we consider separately.703

Without loss of generality, we find the following integrals704
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which have the following expressions705
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Figure 13: Phase diagrams of FCNs in NTP with varying depths trained on the MNIST dataset using
MSE loss.
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Figure 14: Phase diagrams of FCNs in NTP with varying depths trained on the Fashion-MNIST
dataset.
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Figure 15: Phase diagrams of FCNs in NTP with varying depths trained on the CIFAR-10 dataset.

where �(.) denotes the gamma function. On combining the expressions with their multiplicities, we706

obtain the final result707
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C Phase diagrams of early training708

This section describes experimental details and shows additional phase diagrams of early training.709

The results include (1) FCNs in NTP trained on MNIST, Fashion-MNIST, and CIFAR-10 datasets,710

(2) CNNs in SP trained on Fashion-MNIST and CIFAR-10, and (3) ResNets in SP trained on CIFAR-711
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Figure 16: Phase diagrams of Convolutional Neural Networks (CNNs) in SP with varying depths
trained on the Fashion-MNIST dataset.
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Figure 17: Phase diagrams of Convolutional Neural Networks (CNNs) in SP with varying depths
trained on the CIFAR-10 dataset.
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Figure 18: Phase diagrams of Resnets in SP with different depths trained on the CIFAR-10 dataset.

10 datasets using MSE loss. Figures 13 to 18 show these results. The depths and widths are the same712

as specified in Appendix A. Each data point is an average over 10 initializations. The horizontal bars713

around the average data point indicate the region between 25% and 75% quantile. Phase diagrams714

for cross-entropy results are shown in Appendix F.715

Additional experimental details : We train each model for t = 10 steps using SGD with learning716

rates ⌘ = c/�H

0 and batch size of 512, where c = 2x with x 2 {0.0, . . . xmax} in steps of 0.1.717

Here, xmax is relatd to the maximum trainable learning rate constant as cmax = 2xmax . We have718

considered 10 random initializations for each model. As mentioned in Appendix A, we do not719

consider averages over SGD runs as the randomness from initialization outweighs it. Hence, we720

obtain 10 values for each of the critical values in the following results. For each initialization, we721

compute the critical constants using Definitions 1 and 3. To avoid a random increase in loss and722

sharpness due to fluctuations, we round off the values of �
H

t /�H

0 and Lt/L0 to their second decimal723

places before comparing with 1. We denote the average values using data points and variation using724
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Figure 19: Phase diagrams of FCNs in NTP with varying widths trained on the CIFAR-10 dataset.
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Figure 20: The relationship between various critical constants for various models and datasets. Each
data point corresponds to a model with random initialization. The dashed line denotes the values
where x = y.

horizontal bars around the average data points, which indicate the region between 25% and 75%725

quantile. The smooth curves are obtained by fitting a two-degree polynomial y = a + bx + cx
2 with726

x = 1/w and y can take on one of three values: closs, csharp and cmax.727

Phase diagrams with depth Figure 19: shows the phase diagrams with depth for FCNs in NTP728

trained on the CIFAR-10 dataset. The phase diagrams look qualitatively similar compared to the 1/w729

phase diagrams.730

D Relationship between various critical constants731

Figure 20 illustrates the relationship between the early training critical constants for models and732

datasets. The experimental setup is the same as in Appendix C. Typically, we find that closs 733

csharp  csharp holds true. However, there are some exceptions, which are observed at high values734

of d/w (see 20 (d, e)), where the trends of the critical constants converge, and large fluctuations can735

cause deviations from the inequality.736
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Figure 21: Training loss trajectories of ReLU FCNs with d = 16 trained on the CIFAR-10 dataset
with MSE loss using SGD with learning rate ⌘ = c/�H

0 and batch size B = 512.
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Figure 22: Sharpness trajectories of ReLU FCNs with d = 16 trained on the CIFAR-10 dataset with
MSE loss using SGD with learning rate ⌘ = c/�H

0 and batch size B = 512.

E The effect of d/w on the noise in dynamics737

In this section, we demonstrate that for FCNs with d/w & 1/16, the dynamics becomes noise-738

dominated. This aspect makes it challenging to distringuish the underlying deterministic dynamics739

from random fluctuations. To demonstrate this, we consider FCNs trained on CIFAR-10 using MSE740

and cross-entropy loss and use 4096 training examples for estimating sharpness.741

Figures 21 and 22 show the training loss and sharpness of FCNs with d = 16 and varying widths,742

trained on CIFAR-10 using MSE loss. We observe that the sharpness dynamics becomes noisier for743

w . 64.744
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Figure 23: Training loss trajectories of ReLU FCNs with d = 16 trained on the CIFAR-10 dataset
with cross-entropy loss using SGD with learning rate ⌘ = c/�H

0 and batch size B = 512.
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Figure 24: Sharpness trajectories of ReLU FCNs with d = 16 trained on the CIFAR-10 dataset with
cross-entropy loss using SGD with learning rate ⌘ = c/�H

0 and batch size B = 512.

Figures 23 and 24 shows the training dynamics with loss switched to cross-entropy, while keeping745

the initialization and SGD batch sequence the same as in the MSE loss case. In comparison to MSE746

loss, the training loss and sharpness dynamics show a higher level of noise, especially for w . 256.747

As a result, it becomes difficult to characterize the training dynamics for d/w & 1/16.748

F Crossentropy749

In this section, we provide additional results for models trained with cross-entropy (xent) loss and750

compare them with MSE results. Broadly speaking, models trained with cross-entropy loss show751

similar characterstics to those trained with MSE loss, such as, (i) sharpness reduction during early752

training, (ii) an increase in critical constants closs, csharp with d and 1/w, (iii) closs  csharp  cmax.753
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Figure 25: The phase diagrams of early training of FCNs trained on the CIFAR-10 dataset using (a,
b, c) MSE and (d, e, f) cross-entropy loss. Each data point is an average over 10 initializations, and
solid lines represent a smooth curve fitted to raw data points. The horizontal bars around the averaged
data point indicates the region between 25% and 75% quantile. For cross-entropy phase diagrams,
the c = 2 line is shown for reference only and does not relate to ccrit.

21 22 23 24 25

csharp

21

22

23

24

25

loss: mse

closs

cmax

(a)

22 24 26

csharp

22

24

26

loss: xent

closs

cmax

(b)

Figure 26: Comparison of the relationship between critical constants for FCNs in SP trained on
CIFAR-10 using MSE and cross-entropy loss. Each data point corresponds to a randomly initialized
model with depths and widths mentioned in Appendix A.

However, the dynamics of models trained with cross-entropy loss is noisier compared to MSE as754

shown in the previous section, and characterizing these dynamics can be more complex. In the755

following experiments, we consider models trained on the CIFAR-10 dataset and used 4096 training756

examples to estimate sharpness.757

F.1 Phase diagrams758

Figure 25 compares the phase diagrams of FCNs in SP trained on the CIFAR-10 dataset, using both759

MSE and cross-entropy loss. The estimated critical constants for cross-entropy loss are generally760

more noisy, as quantified by the confidence intervals. In comparison to phase diagrams of models761

trained with MSE loss, we observe a few notable differences. First, the loss starts to catapult at a762

value appreciably larger than c = 2 at large widths. Primarly, 4 . closs . 8. Additionally, cmax763

generally decreases with 1/w. This decreasing trend becomes less sharp at large depths.764
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Despite these differences, the phase diagrams for both loss functions share various similarities. First,765

we observe sharpness reduces during early training for c < csharp (see the first row of Figure 24).766

Next, we observe that the inequality closs  csharp  cmax generally holds for both loss functions767

as demonstrated in Figure 26, barring some exceptions.768

Figure 27 shows the phase diagrams for CNNs and ResNets trained on the CIFAR-10 dataset using769

cross-entropy loss. The observed critical constants are much noisier as quantified by the confidence770

intervals. Nevertheless, the phase diagram shows similar trends as mentioned above. For large 1/w771

models, we found that progressive sharpening begins after 5 � 10 training steps. For these cases,772

we only use the first 5 steps to measure sharpness to avoid progressive sharpening. For CNNs, we773

observed that the dynamics becomes difficult to characterize for w . 32 and d & 10, due to large774

fluctuations. Consequently, we’ve opted not to include these particular results.775
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Figure 27: Phase diagrams of (a, b) CNNs and (c) ResNets trained on the CIFAR-10 dataset with
cross-entropy loss using SGD with ⌘ = c/�H

0 and B = 512.

F.2 Intemediate saturation regime776
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Figure 28: Sharpness measured at c⌧ = 100 against the learning rate constant for FCNs trained on
the CIFAR-10 dataset using cross-entropy loss, with varying depths and widths. Each curve is an
average over ten initializations, where the shaded region depicts the standard deviation around the
mean trend. The vertical dashed line shows c = 2 for reference.

Figure 28 shows the normalized sharpness measured at c⌧ = 100 for FCNs trained on CIFAR-10777

using cross-entropy loss. 3 Similar to MSE loss, we observe an abrupt drop in sharpness at large778

learning rates. However, this abrupt drop occurs at 2 . ccrit . 4. The estimated sharpness is noisier779

(compare with Figure 37), which hinders a reliable estimation of ccrit. We speculate that we require a780

large number of averages for a reliable estimation of ccrit for cross-entropy loss. We leave the precise781

characterization of ccrit for cross-entropy loss for future work.782

3The time step ⌧ = 100/c is in the middle of the intermediate saturation regime for most of the models. For
further details on estimating sharpness, see Appendix I.1.
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Figure 29: Comparison of the early training dynamics of (a, b) vanilla, (c, d) centered, and (e, f) zero-
initialized FCNs (with depth = 8 and width = 512), trained on the CIFAR-10 dataset with MSE loss
using gradient descent for 20 steps.

G The effect of setting model output to zero at initialization783

In this section, we demonstrate the effect of network output f(x; ✓t) at initialization on the early784

training dynamics. In particular, we set the network output to zero at initialization, f(x; ✓0) = 0,785

by (1) ‘centering’ the network by its initial value fc(x; ✓t) = f(x; ✓) � f(x; ✓0) or (2) setting the786

last layer weights to zero at initialization. We show that both (1) and (2) remove the opening of the787

sharpness reduction phase with 1/w. Resultantly, the average onset of loss catapult occurs at closs ⇡ 2,788

independent of depth and width.789

Throughout this section, we use ‘vanilla’ networks to refer to networks initialized in the standard790

way. For simplicity, we train FCNs using full batch gradient descent with MSE loss using a subset791

consisting of 4096 examples of the CIFAR-10 dataset.792

G.1 The effect of centering networks793

Given a network function f(x; ✓t), we define the centered network fc(x; ✓t) as794

fc(x; ✓t) = f(x; ✓t) � f(x; ✓0), (44)
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Figure 30: The phase diagrams of early training dynamics of (a, b, c) centered and (d, e, f) zero-init
networks trained on CIFAR-10 using MSE using gradient descent. Each data point is an average over
10 initializations. The horizontal bars around the average data point indicate the region between 25%
and 75% quantile.

where f(x; ✓0) is the network output at intialization. By construction, the network output is zero at795

initialization. It is noteworthy that centering a network is an unusual way of training deep networks796

as it doubles the cost of training because of two forward passes.797

Figure 29 compares the training loss and sharpness dynamics of vanilla networks and centered798

networks. Unlike vanilla networks, we do not observe a decrease in sharpness for c < closs during799

early training. Rather, we observe a slight increase in sharpness. To distinguish this slight increase800

from sharpness catapult, we introduce a threshold ✏, comparing normalized sharpness �
H

t /�H

0 with801

1 + ✏, to define a sharpness catapult.4 As demonstrated in Appendix G.3, the uv model trained on a802

single training example (x, y) with y 6= 0 sheds lights on this initial increase in sharpness.803

Interestingly, irrespective of depth and width, we observe that loss catapults at closs ⇡ 2, as804

demonstrated in the phase diagrams in Figure 30(a, b, c). These findings suggest a strong correlation805

between a large network output at initialization kf(x; ✓0)k and the opening of the sharpness reduction806

phase discussed in Section 2.807

G.2 The effect of setting the last layer to zero808

An alternative way to train networks with f(x; ✓0) = 0 is by setting the last layer to zero at809

initialization. The principle of criticality at initialization [52, 55, 65] does not put any constraints on810

the last layer weights. Hence, setting the last layer to zero does not affect signal/gradient propagation811

at initialization. Yet, setting the last layer to zero results in initialization in a flat curvature region812

at initialization, resulting in access to larger learning rates. We refer to these networks as ‘zero-init’813

networks.814

Figure 29 compares the training dynamics of zero-init networks with vanilla and centered networks.815

We observe that the dynamics is quite similar to the centered networks: (i) sharpness does not reduce816

for small learning rates and (ii) loss catapults closs ⇡ 2, irrespective of depth and width. Figure 30(d,817

e, f) show the phase diagrams of networks with zero-initialized networks. Like centered networks,818

the critical constants do not scale with depth and width. Again, suggesting that a large network output819

4In experiments, we set ✏ = 0.05. We use the same threshold for zero-init networks.
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at initialization kf(x; ✓0)k is related to the opening of the sharpness reduction phase in the early820

training results shown in Section 2.821

G.3 Insights from uv model trained on (x, y)822

In this section, we gain insights into the effect of setting network output to zero at initialization using823

uv model trained on an example (x, y). In particular, we show that loss catapults at kloss = 2 and824

sharpness increases during early training.825

Consider the uv model trained on a single training example (x, y) with y 6= 0 5826

f(x) =
1

p
w

wX

i

uivi x.

This simplifies the loss function to827

L =
1

2
(f(x) � y)2 =

1

2
�f

2
, (45)

where �f is the residual. The trace of the Hessian tr(H) is828

tr(H) =
x
2

w

�
kvk

2 + kuk
2
�
. (46)

The Frobeinus norm can be written in terms of the trace and the network output829

kHk
2
F
= �

2 + 2x2�f
2

✓
1 +

2f

w�f

◆
. (47)

The function and residual updates are given by830

ft+1 = ft � ⌘ tr(Ht) +
⌘
2
x
2

w
ft�f

2
t

(48)

�ft+1 = �ft

✓
1 � ⌘ tr(Ht) +

⌘
2
x
2

w
ft�ft

◆
. (49)

Similarly, we can obtain the trace update equations831

tr(Ht+1) = tr(Ht) +
⌘�f

2
t
x
2

w

✓
⌘ tr(Ht) � 4

ft

�ft

◆
. (50)

Let us analyze them for the networks with zero output at initialization. The loss at the first step832

increases if833

⌧
L1

L0

�
=

*✓
1 � ⌘ tr(H0) +

⌘
2
x
2

n
f0�f0

◆2
+

> 1 (51)

(52)

Setting f0 = 0 and scaling the learning rate as ⌘ = k/ tr(H0), we see that the loss increases at the834

first step if k > 2.835

5Note that for y = 0, the network is already at a minimum.
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⌧
L1

L0

�
=

⌦
(1 � k)2

↵
> 1 (53)

Next, we analyze the change in trace during the first training step. Setting f0 = 0, we observe that836

the trace increases for all learning rates837

tr(H1) = tr(H0) +
⌘
2
x
2

w
�f

2
0 tr(H0), (54)

modulated by the learning rate and width. Finally, we analyze the change in Frobenius norm in the838

first training step at k = kloss, which implies �f
2
1 = �f

2
0 ,839

⌦
�kH1k

2
↵
=

⌦
tr(H1)

2
� tr(H0)

2 + 2x2
�
�f

2
1 � �f

2
0

�↵
. (55)

As tr(H) increases in the first training step, kHkF also increases in the first training step.840
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Figure 31: The early training dynamics of FCNs with a fixed output scale trained on the CIFAR-10
dataset with MSE loss using gradient descent.
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H The effect of output scale on the training dynamics841

Given a neural network function f(x) with depth d and width w, we define the scaled network as842

fs(x) = ↵f(x), where ↵ is referred to as the output scale. In this section, we empirically study the843

impact of the output scale on the early training dynamics. In particular, we show that a large (resp.844

small) value of kf(x; ✓0)k relative to the one-hot encodings of the labels causes the sharpness to845

decrease (resp. increase) during early training. Interestingly, we still observe an increase in hclossi846

with d and 1/w, unlike the case of initializing network output to zero, highlighting the unique impact847

of output scale on the dynamics. For simplicity, we train FCNs using gradient descent with MSE loss848

using a subset consisting of 4096 examples of the CIFAR-10 dataset, as in the previous section.849

H.1 The effect of fixed output scale at initialization850

In this section, we study the training dynamics of models trained with a fixed output scale at851

initialization. Given a network output function f(✓), we define the ‘scaled network’ as852

fs(✓) =
sf(✓)

kf(✓0)k
, (56)

where s is a scalar, fixed throughout training. By construction, the network output norm kfs(✓0)k853

equals s. For standard initialization, s = kf(✓0)k = O(
p

k), where k are the number of classes.854

Figure 31 shows the training dynamics of FCNs for three different values of the output scale s. The855

training dynamics of networks with s = 1.0 and s = 10.0 share qualitative similarities. In contrast,856

networks initialized with a smaller output scale (s = 0.1) exhibit distinctly different dynamics. In857

particular, we observe that for large output scales (s & 0.5) sharpness decreases during early training,858

while sharpness increases for small output scales 6. Furthermore, the training dynamics tends to859

be noisier at small output scales, making it difficult to characterize catapult dynamics amidst these860

fluctuations. In summary, the training dynamics of networks with small output scale deviate from the861

training dynamics discussed in the main text, particularly as the sharpness quickly increases during862

early training.863

Figure 32 shows the trends of various critical constants with width for FCNs for three different values864

of s. Similar to vanilla networks, we observe that closs increases with d and 1/w. In comparison,865

sharpness decreases (increases) for large (small) values of s. These experiments suggest that the866

output scale primarly influences the increase/decrease in sharpness during early training and does not867

affect the scaling of closs with depth and width.868

Note that we do not generate phase diagrams for these experiments as the training dynamics of869

networks with small output scales at initialization deviate from the training dynamics disucssed in the870

main text.871

H.2 Scaling the output scale with width872

In this section, we study the training dynamics of models with an output scale scaled with width873

as ↵ = w
��, which is commonly used in the literature [18, 6, 4]. We consider three distinct �874

values {�0.5, 0.0, 0.5}, where � = �0.5 represents the lazy regime, � = 0.5 corresponds to feature875

learning (rich) regime and � = 0.0 correponds to standard (vanilla) initialization.876

Figure 33 shows the training loss and sharpness trajectories of FCNs trained on for different � values.877

We observe that the training trajectories in the lazy regime look identical to standard initialization. In878

comparison, the training trajectories in the feature learning regime is distinctly different. We observe879

that in the standard and lazy regimes, sharpness decreases during early training, whereas sharpness880

tends to increase in the feature learning regime and eventually oscillates around the edge of stability881

regime. Moreover, we observe that sharpness can catapult before the training loss in the feature882

learning regime (compare catapult peaks in 33(e, f)). These results are in parallel to the fixed output883

scale networks studied in the pervious section.884

6We empirically observed that sharpness reduces for output scales as small as s ⇠ 0.5, which is relatively
small compared to

p
k.
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Figure 32: The phase diagrams of early training dynamics for ReLU FCNs with fixed output scale
trained on a subset of the CIFAR-10 dataset using MSE loss using gradient descent. Each data point
is an average over 10 initializations. The horizontal bars around the average data point indicate the
region between 25% and 75% quantile.

Figure 34 summarizes the early training dynamics of FCNs with different � values. We observe885

similar results as in the previous section. The output scale affects the initial increase/decrease of886

sharpness but does not affect the scaling trend of closs with depth and width. Moreover, we observe a887

systematic pattern of cmax scaling with width. In the lazy regime, we observe that cmax increases888

with 1/w, while cmax decreases with 1/w in the feature learning regime.889

I Sharpness curves in the intermediate saturation regime890

This section shows additional results for Section 3 for MSE loss. Cross-entropy results are shown in891

Appendix F. Figures 35 to 39 show the normalized sharpness curves for different depths and widths.892

I.1 Estimating the sharpness893

This paragraph describes the procedure for measuring the sharpness to study the effect of the learning894

rate, depth, and width in the intermediate saturation regime. We measure the sharpness �
H

⌧
at a time895

⌧ in the middle of the intermediate saturation regime. We choose ⌧ so that c⌧ ⇡ 200, for learning896

rates c = 2x, where x 2 [�1.0, 4.0] in steps of 0.1. The value 200 is chosen such that ⌧ is in the897

middle of the intermediate saturation regime. Next, we measure sharpness over a range of steps898

t 2 [⌧ � 5, ⌧ + 5] and average over t to reduce fluctuations. We repeat this process for various899

initializations and obtain the average sharpness.900

I.2 Estimating the critical constant ccrit901

This subsection explains how to estimate ccrit from sharpness measured at time ⌧ . First, we normalize902

the sharpness with its initial value, and then average over random initializations. Next, we estimate903

the critical point ccrit using the second derivative of the order parameter curve. Even if the obtained904

averaged normalized sharpness curve is somewhat smooth, the second derivative may become905

extremely noisy as minor fluctuations amplify on taking derivatives. This can cause difficulties in906
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Figure 33: The early training dynamics of FCNs with output scale ↵ = w
�� trained on the CIFAR-

10 dataset with MSE loss using gradient descent.

obtaining ccrit. We resolve this issue by estimating the smooth derivatives of the averaged order907

parameter with the Savitzky–Golay filter [56] using its scipy implementation [60]. The estimated908

ccrit is shown by vertical lines in the sharpness curves in Figures 35 to 39.909

J The effect of batch size on the reported results910

J.1 The early transient regime911

Figure 40 shows the phase diagrams of early training dynamics of FCNs with d = 4 trained on the912

CIFAR-10 dataset using two different batch sizes. The phase diagram obtained is consistent with the913

findings presented in Section 2, except for one key difference. Specifically, we observe that when914

d/w is small and small batch sizes are used for training, sharpness may increase from initialization915

at relatively smaller values of c. This is reflected in Fig. 40 by hcsharpi moving to the left as B916

is reduced from 512 to 128. However, this initial increase in sharpness is small compared to the917

sharpness catapult observed at larger batch sizes. We found that this increase at small batch sizes is918

due to fluctuations in gradient estimation that can cause sharpness to increase above its initial value919

by chance.920
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Figure 34: The phase diagrams of early training dynamics for ReLU FCNs with varying depths and
output scale.
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Figure 35: Sharpness measured at c⌧ = 200 against the learning rate constant for FCNs trained on
the MNIST dataset, with varying depths and widths. Each curve is an average over ten initializations,
where the shaded region depicts the standard deviation around the mean trend. The vertical lines
denote ccrit estimated using the maximum of �

0
⌧
.

J.2 The intermediate saturation regime921

Figure 41 shows the normalized sharpness, measured at c⌧ = 200, and its derivatives for various922

widths and batch sizes. The results are consistent with those in Section 3, with a lowering in the peak923

heights of the derivatives � and �
0 at small batch sizes. The lowering of the peak heights means the924

full width at half maximum increases, which implies a broadening of the transition around ccrit at925

smaller batch sizes.926

K The effect of bias on the reported results927

In this section, we show that FCNs with bias show similar results as presented in the main text. We928

considered FCNs in SP initialized with He initialization [28].929
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Figure 36: Sharpness measured at c⌧ = 200 against the learning rate constant for FCNs trained
on the Fashion-MNIST dataset, with varying depths and widths. Each curve is an average over ten
initializations, where the shaded region depicts the standard deviation around the mean trend. The
vertical lines denote ccrit estimated using the maximum of �

0
⌧
.
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Figure 37: Sharpness measured at c⌧ = 200 against the learning rate constant for FCNs trained on the
CIFAR-10 dataset, with varying depths and widths. Each curve is an average over ten initializations,
where the shaded region depicts the standard deviation around the mean trend. The vertical lines
denote ccrit estimated using the maximum of �

0
⌧
.
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Figure 38: Sharpness measured at c⌧ = 200 against the learning rate constant for Myrtle-CNNs
trained on the CIFAR-10 dataset, with varying depths and widths. Each curve is an average of over
ten initializations, where the shaded region depicts the standard deviation around the mean trend. The
vertical lines denote ccrit estimated using the maximum of �

0
⌧
.

Figure 42 shows the phase diagrams of early training for FCNs with bias trained on the CIFAR-10930

dataset. We observe a similar phase diagram compared to the no-bias case (compare with Figure 25).931
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Figure 39: Sharpness measured at c⌧ = 200 against the learning rate constant for ResNets trained
on the CIFAR-10 dataset, with varying depths and widths. Each curve is an average of over ten
initializations, where the shaded region depicts the standard deviation around the mean trend. The
vertical lines denote ccrit estimated using the maximum of �

0
⌧
.
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Figure 40: The phase diagram of early training for FCNs with d = 4 trained on the CIFAR-10 dataset
with MSE loss using SGD with different batch sizes.
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Figure 41: (a) Normalized sharpness measured at c⌧ = 200 against the learning rate constant for
FCNs with d = 4 trained on the CIFAR-10 dataset, with varying widths. Each data point is an average
over 10 initializations, where the shaded region depicts the standard deviation around the mean
trend. (b, c) Smooth estimations of the first two derivatives, �⌧ and �

0
⌧
, of the averaged normalized

sharpness wrt the learning rate constant.
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Figure 42: The phase diagram of early training for FCNs with bias trained on the CIFAR-10 dataset
with MSE loss using SGD with different depths.
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