
A Proofs497

A.1 Proof of Proposition 3.1498

Expanding the entropy in Equation 5 we obtain499

p∗(o) ∝ exp
(
Ep∗(D|o)[Ro(D)/η − log p∗(D|o)]

)
.

Using p∗(D|o) = p̃(D|o)/
∑

n p̃(Dn|o) yields500

p∗(o) ∝ exp
(
Ep∗(D|o)[Ro(D)/η − log p̃(D|o)

+ log
∑
n

p̃(Dn|o)]
)
.

Next, leveraging that log p̃(D|o) = Ro(Dn)/η we see that501

p∗(o) ∝ exp
(
Ep∗(D|o)[log

∑
n

p̃(Dn|o)]
)
=

∑
n

p̃(Dn|o),

which concludes the proof.502

A.2 Proof of Corollary 3.1.2503

We start by rewriting the lower bound as L(ψ, q) =504

Ep∗(o)

[
Ep∗(D|o)[Ro(D)− η log p∗(D|o)]− η log p∗(o)

]
.

Using p∗(D|o) ∝ p̃(D|o) and Proposition 3.1 we obtain505

L(ψ, q) =Ep∗(o)

[
Ep∗(D|o)[Ro(D)− η log p̃(D|o)

+η log
∑
n

p̃(Dn|o)]− η log
∑
n

p̃(Dn|o)

+η log
∑
o

∑
n

p̃(Dn|o)
]

With η log p̃(D|o) = Ro(Dn) all most terms cancel, giving506

L(ψ, q) =Ep∗(o)

[
η log

∑
o

∑
n

p̃(Dn|o)
]

=η log
∑
o

∑
n

p̃(Dn|o),

which concludes the proof.507

A.3 Proof of Corollary 3.1.1508

Expanding the expected KL divergence, we get509

min
ϕ

Ep(D)DKL

(
p(o|D)∥gϕ(o|x)

)
= min

ϕ

∑
n

p(Dn)
∑
o

p(o|Dn) log
p(o|Dn)

gϕ(o|xn)
.

Noting that p(o|Dn) is independent of ϕ we can rewrite the objective as510

max
ϕ

∑
n

p(Dn)
∑
o

p(o|Dn) log gϕ(o|xn).

Using that p(o|D) = p̃(D|o)/
∑

o p̃(D|o) together with p(D) =
∑

o p
∗(o)p∗(D|o) yields511

max
ϕ

∑
n

∑
o

p∗(o)p∗(Dn|o)
∑
o

p̃(Dn|o)∑
o p̃(Dn|o)

log gϕ(o|xn).

14

Using Proposition 3.1 we can rewrite p∗(o)p∗(D|o) as p̃(D|o)/
∑

o

∑
n p̃(Dn|o). Since the constant512

factor 1/
∑

o

∑
n p̃(Dn|o) does not affect the optimal value of ϕ we obtain513

max
ϕ

∑
n

∑
o

p̃(Dn|o)
∑
o

p̃(Dn|o)∑
o p̃(Dn|o)

log gϕ(o|xn)

max
ϕ

∑
n

∑
o

p̃(Dn|o) log gϕ(o|xn),

which concludes the proof.514

B Derivations515

B.1 Lower Bound Decomposition516

To arrive at Equation 4 by marginalizing over the latent variable o for the entropy of the joint517

curriculum, i.e.,518

H(D) = −
∑
n

p(Dn) log p(Dn)

= −
∑
n

p(Dn)
∑
o

p(o|Dn) log p(Dn)

Next, we use Bayes’ theorem, that is, p(Dn) = p(o)p(Dn|o)/p(o|Dn), giving519

H(D) =−
∑
n

p(Dn)
∑
o

p(o|Dn)
(
log p(o) + log p(Dn|o)

− log p(o|Dn)
)
.

Moreover, we add and subtract the log auxiliary distribution log q(o|Dn) which yields520

H(D) =−
∑
n

p(Dn)
∑
o

p(o|Dn)
(
log p(o) + log p(Dn|o)

− log p(o|Dn) + log q(o|Dn)− log q(o|Dn)
)
.

Rearranging the terms leads and writing the sums in terms of expectations we arrive at521

H(D) =Ep(o)

[
Ep(o|D)[log q(o|D)] +H(D|o)

]
+H(o)

+DKL

(
p(o|D)∥q(o|D)

)
.

Lastly, multiplyingH(D) with η and adding Ep(o)Ep(D|o)[log pθo(y|x, o)] we arrive at Equation 4522

which concludes the derivation.523

B.2 M-Step Objectives524

Closed-Form Curriculum Updates. In order to derive the closed-form solution to Equation equa-525

tion 5 (RHS) we solve526

max
p(D|z)

Jz(p(D|z),θz) = max
p(D|z)

Ep(D|z)[Rz(D)] + ηH(D|z) subject to
∑
n

p(D) = 1.

Following the procedure of constrained optimization, we write down the Lagrangian function [55] as527

L(p, λ) =
∑
n

p(Dn|z)Rz(Dn)− η
∑
n

p(Dn|z) log p(Dn|z) + λ(
∑
n

p(Dn|z)− 1),

where λ is the Lagrangian multiplier. As p is discrete, we solve for the optimal entries of p(Dn|z),528

that is, p′(Dn, λ|z) = argmaxp L(p, λ). Setting the partial derivative of L(p, λ) with respect to p529

zero, i.e.,530

∂

∂p(Dn|z)
L(p, λ) = Rz(Dn)− η log p(Dn|z)− η + λ

!
= 0.

15

yields p′(Dn, λ|z) = exp
(
Rz(Dn)− η + λ

)
/η.531

Plugging p′ back in the Lagrangian gives the dual function g(λ), that is,532

g(η) = L(p′, λ) = −η + η
∑
n

exp
(
Rz(Dn)− η + λ

)
/η.

Solving for λ∗ = argminλ≥0 g(λ) equates to533

∂

∂λ
g(λ) = −1 + η

∑
n

exp
(
Rz(Dn)− η + λ

)
/η

!
= 0

⇐⇒ λ∗ = − log
(
η
∑
n

exp
(
Rz(Dn)− η

)
/η

)
.

Finally, substituting λ∗ into p′ we have534

p∗(Dn|z) = p′(Dn, λ
∗|z) =

exp
(
Rz(Dn)/η

)∑
n exp

(
Rz(Dn)/η

) ,
which concludes the derivation. The derivation of the optimal mixture weights p∗(z) works analo-535

gously.536

Expert Objective. In order to derive the expert objective of Equation 6 we solve537

max
θz

Jz(p(D|z),θz) = max
θz

∑
n

p(Dn|z)
(
log pθz

(an|on, z) + η log q(z|Dn)− η log p(Dn|z)
)
.

Noting that q(z|Dn) and p(Dn|z) are independent of θz and p(Dn|z) = p̃(Dn|z)/
∑

n p̃(Dn|z) we538

find that539

max
θz

Jz(p(D|z),θz) = max
θz

∑
n

p̃(Dn|z)∑
n p̃(Dn|z)

log pθz
(an|on, z).

Noting that
∑

n p̃(Dn|z) is a constant scaling factor concludes the derivation.540

C Experiment Setup541

C.1 Environments and Datasets542

C.1.1 Obstacle Avoidance543

Figure 7: The left figure shows 6 out of 24 ways of completing the obstacle avoidance task. The middle figure
shows 30 randomly sampled initial block configurations for the block pushing task. The right figure visualizes
the Franka kitchen environment.

Dataset. The obstacle avoidance dataset contains 96 trajectories resulting in a total of 7.3k (o,a)544

pairs. The observations o ∈ R4 contain the end-effector position and velocity in Cartesian space.545

Please note that the height of the robot is fixed. The actions a ∈ R2 represent the desired position of546

the robot. The data is recorded such that there are an equal amount of trajectories for all 24 ways of547

avoiding the obstacles and reaching the target line. For successful example trajectories see Figure 7.548

16

Performance Metrics. The success rate indicates the number of end-effector trajectories that549

successfully reach the target line (indicated by green color in Figure 3). The entropy550

H24(τ) = −
∑
τ

p(τ) log24 p(τ),

is computed for successful trajectories τ . To assess the model performance, we simulate 1000551

end-effector trajectories. We count the number of successful trajectories for each way of completing552

the task. From that, we calculate a categorical distribution p(τ) which is used to compute the entropy.553

By the use of log24 we make sure that H24(τ) ∈ [0, 1]. If a model is able to discover all modes in554

the data distribution with equal probability, its entropy will be close to 1. In contrast,H24(τ) = 0 if555

a model only learns one solution.556

C.1.2 Block Pushing557

Dataset. The block pushing dataset contains 500 trajectories for each of the four push sequences558

(see Figure 4) resulting in a total of 2000 trajectories or 463k (o,a) pairs. The observations o ∈ R16559

contain the desired position and velocity of the robot in addition to the position and orientation of the560

green and red block. Please note that the orientation of the blocks is represented as quaternion number561

system and that the height of the robot is fixed. The actions a ∈ R2 represent the desired position562

of the robot. This task is similar to the one proposed in [17]. However, they use a deterministic563

controller to record the data whereas we use human demonstrators which increases the difficulty of564

the task significantly due to the inherent versatility in human behavior.565

Performance Metrics. The success rate indicates the number of end-effector trajectories τ that566

successfully push both blocks to different target zones. To assess the model performance on non-567

successful trajectories, we consider the distance error, that is, the euclidean distance from the blocks568

to the target zones at the final block configuration of an end-effector trajectory. As there are a total of569

four push sequences (see Figure 3) we use the expected entropy570

Ep(c)H4(τ |c) = −
∑
c

p(c)
∑
τ

p(τ |c) log4 p(τ |c),

to quantify a model’s ability to cover the modes in the data distribution. Please note that we set571

p(c) = 1/30 as we sample 30 block configurations uniformly from a configuration space (see Figure572

7). For each c we simulate 16 end-effector trajectories. For a given configuration, we count how often573

each of the four push-sequences is executed successfully and use the result to calculate a categorical574

distribution p(τ |c). Once repeated for all 30 configurations , we compute Ep(c)H4(τ |c). Using log4575

we make sure that the expected entropy is upper bounded by 1. This bound is achieved if a model is576

able to execute each of the push sequences with equal probability for all configurations. If a model577

only executes one sequence successfully, the entropy is 0.578

C.1.3 Franka Kitchen579

Dataset. The Franka kitchen environment was introduced in [51]. It contains 566 human-collected580

trajectories resulting in a total of 128k (o,a) pairs. The observations o ∈ R30 contain information581

about the position and orientation of the task-relevant objects in the environment. The actions a ∈ R9582

represent the signals to control the robot and the gripper. The dataset comprises sequences that583

successfully solve 4 out of 7 tasks in different orders.584

Performance Metrics. First, we consider the success rate for a different number of tasks solved. We585

additionally compute the entropy over task sequences. This is computed using 100 simulated robot586

trajectories. For trajectories with a single task solved, we count how frequently each of the tasks is587

executed. From that, we calculate a categorical distribution which is then used for computing the588

entropy. We generalize this concept to more successful task completions, by calculating a categorical589

distribution over all 7k possible task sequences for k task completions.590

C.1.4 Table Tennis591

Dataset. The table tennis dataset contains 5000 (o,a) pairs. The observations o ∈ R4 contain the592

coordinates of the initial and target ball position as projection on the table. Movement primitives593

(MPs) [30] are used to describe the joint space trajectories of the robot manipulator using two basis594

functions per joint and thus a ∈ R14.595

17

Metrics. To evaluate the different algorithms on the demonstrations recorded using the table tennis596

environment quantitatively, we employ two performance metrics: The success rate and the distance597

error. The success rate is the percentage of strikes where the ball is successfully returned to the598

opponent’s side. The distance error, is the distance between the target position and landing position599

of the ball for successful strikes.600

C.1.5 Human Subjects for Data Collection601

For the obstacle avoidance as well as the block pushing experiments we used data collected by602

humans. We note that all human subjects included in the data collection process are individuals who603

are collaborating on this work. The participants did, therefore, not receive any financial compensation604

for their involvement in the study.605

C.2 IMC Details and Hyperparameter606

IMC employs a parameterized inference network and conditional Gaussian distributions to represent607

experts. For the latter, we use a fixed variance of 1 and parameterize the means as neural networks.608

For both inference network and expert means we use residual MLPs [56]. For all experiments, we use609

batch-size |B| = |D|, number of components Nz = 50 and expert learning rate equal to 5× 10−4.610

Furthermore, we initialized all curriculum weights as p(Dn|z) = 1. For the table tennis and obstacle611

avoidance task, we found the best results using a multi-head expert parameterization (see Section612

E.1) where we tested 1 − 4 layer neural networks. We found that using 1 layer with 32 neurons613

performs best on the table tennis task and 2 layer with 64 neurons for the obstacle avoidance task. For614

the block pushing and Franka kitchen experiments, we obtained the best results using a sigle-head615

parameterization of the experts. We used 6 layer MLPs with 128 neurons for both tasks. For the616

inference network, we used a fixed set of parameters that are listed in Table 2. For the entropy scaling617

factor η we performed a hyperparameter sweep using Bayesian optimization. The respective values618

are η = 1/30 for obstacle avoidance, η = 2 for block pushing and Franka kitchen and η = 1 for619

table tennis.

Table 2: IMC & EM Hyperparameter.

PARAMETER VALUE

EXPERT LEARNING RATE 10−4

EXPERT BATCHSIZE 1024
EXPERT VARIANCE (σ2) 1
INFERENCE NET HIDDEN LAYER 6
INFERENCE NET HIDDEN UNITS 256
INFERENCE NET EPOCHS 800
INFERENCE NET LEARNING RATE 10−3

INFERENCE NET BATCHSIZE 1024

620

C.3 Baselines and Hyperparameter621

We now briefly mention the baselines and their hyperparameters. We used Bayesian optimization to622

tune the most important hyperparameters.623

Mixture of Experts trained with Expectation-Maximization (EM). The architecture of the mixture624

of experts model trained with EM [48] is identical to the one optimized with IMC: We employ a625

parameterized inference network and conditional Gaussian distributions to represent experts with626

the same hyperparameters as shown in Table 2. Furthermore, we initialized all responsibilities as627

p(z|o) = 1/Nz , where Nz is the number of components.628

Mixture Density Network (MDN). The mixture density network [8] uses a shared backbone neural629

network with multiple heads for predicting component indices as well as the expert likelihood. For the630

experts, we employ conditional Gaussians with a fixed variance. The model likelihood is maximized631

in an end-to-end fashion using stochastic gradient ascent. We experimented with different backbones632

and expert architectures. However, we found that the MDN is not able to partition the input space in633

18

a meaningful way, often resulting in sub-optimal outcomes, presumably due to mode averaging. To634

find an appropriate model complexity we tested up to 50 expert heads. We found that the number of635

experts heads did not significantly influence the results, further indicating that the MDN is not able to636

utilize multiple experts to solve sub-tasks. We additionally experimented with a version of the MDN637

that adds an entropy bonus to the objective [57] to encourage more diverse and multimodal solutions.638

However, we did not find significant improvements compared to the standard version of the MDN.639

For a list of hyperparameter choices see 3.

Table 3: MDN Hyperparameter. The ‘Value’ column indicates sweep values for the obstacle
avoidance task, the block pushing task, the Franka kitchen task and the table tennis task (in this
order).

PARAMETER SWEEP VALUE

EXPERT HIDDEN LAYER {1, 2} 1, 1, 1, 1
EXPERT HIDDEN UNITS {30, 50} 50, 30, 30, 50
BACKBONE HID. LAYER {2, 3, 4, 6, 8, 10} 3, 2, 4, 3
BACKBONE HID. UNITS {50, 100, 150, 200} 200, 200, 200, 200
LEARNING RATE ×10−3 [0.1, 1] 5.949, 7.748, 1.299, 2.577
EXPERT VARIANCE (σ2) − 1
MAX. EPOCHS − 2000
BATCHSIZE − 512

640

Denoising Diffusion Probabilistic Models (DDPM). We consider the denoising diffusion proba-641

bilistic model proposed by [24]. Following common practice we parameterize the model as residual642

MLP [27] with a sinusoidal positional encoding [54] for the diffusion steps. Moreover, we use the643

cosine-based variance scheduler proposed by [58]. For further details on hyperparameter choices see644

Table 4.

Table 4: DDPM Hyperparameter. The ‘Value’ column indicates sweep values for the obstacle
avoidance task, the block pushing task, the Franka kitchen task, and the table tennis task (in this
order).

PARAMETER SWEEP VALUE

HIDDEN LAYER {4, 6, 8, 10, 12} 6, 6, 8, 6
HIDDEN UNITS {50, 100, 150, 200} 200, 150, 200, 200
DIFFUSION STEPS {5, 15, 25, 50} 15, 15, 15, 15
VARIANCE SCHEDULER − COSINE
LEARNING RATE − 10−3

MAX. EPOCHS − 2000
BATCHSIZE − 512

645

Normalizing Flow (NF). For all experiments, we build the normalizing flow by stacking masked646

autoregressive flows [59] paired with permutation layers [18]. As base distribution, we use a647

conditional isotropic Gaussian. Following common practice, we optimize the model parameters by648

maximizing its likelihood. See Table 5 for a list of hyperparameters.

Table 5: NF Hyperparameter. The ‘Value’ column indicates sweep values for the obstacle avoidance
task, the block pushing task, the Franka kitchen task and the table tennis task (in this order).

PARAMETER SWEEP VALUE

NUM. FLOWS {4, 6, 8, 10, 12} 6, 6, 4, 4
HIDDEN UNITS PER FLOW {50, 100, 150, 200} 100, 150, 200, 150
LEARNING RATE ×10−4 [0.01, 10] 7.43, 4.5, 4.62, 7.67
MAX. EPOCHS − 2000
BATCHSIZE − 512

649

19

Conditional Variational Autoencoder (CVAE). We consider the conditional version of the autoen-650

coder proposed in [20]. We parameterize the encoder and decoder with a neural network with mirrored651

architecture. Moreover, we consider an additional scaling factor (β) for the KL regularization in the652

lower bound objective of the VAE as suggested in [60].

Table 6: CVAE Hyperparameter. The ‘Value’ column indicates sweep values for the obstacle
avoidance task, the block pushing task, the Franka kitchen task and the table tennis task (in this
order).

PARAMETER SWEEP VALUE

HIDDEN LAYER {4, 6, 8, 10, 12} 8, 10, 4, 4
HIDDEN UNITS {50, 100, 150, 200} 100, 150, 100, 100
LATENT DIMENSION {4, 16, 32, 64} 32, 16, 16, 16
DKL SCALING (β) [10−3, 102] 1.641, 1.008, 0.452, 0.698
LEARNING RATE − 10−3

MAX. EPOCHS − 2000
BATCHSIZE − 512

653

Implicit Behavior Cloning (IBC). IBC was proposed in [17] and uses energy-based models to learn654

a joint distribution over inputs and targets. Following common practice we parameterize the model as655

neural network. Moreover, we use the version that adds a gradient penalty to the InfoNCE loss [17].656

For sampling, we use gradient-based Langevin MCMC [56]. Despite our effort, we could not achieve657

good results with IBC. A list of hyperparameters is shown in Table 7.658

Table 7: IBC Hyperparameter. The ‘Value’ column indicates sweep values for the obstacle
avoidance task and the table tennis task (in this order). We do not get any good results for the block
push task and the Franka kitchen task.

PARAMETER SWEEP VALUE

HIDDEN DIM {50, 100, 150, 200, 256} 200, 256
HIDDEN LAYERS {4, 6, 8, 10} 4, 6
NOISE SCALE [0.1, 0.5] 0.1662, 0.1
TRAIN SAMPLES [8, 64] 44, 8
NOISE SHRINK − 0.5
TRAIN ITERATIONS − 20
INFERENCE ITERATIONS − 40
LEARNING RATE − 10−4

BATCH SIZE − 512
EPOCHS − 1000

Behavior Transformer (BET). Behavior transformers were recently proposed in [22]. The model659

employs a minGPT transformer [61] to predict targets by decomposing them into cluster centers and660

residual offsets. To obtain a fair comparison, we compare our method to the version with no history.661

A comprehensive list of hyperparameters is shown in Table 8.662

D Connection to Expectation Maximization663

In this section we want to highlight the commonalities and differences between our algorithm and the664

expectation-maximization (EM) algorithm for mixtures of experts. First, we look at the updates of665

the variational distribution q. Next, we compare the expert optimization. Lastly, we take a closer look666

at the optimization of the gating distribution.667

The EM algorithm sets the variational distribution during the E-step to668

q(z|on) = p(z|on,an) =
pθz (an|on, z)p(z|on)∑
z pθz

(an|on, z)p(z|on)
, (7)

20

Table 8: BET Hyperparameter. The ‘Value’ column indicates sweep values for the obstacle
avoidance task, the block pushing task, the Franka kitchen task and the table tennis task (in this
order).

PARAMETER SWEEP VALUE

TRANSFORMER BLOCKS {2, 3, 4, 6} 3, 4, 6, 2
OFFSET LOSS SCALE {1.0, 100.0, 1000.0} 1.0, 1.0, 1.0, 1.0
EMBEDDING WIDTH {48, 72, 96, 120} 96, 72, 120, 48
NUMBER OF BINS {8, 10, 16, 32, 50, 64} 50, 10, 64, 64
ATTENTION HEADS {4, 6} 4, 4, 6, 4
CONTEXT SIZE − 1
TRAINING EPOCHS − 500
BATCH SIZE − 512
LEARNING RATE − 10−4

for all samples n and components z. In the M-step, the gating distribution p(z|o) is updated such669

that the KL divergence between q(z|o) and p(z|o) is minimized. Using the properties of the KL670

divergence, we obtain a global optimum by setting p(z|on) = q(z|on) for all n and all z. This allows671

us to rewrite Equation 7 using the recursion in q, giving672

q(z|on)
(i+1) =

pθz
(an|on, z)q(z|on)

(i)∑
z pθz (an|on, z)q(z|on)(i)

,

where (i) denotes the iteration of the EM algorithm. The update for the variational distribution of the673

IMC algorithm is given by674

q(z|Dn)
(i+1) =

p̃(Dn|z)(i+1)∑
z p̃(Dn|z)(i+1)

=
pθz (an|on, z)

1/ηq(z|Dn)
(i)∑

z pθz
(an|on, z)1/ηq(z|Dn)(i)

.

Consequently, we see that q(z|o) = q(z|D) for η = 1. However, the two algorithms mainly differ in675

the M-step for the experts: The EM algorithm uses the variational distribution to assign weights to676

samples, i.e.677

max
θz

N∑
n=1

q(z|on) log pθz (an|on, z),

whereas IMC uses the curricula as weights, that is,678

max
θz

N∑
n=1

p(Dn|z) log pθz (an|on, z).

This subtle difference shows the properties of moment and information projection: In the EM679

algorithm each sample on contributes to the expert optimization as
∑

z q(z|on) = 1. However, if all680

curricula ignore the nth sample, it will not have impact on the expert optimization. Assuming that681

the curricula ignore samples that the corresponding experts are not able to represent, IMC prevents682

experts from having to average over ‘too hard’ samples. Furthermore, this results in reduced outlier683

sensitivity as they are likely to be ignored for expert optimization. Lastly, we highlight the difference684

between the gating optimization: Assuming that both algorithms train a gating network gϕ(z|o) we685

have686

max
ϕ

∑
n

∑
z

q(z|on) log gϕ(z|on),

for the EM algorithm and687

max
ϕ

∑
n

∑
z

p̃(Dn|z) log gϕ(z|on),

for IMC. Similar to the expert optimization, EM includes all samples to fit the parameters of the688

gating network, whereas IMC ignores samples where the unnormalized curriculum weights p̃(Dn|z)689

are zero for all components.690

21

E Algorithm Details & Ablation Studies691

E.1 Expert Design Choices692

Distribution. In our mixture of experts policy, we employ Gaussian distributions with a fixed693

variance to represent the individual experts. This choice offers several benefits in terms of likelihood694

calculation, optimization and ease of sampling:695

To perform the M-Step for the curricula (Section 3.3), exact log-likelihood computation is necessary.696

This computation becomes straightforward when using Gaussian distributions. Additionally, when697

Gaussian distributions with fixed variances are employed to represent the experts, the M-Step for the698

experts simplifies to a weighted squared-error minimization. Specifically, maximizing the weighted699

likelihood reduces to minimizing the weighted squared error between the predicted actions and the700

actual actions.701

The optimization problem for the expert update can be formulated as follows:702

θ∗z = argmax
θz

∑
n

p̃(Dn|z) log pθz (an|on, z),= argmin
θz

∑
n

p̃(Dn|z)∥µθz (on)− an∥22.

This optimization problem can be efficiently solved using gradient-based methods. Lastly, sampling703

from Gaussian distributions is well-known to be straightforward and efficient.704

Parameterization. We experimented with two different parameterizations of the Gaussian expert705

means µθz
, which we dub single-head and multi-head: For single-head, there is no parameter sharing706

between the different experts. Each expert has its own set of parameters θz . As a result, we learn Nz707

different multi-layer perceptrons (MLPs) µθz
: R|O| → R|A|, where Nz is the number of mixture708

components. In contrast, the multi-head parameterization uses a global set of parameters θ for all709

experts and hence allows for feature sharing. We thus learn a single MLP µθ : R|O| → RNz×|A|.710

To compare both parameterizations, we conducted an ablation study where we evaluate the MoE711

policy on obstacle avoidance, table tennis and Franka kitchen. In order to have a similar number712

of parameters, we used smaller MLPs for single-head, that is, 1− 4 layers whereas for multi-head713

we used a 6 layer MLP. The results are shown in Table 9 and are generated using 30 components714

for the obstacle avoidance and table tennis task. The remaining hyperparameters are equal to the715

ones listed in the main manuscript. For Franka kitchen, we report the cumulative success rate and716

entropy for a different number of completed tasks. We report the mean and standard deviation717

calculated across 10 different seeds. Our findings indicate that, in the majority of experiments,718

the single-head parameterization outperforms the mutli-head alternative. Notably, we observed a719

substantial performance disparity, especially in the case of Franka kitchen.

Table 9: Expert Parameterization Ablation: We compare IMC with single- and multi-head expert
parameterization. For further details, please refer to the accompanying text.

OBSTACLE AVOIDANCE TABLE TENNIS FRANKA KITCHEN
ARCHITECTURE SUCCESS RATE (↑) ENTROPY (↑) SUCCESS RATE (↑) DISTANCE ERR. (↓) SUCCESS RATE (↑) ENTROPY (↑)
SINGLE-HEAD 0.899±0.035 0.887±0.043 0.812±0.039 0.168±0.007 3.644±0.230 6.189±1.135

MULTI-HEAD 0.855±0.053 0.930±0.031 0.870±0.017 0.153±0.007 3.248±0.062 4.657±0.312

720

Expert Complexity. We conducted an ablation study to evaluate the effect of expert complexity on721

the performance of the IMC algorithm. The study involved varying the number of hidden layers in722

the single-head expert architecture while assessing the IMC algorithm’s performance on the Franka723

kitchen task using the cumulative success rate and entropy. The results, presented in Figure 8, were724

obtained using the hyperparameters specified in the main manuscript. Mean and standard deviation725

were calculated across 5 different seeds. Our findings demonstrate a positive correlation between726

expert complexity and achieved performance.727

E.2 Curriculum Pacing Sensitivity728

To examine the algorithm’s sensitivity to the curriculum pacing parameter η, we conducted an ablation729

study. Figure 9 presents the results obtained using 30 components for the obstacle avoidance and730

22

0 2 4 6 8 10
0

2

4

hidden layer

su
cc
es
s
ra
te

0 2 4 6 8 10
0

2

4

6

8

hidden layer

en
tr
o
p
y

Figure 8: Expert Complexity Ablation: Evaluation of the IMC algorithm on the Franka kitchen task
with varying numbers of hidden layers in the single-head expert architecture.

table tennis tasks, while maintaining the remaining hyperparameters as listed in the main manuscript.731

For the Franka kitchen task, we analyzed the cumulative success rate and entropy across varying732

numbers of completed tasks. The mean and standard deviation were calculated across 5 different733

seeds. Our findings reveal that the optimal value for η is dependent on the specific task. Nevertheless,734

the algorithm exhibits stable performance even when η values differ by an order of magnitude.

0.001 0.01 0.1 1 10 100
0

0.2

0.4

0.6

0.8

1

η

su
cc
es
s
ra
te

0.001 0.01 0.1 1 10 100
0

0.2

0.4

0.6

0.8

1

η

en
tr
op

y

(a) Obstacle avoidance

0.001 0.01 0.1 1 10 100
0

0.2

0.4

0.6

0.8

1

η

su
cc
es
s
ra
te

0.001 0.01 0.1 1 10 100
0

0.2

0.4

0.6

0.8

1

η

d
is
ta
n
ce

er
ro
r

(b) Table tennis

0.001 0.01 0.1 1 10 100
0

1

2

3

4

η

su
cc
es
s
ra
te

0.001 0.01 0.1 1 10 100
0

2

4

6

8

η

en
tr
op

y

(c) Franka kitchen

Figure 9: Curriculum Pacing Sensitivity: Sensitivity analysis of the IMC algorithm for performance
metrics in the obstacle avoidance, table tennis, and Franka kitchen tasks, considering varying
curriculum pacing (η) values. The results illustrate the mean and standard deviation across 5 different
seeds.

735

E.3 Inference Details736

We provide pseudocode to further clarify the inference procedure of our proposed method (see737

Algorithm 2).

Algorithm 2 IMC Action Generation

1: Require: Curriculum weights {p̃(Dn|z) | n ∈ {1, ..., N}, z ∈ {1, ..., Nz}}
2: Require: Expert parameter {θz| z ∈ {1, ..., Nz}}
3: Require: New observation o∗

4: if not parameter_updated then
5: ϕ∗ ← argmaxϕ

∑
n

∑
z p̃(Dn|z) log gϕ(z|on)

6: parameter_updated← True
7: end if
8: Sample z′ ∼ gϕ∗(z|o∗)
9: Sample a′ ∼ pθz (a|o∗, z′)

10: Return a′

738

23

	Proofs
	Proof of Proposition 3.1
	Proof of Corollary 3.1.2
	Proof of Corollary 3.1.1

	Derivations
	Lower Bound Decomposition
	M-Step Objectives

	Experiment Setup
	Environments and Datasets
	Obstacle Avoidance
	Block Pushing
	Franka Kitchen
	Table Tennis
	Human Subjects for Data Collection

	IMC Details and Hyperparameter
	Baselines and Hyperparameter

	Connection to Expectation Maximization
	Algorithm Details & Ablation Studies
	Expert Design Choices
	Curriculum Pacing Sensitivity
	Inference Details

