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Abstract

We systematically analyze optimization dynamics in deep neural networks (DNNs)1

trained with stochastic gradient descent (SGD) and study the effect of learning2

rate ⌘, depth d, and width w of the neural network. By analyzing the maximum3

eigenvalue �
H

t
of the Hessian of the loss, which is a measure of sharpness of4

the loss landscape, we find that the dynamics can show four distinct regimes:5

(i) an early time transient regime, (ii) an intermediate saturation regime, (iii) a6

progressive sharpening regime, and (iv) a late time “edge of stability" regime. The7

early and intermediate regimes (i) and (ii) exhibit a rich phase diagram depending8

on ⌘ ⌘ c/�H

0 , d, and w. We identify several critical values of c, which separate9

qualitatively distinct phenomena in the early time dynamics of training loss and10

sharpness. Notably, we discover the opening up of a “sharpness reduction" phase,11

where sharpness decreases at early times, as d and 1/w are increased.12

1 Introduction13

The optimization dynamics of deep neural networks (DNNs) is a rich problem that is of great interest.14

Basic questions about how to choose learning rates and their effect on generalization error and training15

speed remain intensely studied research problems. Classical intuition from convex optimization has16

lead to the often made suggestion that in stochastic gradient descent (SGD), the learning rate ⌘ should17

satisfy ⌘ < 2/�H , where �
H is the maximum eigenvalue of the Hessian H of the loss, in order to18

ensure that the network reaches a minimum. However several recent studies have suggested that it is19

both possible and potentially preferable to have the learning rate early in training reach ⌘ > 2/�H20

[63, 47, 68]. The idea is that such a choice will induce a temporary training instability, causing the21

network to ‘catapult’ out of a local basin into a flatter one with lower �
H where training stabilizes.22

Indeed, during the early training phase, the local curvature of the loss landscape changes rapidly23

[40, 1, 36, 16], and the learning rate plays a crucial role in determining the convergence basin [36].24

Flatter basins are believed to be preferable because they potentially lead to lower generalization error25

[30, 31, 40, 12, 38, 14] and allow larger learning rates leading to potentially faster training.26

From a different perspective, the major theme of deep learning is that it is beneficial to increase the27

model size as much as possible. This has come into sharp focus with the discovery of scaling laws that28

show power law improvement in generalization error with model and dataset size [39]. This raises29

the fundamental question of how one can scale DNNs to arbitrarily large sizes while maintaining the30

ability to learn; in particular, how should initialization and optimization hyperparameters be chosen31

to maintain a similar quality of learning as the model size is taken to infinity [33, 45, 46, 11, 66, 55,32

67, 65]?33

Motivated by these ideas, we perform a systematic analysis of the training dynamics of SGD for34

DNNs as learning rate, depth, and width are tuned, across a variety of architectures and datasets. We35
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Figure 1: Training trajectories of the (a) training loss, (b) sharpness, and (c) training accuracy of
CNNs (d = 5 and w = 512) trained on CIFAR-10 with MSE loss using vanilla SGD with learning
rates ⌘ = c/�H

0 and batch size B = 512. Vertical dashed lines approximately separate the different
training regimes. Horizontal dashed lines in (b) denote the 2/⌘ threshold for each learning rate.

monitor both the loss and sharpness (�H ) trajectories during early training, observing a number of36

qualitatively distinct phenomena summarized below.37

1.1 Our contributions38

We study SGD on fully connected networks (FCNs) with the same number of hidden units (width)39

in each layer, convolutional neural networks (CNNs), and ResNet architectures of varying width w40

and depth d with ReLU activation. For CNNs, the width corresponds to the number of channels.41

We focus on networks parameterized in Neural Tangent Parameterization (NTP) [33], and Standard42

Parameterization (SP) [59] initialized at criticality [52, 55], while other parameterizations and43

initializations may show different behavior. Further experimental details are provided in Appendix A.44

We study both mean-squared error (MSE) and cross-entropy loss functions and the datasets CIFAR-45

10, MNIST, Fashion-MNIST. Our findings apply to networks with d/w . C, where C depends on46

architecture class (e.g. for FCNs, C ⇡ 1/16) and loss function, but is independent of d, w, and ⌘.47

Above this ratio, the dynamics becomes noise-dominated, and separating the underlying deterministic48

dynamics from random fluctuations becomes challenging, as shown in Appendix E. We use sharpness49

to refer to �
H

t
, the maximum eigenvalue of H at time-step t, and flatness refers to 1/�H

t
.50

By monitoring the sharpness, we find four clearly separated, qualitatively distinct regimes throughout51

the training trajectory. Fig. 1 shows an example from a CNN architecture. The four observed regimes52

are: (i) an early time transient regime where loss and sharpness may drastically change and eventually53

settle down, (ii) an intermediate saturation regime where the sharpness has lowered and remains54

relatively constant, (iii) a progressive sharpening regime where sharpness steadily rises, and finally,55

(iv) a late time regime where the sharpness saturates around 2/⌘ for MSE loss; whereas for cross-56

entropy loss, sharpness drops after reaching this maximum value while remaining less than 2/⌘ [8].57

Note the log scale in Figure 1 highlights the early regimes (i) and (ii); in absolute terms these are58

much shorter in time than regimes (iii) and (iv).59

In this work, we focus on the early transient and intermediate saturation regimes. As learning rate,60

d and w are tuned, a clear picture emerges, leading to a rich phase diagram, as demonstrated in61

Section 2. Given the learning rate scaled as ⌘ = c/�H

0 , we characterize four distinct behaviors in the62

training dynamics in the early transient regime (i):63

Sharpness reduction phase (c < closs) : Both the loss and the sharpness monotonically decrease64

during early training. There is a particularly significant drop in sharpness in the regime ccrit < c <65

closs, which motivates us to refer to learning rates lower than ccrit as sub-critical and larger than66

ccrit as super-critical. We discuss ccrit in detail below. The regime ccrit < c < closs opens up67

significantly with increasing d and 1/w, which is a new result of this work.68

Loss catapult phase (closs < c < csharp) : The first few gradient steps take training to a flatter region69

but with a higher loss. Training eventually settles down in the flatter region as the loss starts to decrease70

again. The sharpness monotonically decreases from initialization in this early time transient regime.71

Loss and sharpness catapult phase (csharp < c < cmax): In this regime both the loss and sharpness72

initially start to increase, effectively catapulting to a different point where loss and sharpness can73
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start to decrease again. Training eventually exhibits a significant reduction in sharpness by the end of74

the early training. The report of a loss and sharpness catapult is also new to this work.75

Divergent phase (c > cmax): The learning rate is too large for training and the loss diverges.76

The critical values closs, csharp, cmax are random variables that depend on random initialization,77

SGD batch selection, and architecture. The averages of closs, csharp, cmax shown in the phase78

diagrams show strong systematic dependence on depth and width. In order to better understand79

the cause of the sharpness reduction during early training we study the effect of network output at80

initialization by (1) centering the network, (2) setting last layer weights to zero, or (3) tuning the81

overall scale of the output layer. We also analyze the linear connectivity of the loss landscape in the82

early transient regime and show that for a range of learning rates closs < c < cbarrier, no barriers83

exist from the initial state to the final point of the initial transient phase, even though training passes84

through regions with higher loss than initialization.85

Next, we provide a quantitative analysis of the intermediate saturation regime. We find that sharpness86

during this time typically displays 3 distinct regimes as the learning rate is tuned, depicted in Fig. 5.87

By identifying an appropriate order parameter, we can extract a sharp peak corresponding to ccrit.88

For MSE loss ccrit ⇡ 2, whereas for crossentropy loss, 4 & ccrit & 2. For c ⌧ ccrit, the network is89

effectively in a lazy training regime, with increasing fluctuations as d and/or 1/w are increased.90

Finally, we show that a single hidden layer linear network – the uv model – displays the same91

phenomena discussed above and we analyze the phase diagram in this minimal model.92

1.2 Related works93

A significant amount of research has identified various training regimes using diverse criteria, e.g.,94

[13, 1, 15, 36, 17, 43, 34, 8, 32]. Here we focus on studies that characterize training regimes with95

sharpness and learning rates. Several studies have analyzed sharpness at different training times96

[36, 16, 34, 8, 32]. Ref. [8] studied sharpness at late training times and showed how large-batch97

gradient descent shows progressive sharpening followed by the edge of stability, which has motivated98

various theoretical studies [9, 2, 3]. Ref. [36] studied the entire training trajectory of sharpness in99

models trained with SGD and cross-entropy loss and found that sharpness increases during the early100

stages of training, reaches a peak, and then decreases. In contrast, we find a sharpness-reduction101

phase, c < closs which becomes more prominent with increasing d and 1/w, where sharpness only102

decreases during early training; this also occurs in the catapult phase closs < c < csharp, during103

which the loss initially increases before decreasing. This discrepancy is likely due to different104

initialization and learning rate scaling in their work [32].105

Ref. [34] examined the effect of hyperparameters on sharpness at late training times. Ref. [19]106

studied the optimization dynamics of SGD with momentum using sharpness. Ref. [43] classify107

training into 2 different regimes using training loss, providing a significantly coarser description of108

training dynamics than provided here. Ref. [32] studied the scaling of the maximum learning rate109

with d and w during early training in FCNs and its relationship with sharpness at initialization.110

Ref. [47] analyzed the curvature during early training using the top eigenvalue of the neural tangent111

kernel (NTK) and demonstrated the existence of a new early training phase, which they dubbed112

the “catapult" phase, 2/�NTK

0 < ⌘ < ⌘max, in wide networks trained with MSE loss using SGD, in113

which training converges after an initial increase in training loss. The existence of this new training114

regime was further extended to quadratic models with large widths by [68, 50]. Our work extends115

the above analysis by studying the combined effect of learning rate, depth, and width for both MSE116

and cross-entropy loss, demonstrating the opening of a sharpness-reduction phase, the refinement of117

the catapult phase into two phases depending on whether the sharpness also catapults, analyzing the118

phase boundaries as d and 1/w is increased, analyzing linear mode connectivity in the catapult phase,119

examining different qualitative behaviors in the intermediate saturation regime (ii) mentioned above.120

2 Phase diagram of early transient regime121

For wide enough networks trained with MSE loss using SGD, training converges into a flatter region122

after an initial increase in the training loss for learning rates c > 2 [47]. Fig. 2(a, b) shows the first123

10 steps of the loss and sharpness trajectories of a shallow (d = 5 and w = 512) CNN trained on124
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Figure 2: Early training dynamics of (a, b, c) a shallow (d = 5, w = 512) and (d, e, f) a deep
CNN (d = 10, w = 128) trained on CIFAR-10 with MSE loss for t = 10 steps using SGD for
various learning rates ⌘ = c/�H

0 and batch size B = 512. (a, d) training loss, (b, e) sharpness,
and (c, f) interpolated loss between the initial and final parameters after 10 steps for the respective
models. For the shallow CNN, closs = 2.82, csharp = 5.65, cmax = 17.14 and for the deep CNN,
closs = 36.75, csharp = 39.39, cmax = 48.50.

the CIFAR-10 dataset with MSE loss using SGD. For learning rates, c � 2.82, the loss catapults125

and training eventually converges into a flatter region, as measured by sharpness. Additionally, we126

observe that sharpness may also spike initially, similar to the training loss (see Fig. 2 (b)). However,127

this initial spike in sharpness occurs at relatively higher learning rates (c � 5.65), which we will128

examine along with the loss catapult. We refer to this spike in sharpness as ‘sharpness catapult.’129

An important consideration is the degree to which this phenomenon changes with network depth and130

width. Interestingly, we found that the training loss in deep networks on average catapults at much131

larger learning rates than c = 2. Fig. 2(d, e) shows that for a deep (d = 10, w = 128) CNN, the132

loss and sharpness may catapult only near the maximum trainable learning rate. In this section, we133

characterize the properties of the early training dynamics of models with MSE loss. In Appendix F,134

we show that a similar picture emerges for cross-entropy loss, despite the dynamics being noisier.135

2.1 Loss and sharpness catapult during early training136

In this subsection, we characterize the effect of finite depth and width on the onset of the loss and137

sharpness catapult and training divergence. We begin by defining critical constants that correspond to138

the above phenomena.139

Definition 1. (closs, csharp, cmax) For learning rate ⌘ = c/�H

0 , let the training loss and sharpness at140

step t be denoted by Lt(c) and �
H

t
(c). We define closs(csharp) as minimum learning rates constants141

such that the loss (sharpness) increases during the initial transient period:142

closs = min
c

{c | max
t2[1,T1]

Lt(c) > L0(c)}, csharp = min
c

{c | max
t2[1,T1]

�
H

t
(c) > �

H

0 (c)},

and cmax as the maximum learning rate constant such that the loss does not diverge during the initial143

transient period: cmax = maxc{c | Lt(c) < K, 8t 2 [1, T1]}, where K is a fixed large constant.
1
.144

Note that the definition of cmax allows for more flexibility than previous studies [32] in order to145

investigate a wider range of phenomena occurring near the maximum learning rate. Here, closs,146

csharp, and cmax are random variables that depend on the random initialization and the SGD batch147

sequence, and we denote the average over this randomness using h·i.148

1We use K = 105 to estimate cmax In all our experiments, L0 = O(1) (see Appendix A), which justifies
the use of a fixed value.
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Figure 3: The phase diagrams of the early training of three different types of neural networks trained
with MSE loss function using SGD. (a) FCNs (d = 8) trained on the MNIST dataset, (b) CNNs
(d = 7) trained on the Fashion-MNIST dataset, (c) ResNet (d = 18) trained on the CIFAR-10 dataset
(without batch normalization). Each data point in the figure represents an average of ten distinct
initializations, and the solid lines represent a smooth curve fitted to the raw data points. The vertical
dotted line shows c = 2 for comparison, and various colors are filled in between the various curves
for better visualization. For experimental details and additional results for different depths, see
Appendices A and C, respectively.

Fig. 3 illustrates the phase diagram of early training for three different architectures trained on149

various datasets with MSE loss using SGD. These phase diagrams show how the averaged values150

hclossi, hcsharpi, and hcmaxi are affected by width. The results show that the averaged values of all151

the critical constants increase significantly with 1/w (note the log scale). At large widths, the loss152

starts to catapult at c ⇡ 2. As 1/w increases, hclossi increases and eventually converges to hcmaxi at153

large 1/w. By comparison, sharpness starts to catapult at relatively large learning rates at small 1/w,154

with hcsharpi continuing to increase with 1/w while remaining between hclossi and hcmaxi. Similar155

results are observed for different depths as demonstrated in Appendix C. Phase diagrams obtained by156

varying d are qualitatively similar to those obtained by varying 1/w. Comparatively, we observe that157

hcmaxi may increase or decrease with 1/w in different settings while consistently increasing with d,158

as shown in Appendices F and H.159

While we plotted the averaged quantities hclossi, hcsharpi, hcmaxi, we have observed that their160

variance also increases significantly with d and 1/w; in Appendix C we show standard deviations161

about the averages for different random initializations. Nevertheless, we have found that the inequality162

closs  csharp  cmax typically holds, for any given initialization and batch sequences, except for163

some outliers due to high fluctuations when the averaged critical curves start merging at large d and164
1/w. Fig. 4 shows evidence of this claim. The setup is the same as in Fig. 3. Appendix D presents165

extensive additional results across various architectures and datasets.166

In Appendix F, we show that cross-entropy loss shows similar results with some notable differences.167

The loss catapults at a relatively higher value hclossi & 4 and hcmaxi consistently decreases with 1/w,168

while still satisfying closs  csharp  cmax.169

2.2 Loss connectivity in the early transient period170

In the previous subsection, we observed that training loss and sharpness might quickly increase171

before decreasing (“catapult") during early training for a range of depths and widths. A logical next172

step is to analyze the region in the loss landscape that the training reaches after the catapult. Several173

works have analyzed loss connectivity along the training trajectory [20, 49, 61]. Ref. [49] report174

that training traverses a barrier at large learning rates, aligning with the naive intuition of a barrier175

between the initial and final points of the loss catapult, as the loss increases during early training. In176

this section, we will test the credibility of this intuition in real-world models. Specifically, we linearly177

interpolate the loss between the initial and final point after the catapult and examine the effect of the178

learning rate, depth, and width. The linearly interpolated loss and barrier are defined as follows.179

Definition 2. (Lint(s, c), U(c)) Let ✓0 represent the initial set of parameters, and let ✓T1 represent180

the set of parameters at the end of the initial transient period, trained using a learning rate constant c.181

Then, we define the linearly interpolated loss as Lint(s, c) = L[(1� s) ✓0 + s ✓T1 ], where s 2 [0, 1]182
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Figure 4: The relationship between critical constants for (a) FCNs, (b) CNNs, and (c) ResNets. Each
data point corresponds to a randomly initialized model. The dashed line represents the y = x line.

is the interpolation parameter. The interpolated loss barrier is defined as the maximum value of the183

interpolated loss over the range of s: U(c) = maxs2[0,1] Lint(s) � L(✓0).184

Here we subtracted the loss’s initial value such that a positive value indicates a barrier to the final185

point from initialization. Using the interpolated loss barrier, we define cbarrier as follows.186

Definition 3. (cbarrier) Given the initial (✓0) and final parameters (✓T1), we define cbarrier as187

the minimum learning rate constant such that there exists a barrier from ✓0 to ✓T1: cbarrier =188

minc{c | U(c) > 0}.189

Here, cbarrier is also a random variable that depends on the initialization and SGD batch sequence.190

We denote the average over this randomness using h.i as before. Fig. 2(c, f) shows the interpolated191

loss of CNNs trained on the CIFAR-10 dataset for t = 10 steps. The experimental setup is the same192

as in Section 2. For the network with larger width, we observe a barrier emerging at cbarrier = 5.65,193

while the loss starts to catapult at closs = 2.83. In comparison, we do not observe any barrier from194

initialization to the final point at large d and 1/w. Fig. 3 shows the relationship between hcbarrieri and195
1/w for various models and datasets. We consistently observe that csharp  cbarrier, suggesting that196

training traverses a barrier only when sharpness starts to catapult during early training. Similar results197

were observed on increasing d instead of 1/w as shown in Appendix C. We chose not to characterize the198

phase diagram of early training using cbarrier as we did for other critical c’s, as it is somewhat different199

in character than the other critical constants, which depend only on the sharpness and loss trajectories.200

These observations call into question the intuition of catapulting out of a basin for a range of learning201

rates in between closs < c < cbarrier. These results show that for these learning rates, the final point202

after the catapult already lies in the same basin as initialization, and even connected through a linear203

path, revealing an inductive bias of the training process towards regions of higher loss during the204

early time transient regime.205

3 Intermediate saturation regime206

In the intermediate saturation regime, sharpness does not change appreciably and reflects the cumula-207

tive change that occurred during the initial transient period. This section analyzes sharpness in the in-208

termediate saturation regime by studying how it changes with the learning rate, depth, and width of the209

model. Here, we show results for MSE loss, whereas cross-entropy results are shown in Appendix F.210

We measure the sharpness �
H

⌧
at a time ⌧ in the middle of the intermediate saturation regime. We211

choose ⌧ so that c⌧ ⇡ 200.2 For further details on sharpness measurement, see Appendix I.1. Fig.212

5(a) illustrates the relationship between �
H

⌧
and the learning rate for 7-layer deep CNNs trained213

on the CIFAR-10 dataset with varying widths. The results indicate that the dependence of �
H

⌧
on214

learning rate can be grouped into three distinct stages. (1) At small learning rates, �
H

⌧
remains215

relatively constant, with fluctuations increasing as d and 1/w increase (c < 2 in Fig. 5(a)). (2) A216

crossover regime where �
H

⌧
is dropping significantly (2 < c < 23 in Fig. 5(a)). (3) A saturation217

2time-step ⌧ = 200/c is in the middle of regime (ii) for the models studied. Normalizing by c allows proper
comparison for different learning rates.
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Figure 5: (a) Normalized sharpness measured at c⌧ = 200 against the learning rate constant for 7-
layer CNNs trained on the CIFAR-10 dataset, with varying widths. Each data point is an average over
5 initializations, where the shaded region depicts the standard deviation around the mean trend. (b, c)
Smooth estimations of the first two derivatives, �⌧ and �

0
⌧

, of the averaged normalized sharpness wrt
the learning rate constant. The vertical lines denote ccrit estimated using the maximum of �

0
⌧
. For

smoothening details, see Appendix I.2.

stage where �
H

⌧
stays small and constant with learning rate (c > 23) in Fig. 5(a)). In Appendix I, we218

show that these results are consistent across architectures and datasets for varying values of d and219

w. Additionally, the results reveal that in stage (1), where c < 2 is sub-critical, �
H

⌧
decreases with220

increasing d and 1/w. In other words, for small c and in the intermediate saturation regime, the loss is221

locally flatter as d and 1/w increase.222

We can precisely extract a critical value of c that separates stages (1) and (2), which corresponds to223

the onset of an abrupt reduction of sharpness �
H

⌧
. To do this, we consider the averaged normalized224

sharpness over initializations and denote it by h�
H

⌧ /�H

0 i. The first two derivatives of the averaged225

normalized sharpness, �⌧ = �
@

@c
h�

H

⌧ /�H

0 i and �
0
⌧
= �

@
2

@c2
h�

H

⌧ /�H

0 i, characterize the change in226

sharpness with learning rate. The extrema of �
0
⌧

quantitatively define the boundaries between the227

three stages described above. In particular, using the maximum of �
0
⌧

, we define hccriti, which marks228

the beginning of the sharp decrease in �
H

⌧
with the learning rate.229

Definition 4. (hccriti) Given the averaged normalized sharpness h�
H

⌧ /�H

0 i measured at ⌧ , we define230

ccrit to be the learning rate constant that minimizes its second derivative: hccriti = argmax
c
�⌧ .231

Here, we use h.i to denote that the critical constant is obtained from the averaged normalized232

sharpness. Fig. 5(b, c) show �⌧ and �
0
⌧

obtained from the results in Fig. 5(a). We observe similar233

results across various architectures and datasets, as shown in Appendix I. Our results show that234

hccriti has slight fluctuations as d and 1/w are changed but generally stay in the vicinity of c = 2.235

The peak in �
0
⌧

becomes wider as d and 1/w increase, indicating that the transition between stages (1)236

and (2) becomes smoother, presumably due to larger fluctuations in the properties of the Hessian H237

at initialization. In contrast to hccriti, hclossi increase with d and 1/w, implying the opening of the238

sharpness reduction phase hccriti < c < hclossi as d and 1/w increase. In Appendix F, we show that239

cross-entropy loss shows qualitatively similar results, but with 4 & hccriti & 2.240

4 Effect of network output at initialization on early training241

Here we discuss the effect of network output f(x; ✓t) at initialization on the early training dynamics.242

x is the input and ✓t denotes the set of parameters at time t. In Appendix G, we consider setting243

the network output to zero at initialization, f(x; ✓0) = 0, by either (1) considering the “centered"244

network: fc(x; ✓) = f(x; ✓) � f(x; ✓0), or (2) setting the last layer weights to zero at initialization.245

Remarkably, both (1) and (2) removing the opening up of the sharpness reduction phase with 1/w.246

The average onset of the loss catapult, diagnosed by hclossi, becomes independent of 1/w and d.247

We also study empirically the impact of the output scale [18, 5, 4] on early training dynamics. Given248

a network function f(x; ✓), we define the scaled network as fs(x; ✓) = ↵f(x; ✓), where ↵ is a scalar,249

fixed throughout training. In Appendix H, we show that a large (resp. small) value of kf(x; ✓0)k250

relative to the one-hot encodings of the labels causes the sharpness to decrease (resp. increase) during251
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Figure 6: The phase diagram of the uv model trained with MSE loss using gradient descent with (a)
the top eigenvalue of Hessian �

H

t
, (b) the trace of Hessian tr(Ht) and (c) the square of the Frobenius

norm tr(HT

t
Ht) used as a measure of sharpness. In (a), the learning rate is scaled as ⌘ = c/�H

0 ,
while in (b) and (c), the learning rate is scaled as ⌘ = k/tr(H0). The vertical dashed line shows c = 2
(k = 2) for reference. Each data point is an average over 500 random initializations.

early training. Interestingly, we still observe an increase in hclossi with d and 1/w, unlike the case of252

initializing network output to zero, highlighting the unique impact of output scale on the dynamics.253

5 Insights from a simple model254

Here we analyze a two-layer linear network [53, 57, 47], the uv model, which shows much of the255

phenomena presented above. Define f(x) = 1p
w

v
T
ux, with x, f(x) 2 R. Here, u, v 2 Rw are the256

trainable parameters, initialized using the normal distribution, ui, vi ⇠ N (0, 1) for i 2 {1, . . . , w}.257

The model is trained with MSE loss on a single training example (x, y) = (1, 0), which simplifies258

the loss to L(u, v) = f
2
/2, and which was also considered in Ref. [47]. Our choice of y = 0 is259

motivated by the results of Sec. 4, which suggest that the empirical results of Sec. 2 are intimately260

related to the model having a large initial output scale kf(x; ✓0)k relative to the output labels. We261

minimize the loss using gradient descent (GD) with learning rate ⌘. The early time phase diagram262

also shows similar features to those described in preceding sections (compare Fig. 6(a) and Fig. 3).263

Below we develop an understanding of this early time phase diagram in the uv model.264

The update equations of the uv model in function space can be written in terms of the trace of the265

Hessian tr(H)266

ft+1 = ft

✓
1 � ⌘ tr(Ht) +

⌘
2
f
2
t

w

◆
, tr(Ht+1) = tr(Ht) +

⌘f
2
t

w
(⌘ tr(Ht) � 4) . (1)

From the above equations, it is natural to scale the learning rate as ⌘ = k/tr(H0). Note that c =267

⌘�
H

0 = k�
H

0 /tr(H0). Also, we denote the critical constants in this scaling as kloss, ktrace, kmax268

and kcrit, where the definitions follow from Definitions 1 and 4 on replacing sharpness with trace269

and use h.i to denote an average over initialization. Figure 6(b) shows the phase diagram of early270

training, with tr(Ht) replaced with �
H

t
as the measure of sharpness and with the learning rate scaled271

as ⌘ = k/tr(H0). Similar to Figure 6(a), we observe a new phase hkcriti < k < hklossi opening up272

at small width. However, we do not observe the loss-sharpness catapult phase as tr(H) does not273

increase during training (see Equation 1). We also observe hkmaxi = 4, independent of width.274

In Appendix B.3, we show that the critical value of k for which hL1/L0i > 1 increases with 1/w,275

which explains why hklossi increases with 1/w. Combined with hkcriti ⇡ 2, this implies the opening276

up of the sharpness reduction phase as w is decreased.277

To understand the loss-sharpness catapult phase, we require some other measure as tr(H) does not278

increase for 0 < k < 4. As �
H

t
is difficult to analyze, we consider the Frobenius norm kHkF =279 p

tr(HTH) as a proxy for sharpness. We define kfrob as the minimum learning rate such that280

||Ht||
2
F

increases during early training. Figure 6(c) shows the phase diagram of the uv model, with281

||Ht||
2
F

as the measure of sharpness, while the learning rate is scaled as ⌘ = k/tr(H0). We observe282

the loss-sharpness catapult phase at small widths. In Appendix B.4, we show that the critical value283

of k for which
⌦
||H1||

2
F

� ||H0||
2
F

↵
> 0 increases from hklossi as 1/w increases. This explains the284

opening up of the loss catapult phase at small w in Fig. 6 (c).285

8



�1.0 �0.5 0.0 0.5 1.0
weight correlation

0

1

2

T
r(

H
)

(a)

�1.0 �0.5 0.0 0.5 1.0
weight correlation

(b)

�1.0 �0.5 0.0 0.5 1.0
weight correlation

(c)

�1.0 �0.5 0.0 0.5 1.0
weight correlation

(d)

10�2

10�1

100

101

102

103

Figure 7: Training trajectories of the uv model trained on (x, y) = (1, 0), with (a, b) large and (c, d)
small width, in a two-dimensional slice of the parameters defined by the trace of Hessian tr(H) and
weight correlation, trained with (a, c) small (c = 0.5) and (b, d) large (c = 2.5) learning rates. The
colors correspond to the training loss L, with darker colors representing a smaller loss.

Fig. 7 shows the training trajectories of the uv model with large (w = 512) and small (w = 2) widths286

in a two-dimensional slice of parameters defined by tr(H) and weight correlation hv,ui/||u||||v||. The287

above figure reveals that the first few training steps of the small-width network take the system in288

a flatter direction (as measured by tr(H)) as compared to the wider network. This means that the289

small-width network needs a relatively larger learning rate to get to a point of increased loss (loss290

catapult). We thus have the opening up of a new regime hkcriti < k < hklossi, in which the loss and291

sharpness monotonically decrease during early training.292

The uv model trained on an example (x, y) with y 6= 0 provides insights into the effect of network293

output at initialization observed in Section 4. In Appendix G, we show that setting f0 = 0 and294

y 6= 0 in the dynamical equations results in loss catapult at k = 2, implying hklossi ⇡ hkcriti ⇡ 2,295

irrespective of w.296

The loss landscape of the uv model shown in Fig. 7 reveals interesting insights into the loss landscape297

connectivity results in Section 2.2 and the presence of cbarrier. Fig. 7 shows how even when there is a298

loss catapult, as long as the learning rate is not too large, the final point after the catapult can be reached299

from initialization by a linear path without increasing the loss and passing through a barrier. However300

if the learning rate becomes large enough, then the final point after the catapult may correspond to a301

region of large weight correlation, and there will be a barrier in the loss upon linear interpolation.302

6 Discussion303

We have studied the effect of learning rate, depth, and width on the early training dynamics in DNNs304

trained using SGD with learning rate scaled as ⌘ = c/�H

0 . We analyzed the early transient and305

intermediate saturation regimes and presented a rich phase diagram of early training with learning306

rate, depth, and width. We report two new phases, sharpness reduction and loss-sharpness catapult,307

which have not been reported previously. Furthermore, we empirically investigated the underlying308

cause of sharpness reduction during early training. Our findings show that setting the network output309

to zero at initialization effectively leads to the vanishing of sharpness reduction phase at supercritical310

learning rates. We further studied loss connectivity in the early transient regime and demonstrated the311

existence of a regime hclossi < c < hcbarrieri, in which the final point after the catapult lies in the312

same basin as initialization, connected through a linear path. Finally, we study these phenomena in a313

2-layer linear network (uv model), gaining insights into the opening of the sharpness reduction phase.314

We performed a preliminary analysis on the effect of batch size on the presented results in Appendix J.315

The sharpness trajectories of models trained with a smaller batch size (B = 32 vs. B = 512) show316

similar early training dynamics. In the early transient regime, we observe a qualitatively similar phase317

diagram. In the intermediate saturation regime, the effect of reducing the batch size is to broaden the318

transition around ccrit.319

The early training dynamics is sensitive to the initialization scheme and optimization algorithm used,320

and we leave it to future work to explore this dependence and its implications. In this work, we focused321

on models initialized at criticality [52] as it allows for proper gradient flow through ReLU networks322

at initialization [22, 55], and studied vanilla SGD for simplicity. However, other initializations323

[44], parameterizations [66, 67], and optimization procedures [21] may show dissimilarities with the324

reported phase diagram of early training.325
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