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Materials)

A Appendix1

In this appendix, we provide the details omitted from the manuscript due to space limitation. We2

organize the appendix as follows.3

• Section A.1: Implementation details.4

• Section A.2: More quantitative results.5

• Section A.3: Experimental results on Waymo dataset.6

• Section A.4: More ablation studies.7

• Section A.5: Efficiency analysis.8

• Section A.6: Visual results of 3D object detection.9

• Section A.7: Visual results of 2D semantic segmentation.10

• Section A.8: Details on the official KITTI test leaderboard.11

A.1 Implementation Details12

Network Architecture. Fig. 1 illustrates the architectures of the point cloud and image backbone13

networks. For the encoder of the point cloud branch, we further show the details of multi-scale14

grouping (MSG) network in Table 1. Following 3DSSD [23], we take key points sampled by the15

3rd SA layer to generate vote points and estimate the 3D box. Then we feed these 3D boxes and16

features output by the last FP layer to the refinement stage. Besides, we adopt density-aware RoI17

grid pooling [6] to encode point density as an additional feature. Note that 3D center estimation [5]18

aims to learn the relative position of each foreground point to the object center, while the 3D box is19

estimated based on sub-sampled points. Thus, the auxiliary task of 3D center estimation differs from20

3D box estimation and can facilitate learning structure-aware features of objects.21

Table 1: Details of set abstraction layers in the point cloud branch. We report the sampling strategy
used in the sampling operation, ball radius of group operation, “nquery” that denotes the number of
group points, and dimensions of the unit PointNet layer for multi-scale grouping. The features at
different scales are concatenated and dimensionally reduced to the specific output channels.

Layer Sampling Strategy Radius nquery Feature Dimension Output Channels
1st SA D-FPS [0.2, 0.4, 0.8] [32, 32, 64] [[16, 16, 32], [16, 16, 32], [32, 32, 64]] 64
2nd SA D-FPS & S-FPS [0.4, 0.8, 1.6] [32, 32, 64] [[64, 64, 128], [64, 64, 128], [64, 96, 128]] 128
3rd SA D-FPS & S-FPS [1.6, 3.2, 4.8] [64, 64, 128] [[128, 128, 256], [128, 196, 256], [128, 256, 256]] 256

Training Details. Through the experiments on KITTI dataset, we adopted Adam [8] (β1=0.9,22

β2=0.99) to optimize our BiProDet. We initialized the learning rate as 0.003 and updated it with23

the one-cycle policy [18]. And we trained the model for a total of 80 epochs in an end-to-end24

manner. In our experiments, the batch size was set to 8, equally distributed on 4 NVIDIA 3090 GPUs.25

We kept the input image with the original resolution and padded it to the size of 1248 × 376, and26

down-sampled the input point cloud to 16384 points during training and inference. Following the27

common practice, we set the detection range of the x, y, and z axis to [0m, 70.4m], [-40m, 40m] and28

[-3m, 1m], respectively.29
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Figure 1: The detailed architecture of 2D and 3D backbones. We adopt ResNet18 as the encoder
of the image branch, followed by a decoder with Pyramid Pooling Module (PPM) and several up-
sampling blocks. C1, C2, C3, C4, and C5 denote convolutional layers of different stages in ResNet.
Extra convolutional layers are deployed after each up-sampling layer. For the point cloud branch,
we adopt the PointNet++ structure. SA: set abstraction layer, D-FPS: 3D Euclidean distance-based
farthest point sampling, S-FPS: semantic-guided farthest point sampling, FP: feature propagation
layer, MLP: shared multi-layer perceptron. Besides, “Bi-Propag” denotes the proposed bidirectional
feature propagation between the 2D and 3D backbones.

Data Augmentation. We applied common data augmentation strategies at global and object levels.30

The global-level augmentation includes random global flipping, global scaling with a random scaling31

factor between 0.95 and 1.05, and global rotation around the z-axis with a random angle in the range32

of [−π/4, π/4]. Each of the three augmentations was performed with a 50% probability for each33

sample. The object-level augmentation refers to copying objects from other scenes and pasting them34

to current scene [22]. In order to perform sampling synchronously on point clouds and images, we35

utilized the instance masks provided in [14]. Specifically, we pasted both the point clouds and pixels36

of sampled objects to the point cloud and images of new scenes, respectively.37

A.2 More quantitative Results38

Performance on KITTI Val Set. We also reported the performance of our BiProDet on all three39

classes of the KITTI validation set in Table 2, where it can be seen that our BiProDet also achieves40

the highest mAP of 77.73%, which is obviously higher than the second best method CAT-Det.41

Performance of Single-Class Detector. Quite a few methods [4, 29] train models only for car42

detection. Empirically, the single-class detector performs better in the car class compared with43

multi-class detectors. Therefore, we also provided performance of BiProDet trained only for the car44

class, and compared it with several state-of-the-art methods in Table 3.45

Generalization to Asymmetric Backbones. As shown in Fig. 1, we originally adopted an encoder-46

decoder network in the LiDAR branch that is architecturally similar to the image backbone. Nev-47

ertheless, it is worth clarifying that our approach is not limited to symmetrical structures and can48

be generalized to different point-based backbones. Here, we replaced the 3D branch of the original49

framework with an efficient single-stage detector—SASA [2], using a backbone only with the encoder50

in the LiDAR branch, which is asymmetric with the encoder-decoder structure of the image backbone.51
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Table 2: Quantitative comparisons on the KITTI validation set under the evaluation metric of 3D
Average Precision (AP) calculated with 11 sampling recall positions. We highlight the best and the
second best results in bold and underlined, respectively.

Method Modality 3D Car (IoU=0.7) 3D Ped. (IoU=0.5) 3D Cyc. (IoU=0.5) mAPEasy Mod. Hard Easy Mod. Hard Easy Mod. Hard
PointPillars [10] LiDAR 86.46 77.28 74.65 57.75 52.29 47.90 80.05 62.68 59.70 66.53
SECOND [22] LiDAR 88.61 78.62 77.22 56.55 52.98 47.73 80.58 67.15 63.10 68.06
3DSSD [23] LiDAR 88.55 78.45 77.30 58.18 54.31 49.56 86.25 70.48 65.32 69.82
PointRCNN [15] LiDAR 88.72 78.61 77.82 62.72 53.85 50.24 86.84 71.62 65.59 70.67
PV-RCNN [16] LiDAR 89.03 83.24 78.59 63.71 57.37 52.84 86.06 69.48 64.50 71.65
TANet [11] LiDAR 88.21 77.85 75.62 70.80 63.45 58.22 85.98 64.95 60.40 71.72
Part-A2 [17] LiDAR 89.55 79.40 78.84 65.68 60.05 55.44 85.50 69.90 65.48 72.20
AVOD-FPN [9] LiDAR+RGB 84.41 74.44 68.65 - 58.80 - - 49.70 - -
PointFusion [21] LiDAR+RGB 77.92 63.00 53.27 33.36 28.04 23.38 49.34 29.42 26.98 42.75
F-PointNet [13] LiDAR+RGB 83.76 70.92 63.65 70.00 61.32 53.59 77.15 56.49 53.37 65.58
CLOCs [12] LiDAR+RGB 89.49 79.31 77.36 62.88 56.20 50.10 87.57 67.92 63.67 70.50
EPNet [7] LiDAR+RGB 88.76 78.65 78.32 66.74 59.29 54.82 83.88 65.50 62.70 70.96
CAT-Det [26] LiDAR+RGB 90.12 81.46 79.15 74.08 66.35 58.92 87.64 72.82 68.20 75.42
BiProDet (Ours) LiDAR+RGB 89.73 86.40 79.31 71.77 68.49 62.52 89.24 76.91 75.18 77.73

Table 3: Comparison with state-of-the-art methods on the KITTI val set for car 3D detection. All
results are reported by the average precision with 0.7 IoU threshold. R11 and R40 denotes AP
calculated with 11 and 40 recall sampling recall points, respectively.

Method Modal AP3D|R11 (%) AP3D|R40 (%)
Easy Mod. Hard Easy Mod. Hard

Voxel R-CNN [4] LiDAR 89.41 84.52 78.93 92.38 85.29 82.86
PV-RCNN [16] LiDAR 89.35 83.69 78.7 92.57 84.83 82.69

SA-SSD [5] LiDAR 90.15 79.91 78.78 93.14 84.65 81.86
SE-SSD [29] LiDAR 90.21 85.71 79.22 93.19 86.12 83.31

GLENet-VR [27] LiDAR 89.93 86.46 79.19 93.51 86.10 83.60
MV3D [3] LiDAR+RGB - - - 71.29 62.68 56.56

3D-CVF [24] LiDAR+RGB - - - 89.67 79.88 78.47
BiProDet (Ours) LiDAR+RGB 89.72 86.52 79.34 93.03 86.46 83.73

Accordingly, the proposed bidirectional propagation is only performed between the 3D backbone52

and the encoder of the 2D image backbone. The experimental results are shown in Table 4. We can53

observe that the proposed method works well even when the two backbones are asymmetric, which54

demonstrates the satisfactory generalization ability of our method for different LiDAR backbones.55

Table 4: Bidirectional propagation is also effective when the 2D and 3D backbones are asymmetric.
Here we adopt a single-stage detector [2] whose backbone includes only an encoder, which is
asymmetric with the encoder-decoder network in the image branch.

Method 3D Car (IoU=0.7) 3D Ped. (IoU=0.5) 3D Cyc. (IoU=0.5) mAPEasy Mod. Hard Easy Mod. Hard Easy Mod. Hard
SASA 92.17 84.90 82.57 66.75 61.40 56.00 89.91 74.05 69.41 75.24

Ours (SASA) 92.11 85.67 82.99 70.52 63.38 58.16 91.58 74.81 70.22 76.61

A.3 Results on Waymo Open Dataset56

The Waymo Open Dataset [19] is a large-scale dataset for 3D object detection. It contains 79857

sequences (15836 frames) for training, and 202 sequences (40077 frames) for validation. According58

to the number of points inside the object and the difficulty of annotation, the objects are further59

divided into two difficulty levels: LEVEL_1 and LEVEL_2. Following common practice, we adopted60

the metrics of mean Average Precision (mAP) and mean Average Precision weighted by heading61

accuracy (mAPH), and reported the performance on both LEVEL_1 and LEVEL_2. We set the62

detection range to [-75.2m, 75.2m] for x and y axis, and [-2m, 4m] for z axis. Following [20] and63

[1], the training on Waymo dataset consists of two stages to allow flexible augmentations. First, we64

only trained the LiDAR branch without image inputs and bidirectional propagation for 30 epochs.65

We enabled the copy-and-paste augmentation in this stage. Then, we trained the whole pipeline66
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Table 5: 3D detection results on the Waymo Open Dataset validation set. “-" denotes that the results
are not reported in their papers.

Method Vehicle L1 Vehicle L2 Pedestrian L1 Pedestrian L2 Cyclist L1 Cyclist L2
mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH

PointAugmenting 67.41 - 62.7 - 75.42 - 70.55 - 76.29 - 74.41 -
TransFusion - - - 65.14 - - - 64.00 - - - 67.40

Ours 78.36 77.91 69.45 69.04 76.32 71.67 65.93 61.81 79.64 78.55 76.36 75.26

for another 6 epochs, during which the copy-and-paste is disabled. Note that the image semantic67

segmentation head is disabled, since ground-truth segmentation maps are not provided [19].68

As shown in Table 5, our method achieves substantial improvement compared with previous state-of-69

the-arts. Particularly, unlike existing approaches including PointAugmenting [20] and TransFusion [1]70

where the camera backbone is pre-trained on other datasets and then frozen, we trained the entire71

pipeline in an end-to-end manner. It can be seen that even without the 2D segmentation auxiliary72

task, our method still achieves higher accuracy under all scenarios except “Ped L2”, demonstrating73

its advantage.74

A.4 More Ablation Studies75

Table 6: Effect of the semantic-guided SA layer. Compared with the single-modal baseline, BiProDet
can better exploit image semantics and preserve more foreground points during downsampling.

Method Single-Modal BiProDet (Ours) Improvement
SA Layer FG rate Instance recall FG rate Instance recall FG rate Instance recall
Level-2 15.87 97.92 20.70 98.23 +4.83 +0.31
Level-3 29.73 97.35 38.03 97.82 +8.29 +0.47

Table 7: Comparison between our multi-task training methods and the single-modal 2D semantic
segmentation baseline (PSPNet). The results show that point features effectively improve the
segmentation performance on pedestrian and cyclist classes.

Method Car Pes. Cyc. mIoU
PSPNet [28] 77.49 30.45 23.83 43.92
BiProDet (Ours) 78.45 36.15 30.42 48.34

Effect of Semantic-guided Point Sampling. When performing downsampling in the SA layers of76

the point cloud branch, we adopted S-FPS [2] to explicitly preserve as many foreground points as77

possible. We report the percentage of sampled foreground points and instance recall (i.e., the ratio of78

instances that have at least one point) in Table 6, where it can be seen that exploiting supplementary79

semantic features from images leads to substantial improvement of the ratio of sampled foreground80

points and better instance recall during S-FPS.81

Influence on 2D Semantic Segmentation. We also aimed to demonstrate that the 2D-3D joint82

learning paradigm benefits not only the 3D object detection task but also the 2D semantic segmentation83

task. As shown in Table 7, the deep interaction between different modalities yields an improvement84

of 4.42% mIoU. The point features can naturally complement RGB image features by providing85

3D geometry and semantics, which are robust to illumination changes and help distinguish different86

classes of objects, for 2D visual information. The results suggest the potential of joint training87

between 3D object detection and more 2D scene understanding tasks in autonomous driving.88

Conditional Analysis. To better figure out where the improvement comes from when using additional89

image features, we compared BiProDet with the single-modal detector on different occlusion levels90

and distant ranges. The results shown in Table 8 and Table 9 include separate APs for objects91

belonging to different occlusion levels and APs for moderate class in different distance ranges. For92

car detection, our BiProDet achieves more accuracy gains for long-distance and highly occluded93

objects, which suffer from the sparsity of observed LiDAR points. The cyclist and pedestrian are94

much more difficult categories on account of small sizes, non-rigid structures, and fewer training95

samples. For these two categories, BiProDet still brings consistent and significant improvements on96

different levels even in extremely difficult cases.97
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Table 8: Performance breakdown over different occlusion levels. As defined by the official website of
KITTI, occlusion levels 0, 1, and 2 correspond to fully-visible samples, partly-occluded samples, and
samples that are difficult to see, respectively.

Class Car Pedestrian Cyclist
Occlusion Level-0 Level-1 Level-2 Level-0 Level-1 Level-2 Level-0 Level-1 Level-2

Single-Modal 91.98 77.18 55.41 67.44 26.76 6.10 91.23 24.66 1.74
BiProDet (Ours) 92.26 77.44 58.39 74.00 35.13 7.99 92.89 30.02 2.53

Improvement +0.28 +0.26 +2.97 +6.56 +8.38 +1.89 +1.66 +5.36 +0.79

Table 9: Performance breakdown over different distances.
Class Car Pedestrian Cyclist

Distance 0-20m 20-40m 40m-Inf 0-20m 20-40m 40m-Inf 0-20m 20-40m 40m-Inf
Single-Modal 96.28 85.21 43.91 71.28 38.42 1.63 93.61 61.56 34.48

BiProDet (Ours) 96.36 86.48 49.88 76.56 45.72 2.46 94.12 67.27 39.10
Improvement +0.07 +1.27 +5.97 +5.28 +7.30 +0.83 +0.51 +5.71 +4.62

Generalization to Sparse LiDAR Signals. We also compared our BiProDet with the single-modal98

baseline on LiDAR point clouds with various sparsity. In practice, following Pseudo-LiDAR++ [25],99

we simulated the 32-beam, 16-beam, and 8-beam LiDAR signals by selecting LiDAR points whose100

elevation angles fall within specific intervals. As shown in Table 10, the proposed BiProDet outper-101

forms the single-modal baseline under all settings. The consistent improvements suggest our method102

can generalize to sparser signals. Besides, the proposed BiProDet significantly performs better than103

the baseline in the setting of LiDAR signals with fewer beams, demonstrating the effectiveness of our104

method in exploiting the supplementary information in the image domain.105

Table 10: Comparison with single-modal baselines under LiDAR signals with different beams, where
we report AP3D|R40 on the KITTI validation set.

LiDAR Beams Modal Car Ped. Cyc. mAP

64
LiDAR 86.71 62.23 78.68 75.87

LiDAR + RGB 87.18 67.52 81.21 78.64
Improvement +0.47 +5.29 +2.53 +2.76

32
LiDAR 83.49 57.83 70.82 70.71

LiDAR + RGB 84.47 62.56 73.93 73.65
Improvement +0.98 +4.73 +3.11 +2.94

16
LiDAR 79.80 53.84 60.51 64.71

LiDAR + RGB 80.78 59.44 67.35 69.19
Improvement +0.99 +5.60 +6.84 +4.48

8
LiDAR 64.42 22.57 43.19 43.39

LiDAR + RGB 67.09 31.03 47.97 48.70
Improvement +2.66 +8.46 +4.78 +5.30

Robustness against Input Corruption. We also conducted extensive experiments to verify the106

robustness of our BiProDet to sensor perturbation. Specifically, we added Gaussian noises to the107

reflectance value of points or RGB images. Fig. 2 shows that the mAP value of our cross-modal108

BiProDet is consistently higher than that of the single-modal baseline and decreases slower with the109

LiDAR noise level increasing. Particularly, as listed in Table 11, when the variance of the LiDAR110

noise is set to 0.15, the perturbation affects our cross-modal BiProDet much less than the single-modal111

detector. Besides, even applying the corruption to both LiDAR input and RGB images, the mAP112

value of our BiProDet only drops by 2.49%.113

Table 11: Performances (mAPs) of the single-modal base-
line and our BiProDet on the KITTI val set under input
corruptions of simulated LiDAR and image noise sampled
from the Gaussian distribution. Note that the image noise
is only applicable to multi-modal detectors.

Corruptions Type Modal Car Ped. Cyc. mAP
No Corruption LiDAR 86.71 62.23 78.68 75.87
LiDAR Noise LiDAR 84.37 49.19 77.27 70.28
No Corruption LiDAR + RGB 87.18 67.52 81.21 78.64
LiDAR Noise LiDAR + RGB 86.82 65.61 77.63 76.69
Image Noise LiDAR + RGB 87.14 66.26 77.97 77.12

LiDAR + Image Noise LiDAR + RGB 86.60 65.42 76.44 76.15

Figure 2: Comparisons of noise robust-
ness between the single-modal baseline
and our BiProDet.114
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Effectiveness of Multi-stage Interaction. As mentioned before, both 2D and 3D backbones adopt an115

encoder-decoder structure, and we perform bidirectional feature propagation at both downsampling116

and upsampling stages. Here, we conducted experiments to verify the superiority of the multi-stage117

interaction over single-stage interaction. As shown in Table 12, only performing the bidirectional118

feature propagation in the encoder (i.e., Table 12 (b)) or the decoder (i.e., Table 12 (c)) leads to worse119

performance than that of performing the module in both stages (i.e., Table 12 (d)).120

Table 12: Ablative experiments on the multi-stage manner of bidirectional propagation, where SA
and FP denote applying bidirectional propagation at downsampling (in the encoder) and upsampling
(in the decoder) stages of the point cloud branch, respectively.

Stage 3D Car (IoU=0.7) 3D Ped. (IoU=0.5) 3D Cyc. (IoU=0.5) mAPSA FP Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
(a) - - 91.92 85.22 82.98 68.82 61.47 56.39 91.93 74.56 69.58 75.88
(b) ✓ - 92.67 85.86 83.40 70.94 65.29 60.35 93.60 75.60 71.04 77.64
(c) - ✓ 92.19 85.44 83.27 69.02 63.41 58.47 92.85 76.39 71.91 76.99
(d) ✓ ✓ 92.63 85.77 83.13 72.68 67.64 62.25 94.39 77.77 71.47 78.64

A.5 Efficiency Analysis121

We also compared the inference speed and number of parameters of the proposed BiProDet with122

state-of-the-art cross-modal approaches in Table 13. Our BiProDet has about the same number of123

parameters as CAT-Det [26], but a much higher inference speed at 9.52 frames per second on a124

single GeForce RTX 2080 Ti GPU. In general, our BiProDet is inevitably slower than some single-125

modal detectors, but it achieves a good trade-off between speed and accuracy among cross-modal126

approaches.127

Table 13: Comparison of the number of network parameters, inference speed, and detection accuracy
of different multi-modal methods on the KITTI test set.

Method Params (M) Frames per second mAP (%)
AVOD-FPN [9] 38.07 10.00 56.84
F-PointNet [13] 12.45 6.25 57.86

EPNet [7] 16.23 5.88 -
CAT-Det [26] 23.21 3.33 67.05

BiProDet (Ours) 24.98 9.52 70.13

A.6 Visual Results of 3D Object Detection128

In Figure 3, we present the qualitative comparison of detection results between the single-modal129

baseline and our BiProDet. We can observe that the proposed BiProDet shows better localization130

capability than the single-modal baseline in challenging cases. Besides, we also show qualitative131

results of BiProDet on the KITTI test split in Figure 4. We can clearly observe that our BiProDet132

performs well in challenging cases, such as pedestrians and cyclists (with small sizes) and highly-133

occluded cars.134

A.7 Visual Results of 2D Semantic Segmentation135

Several examples are shown in Figure 5. For distant cars in the first and the second row as well as the136

pedestrian in the sixth row, the size of objects is small and PSPNet tends to treat them as background,137

while our BiProDet is able to correct such errors. In the third row, our BiProDet finds the dim cyclist138

missed by PSPNet. Our BiProDet also performs better for the highly occluded objects as shown139

in the fourth and the fifth lines. This observation shows the 3D feature representations extracted140

from point clouds can boost 2D semantic segmentation, since the image-based method is sensitive to141

illumination and can hardly handle corner cases with only single-modal inputs.142
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Figure 3: Qualitative comparison between single-modal baseline and our multi-modal BiProDet. For
each comparison, from top to bottom, we have the image, detection results of single-modal baseline,
and detection results of BiProDet. We use red, green, and yellow to denote the ground-truth, true
positive and false positive bounding boxes, respectively. We highlight some objects in images with
red circles, which are detected by BiProDet but missed by the single-modal method.
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Figure 4: Extra qualitative results of BiProDet on the KITTI test set. The predicted bounding boxes
of car, pedestrian, and cyclist are visualized in green, cyan, and yellow, respectively. We also show
the corresponding projection of boxes on images. Best viewed in color and zoom in for more details.

Figure 5: Visual results of 2D semantic segmentation on the KITTI val set. The prediction boxes are
shown in green for car, cyan for pedestrian, and yellow for cyclist. Best viewed in color. Compared
with PSPNet, our cross-modal BiProDet produces more accurate and detailed results.
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A.8 Details on Official KITTI Test Leaderboard143

We submitted the results of our BiProDet to the official KITTI website, and it ranks 1st on the 3D144

object detection benchmark for the cyclist class. Figure 6 shows the screenshot of the leaderboard.145

Figure 7 illustrates the precision-recall curves along with AP scores on different categories of the146

KITTI test set. The samples of the KITTI test set are quite different from those of training/validation147

set in terms of scenes and camera parameters, so the impressive performance of our BiProDet on the148

test set demonstrates it also achieves good generalization.149

Figure 6: Screenshot of the KITTI 3D object detection benchmark for cyclist class on August 15th,
2022.

Figure 7: Precision-recall curves of different methods on the KITTI 3D object detection test set on
Aug. 15th, 2022. We also report APs in different categories for each method.
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