
SUPPLEMENTARY MATERIAL: Explaining the uncertain: Stochastic Shapley539

values for Gaussian process models540

A The GP-SHAP algorithm and discussion on computation techniques541

We present the complete algorithm for both GP-SHAP and BayesGP-SHAP in Algorithm 1.

Algorithm 1 GP-SHAP / BayesGP-SHAP

Input: Posterior mean function m̃, posterior covariance function k̃, inducing locations X̃, expla-
nation instances X, number of coalition samples nZ , hyperparameter λ, n0, σ2

0 , base kernel k,
algorithm algo,

1: Compute nI = number of inducing location, n = number of explanation instances, d = number
of features.

2: Compute Cholesky decomposition on posterior covariance LL⊤ = K̃X̃X̃

3: Sample coalitions S = {S1, ..., SnZ
} from [d], build binary matrix Z = {0, 1}nZ×d from S , and

compute weights W = diag[w1, ..., wnZ
] with wi =

d−1

( d
|Si|)|Si|(d−|Si|)

.

4: Compute A = (Z⊤WZ)−1Z⊤W ▷ Shape: d× nZ
5: Compute B(X,S) = [(KX̃SX̃S

+ λI)−1kS(X̃S ,XS) for S in S] ▷ Shape: nZ × nI × n

6: Compute Q where Qi,l,k =
∑

j B(X,S)i,j,kLj,l ▷ Shape: nZ × n× nI
7: Compute R where Ri,k,l =

∑
j Ai,jQj,k,l ▷ Shape: d× n× nI

8: Compute V where Vi,m,k,n =
∑

j,l Ri,j,kRm,l,n ▷ Shape: d× d× n× n

9: Compute E where Ei,k =
∑

j B(X,S)i,j,km̃(X̃)j ▷ Shape: nZ × n
10: Compute Φ = AE ▷ The mean stochastic Shapley values of shape d× n
11: if algo = GP-SHAP then
12: return mean explanations Φ and covariance V between d features and n instances
13: else if algo = BayesGP-SHAP then
14: Compute s2 = diag

(
(E− ZΦ)⊤W(E− ZΦ)

)
+diag(Φ⊤Φ) ▷ Shape: n× 1

15: Sample σ2 from Scaled-Inv-χ2
(
n0 + nZ ,

n0σ
2
0+nZs2

n0+nZ

)
▷ Shape: n× 1

16: return mean explanations Φ and covariance V + (Z⊤WZ)−1σ2

17: end if

542

Computational considerations. In terms of computational complexity, one of the most demanding543

operations in the algorithm is the computation of conditional mean embeddings in step 5. Instead of544

naively inverting an n× n matrix, which would have a computational cost of O(n3), we employ the545

conjugate gradient method to reduce the computation of the conditional mean embedding component546

to O(n2a), where a ≪ n represents the number of conjugate gradient iterations. Additionally, to547

further reduce runtime, we utilize the variational sparse GP model [48]. This model learns a set of548

inducing locations X̃ with a size of nI ≪ n, which can be reused for the estimation of conditional549

mean embeddings in the algorithm. Consequently, the computation of the conditional expectation is550

reduced from O(n2a) to O(n2Ia). Another computational burden arises from the computation of the551

full covariance matrix across d features and n instances, which requires storage of a n2d2 matrix.552

However, since the full covariance matrix can be factorized into the R component from step 7 of the553

algorithm, we can store this low-rank component and compute covariances between specific instances554

when necessary. It is worth noting that this decomposition of the covariance matrix allows us to avoid555

redundant computations when computing the covariance component, as we no longer need to iterate556

over all possible coalitions twice. Finally, we can further speed up our computational by parallelising557

computation across the sub-sampled coalitions in step 5.558
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B Proofs and derivations559

B.1 Section 2 proofs: Stochastic Shapley values560

We include the full proof of the derivation of stochastic Shapley values for completeness. The proof561

is analogous to the original work of Shapley’s [1] but extended to random variable payoffs. Ma et al.562

[16] has also proved the same theorem but used a different proving strategy. They started with the563

solution and showed it satisfies the axioms and then prove uniqueness, whereas the following proof564

starts from the characterisation of s-games and derive the solution from a bottom-up fashion.565

To facilitate the proof, we first introduce the concept of stochastic symmetric game.566

Proposition 15 (s-symmetric games). Let C be a real-valued random variables, then the symmetric567

game νC,R(S) := C1[R ⊆ S] gets a stochastic shapley value as,568

ϕi(νC,R) =
C

r
(16)

where r = |R|.569

Proof. Take any i, j ∈ R, pick a permutation π ∈ Π(U) so that πR = R and πi = j, so the induced570

game πνC,R = νC,R, and therefore by the s-symmetry axiom,571

ϕj(νC,R) = ϕi(νC,R) (17)

Now by the s-efficiency axiom,572

C = νC,R(R) =
∑
j∈R

ϕj(νC,R) = rϕi(νC,R) (18)

for any i ∈ R.573

Now we can characterise the form of any stochastic game as follows:574

Proposition 16. All s-games with finite carrier can be written as a linear combination of s-symmetric575

games,576

ν =
∑

R⊆N,R ̸=∅

νcR(ν),R (19)

where577

CR(ν) =
∑
T⊆R

(−1)r−tν(T ) (20)

Proof. We start by verifying578

ν(S) =
∑

R⊆N,R ̸=∅

νcR(ν),R(S) (21)

holds for all S ⊆ U , and for any finite carrier N of ν. If S ⊆ N , then we can rewrite the expression579

as,580

ν(S) =
∑
R⊆S

∑
T⊆R

(−1)r−tν(T ) (22)

=
∑
T⊆S

∑
T⊆R⊆S

(−1)r−tν(T ) (23)

=
∑
T⊆S

ν(T )

s∑
r=t

(−1)r−t

(
s− t

r − t

)
(24)

= ν(S) (25)

where in the last equation we used the fact that
∑s

r=t(−1)r−t
(
s−t
r−t

)
is a binomal expansion of581

(1 + (−1))s−t, therefore the only non-zero expression is when t = s.582

583
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We can now prove the uniqueness of stochastic Shapley values,584

Theorem 4 (Stochastic Shapley values). The only stochastic value allocation ϕ of ν satisfying585

s-symmetry, s-efficiency, and s-linearity takes the following form,586

ϕi(ν) =
∑

S⊆N\{i}

c|S| (ν(S ∪ i)− ν(S)) (1)

where N is the smallest carrier set of Ω, c|S| =
1

|N |
(|N |−1

|S|
)−1

and ϕi(ν) is the ith SSV of s-game ν.587

Proof. First, let us denote

γi(S) :=
∑
R⊆N

S∪{i}⊆R

(−1)r−s 1

r
.

Applying the s-linearity axiom on ϕ to the characterisation of ν from the previous propositions leads588

us to the following,589

ϕi(ν) = ϕi

 ∑
R⊆N,R ̸=∅

νCR(ν),R

 (26)

=
∑

R⊆N,R ̸=∅

ϕi(νCR(ν),R) (27)

=
∑

R⊆N,i∈R

cR(ν)
1

r
(28)

=
∑

R⊆N,i∈R

1

r

∑
S⊆R

(−1)r−sν(S)

 (29)

=
∑
S⊆N

∑
R⊆N

S∪{i}⊆R

(−1)r−sν(S)
1

r
(30)

=
∑
S⊆N

γi(S)ν(S) (31)

=
∑
S⊆N
i∈S

γi(S)ν(S) + γi(S − {i})ν(S − {i}) (32)

=
∑
S⊆N
i∈S

γi(S) (ν(S)− ν(S − {i})) (33)

=
∑
S⊆N
i∈S

(s− 1)!(n− s)!

n!
(ν (S)− ν (S − {i})) (34)

=
∑

S⊆N\{i}

c|S| (ν(S ∪ i)− ν(S)) (35)

where in (32) we used the following observation: given i /∈ S′ ⊆ N , and S = S′ ∪ {i}, then590

γi(S) = −γi(S′).591

It satisfies uniqueness by construction.592

Proposition 5. Given the player set Ω, let ν be a stochastic game, ϕ a stochastic Shapley value593

allocation, and ϕ̄ a deterministic Shapley value allocation. Suppose that E[ν] and V[ν] are the594

corresponding mean and variance d-games, respectively. Then, E[ϕ(ν)] = ϕ̄(E[ν]), but V[ϕ(ν)] ̸=595

ϕ̄(V[ν]). In particular, the SSV variance is given by596

V[ϕi(ν)] =
∑

S⊆N\{i}

∑
S′⊆N\{i}

c|S|c|S′|
(
C[νS∪i, νS′∪i]− C[νS∪i, νS′ ]− C[νS , νS′∪i] + C[νS , νS′ ]

)
,

where νS = ν(S) and C is the covariance function between the stochastic payoffs.597
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Proof. The equivalence between mean of stochastic Shapley values and deterministic Shapley values598

of mean game is trivial to show leveraging the linearity of expectation. The variance of V[ϕi(ν)] can599

be shown by repeatedly applying the standard identity V[X + Y ] = V[X] + V[Y ] + 2C[X,Y ] for600

random variables X,Y . Now consider the deterministic Shapley values of variance game V[ν],601

ϕ̄i[V[ν(·)]] =
∑

S⊆N\{i}

c|S| (V[ν(S ∪ i)]− V[ν(S)]) (36)

Comparing to the expression of V[ϕi(ν)] from the lemma,602

V[ϕi(ν)] =
∑

S⊆N\{i}

∑
S′⊆N\{i}

c|S|c|S′|
(
C[νS∪i, νS′∪i]− C[νS∪i, νS′ ]− C[νS , νS′∪i] + C[νS , νS′ ]

)
,

even if we assume mutual independence across all payoff random variables, leading to C[ν(S ∪603

i), ν(S)] = 0 for all S, we still would not subtract but instead sum the variance of V[ν(S ∪ i)] and604

V[ν(S)]. Therefore the variances of stochastic Shapley values is not the same as the deterministic605

Shapley values of the variance game.606

B.2 Section 3.1 proofs on the stochastic Shapley values for induced stochastic game from GP607

Proposition 6 (Stochastic game νf as induced GP). Let f ∼ GP(m̃, k̃) with integrable sample paths,608

i.e.
∫
X |f |dpX < ∞ almost surely. The stochastic payoff function νf induced by f is a Gaussian609

process with the following mean and covariance functions:610

mν(x, S) := EX [m̃(X) | XS = xS ], (4)

kν ((x, S), (x
′, S′)) := EX,X′

[
k̃(X,X ′) | XS = xS , X

′
S′ = x′

S′

]
. (5)

Proof. This is a direct application of Chau et al. [18, Proposition 3.2] to the distribution P (X | XS =611

xS).612

Theorem 7 (Stochastic Shapley values of νf ). Let νf be an induced stochastic game from the GP613

f ∼ GP(m̃, k̃) and denote vx := [νf (x, S1), . . . νf (x, S2d)]
⊤ the vector of stochastic payoffs across614

all coalitions, then the corresponding stochastic Shapley values ϕ(νf (x, ·)) follows a d-dimensional615

multivariate Gaussian distribution,616

ϕ(νf (x, ·)) ∼ N (AE[vx],AV[vx]A
⊤) with A := (Z⊤WZ)−1Z⊤W, (6)

where E[vx] ∈ R2d and V[vx] ∈ R2d×2d are the corresponding mean vector and covariance matrix617

of the payoffs.618

Proof. Recall from Lundberg and Lee [2, Theorem 2], for deterministic Shapley values, given a619

deterministic payoff v̄x for all 2d coalitions, the expression of Shapley values for each i ∈ [d],620

ϕ̄xi =
∑

S⊆[d]\{i}

c|S| (ν̄f (S ∪ i)− ν̄f (S)) (37)

can be written compactly as the following vector,621

ϕ̄x = Av̄x. (38)

We can therefore similarly write down the form of the stochastic Shapley values using this linear622

operator A, acting now on a vector of random variable output stochastic payoff vector vx,623

ϕx = Avx. (39)

Nonetheless, as Proposition 8 implies that vx is a multivariate Gaussian, therefore ϕx is also624

multivariate Gaussian with mean and covariance the following,625

vx ∼ N
(
AE[vx], AV[vx]A

⊤) . (40)

626
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B.3 Section 3.2 proofs on estimation627

To proceed, we first introduce the concepts of conditional mean embedding as a tool to estimate628

conditional expectation of functions living in their corresponding RKHSs,629

Definition 17 (Conditional mean embedding [38]). LetX,Y be random variables and k : X → X →630

R a kernel on X , then we define the following as the conditional mean embedding of p(X | Y = y),631

µX|Y=y :=

∫
k(·, X)dP(X | Y = y) (41)

Proposition 18 (Conditional Mean estimation). For random variable X,Y , and a kernel k : X →632

X → R on X and a kernel l : Y → Y → R on Y . Given observations D = {X,y}, the empirical633

conditional mean embedding can be estimated as634

µ̂X|Y=y = l(y,y) (Lyy + λI)
−1
k(X, ·), (42)

where l(y,y) = [l(y, y1), . . . , l(y, yn)]
⊤ and k(·,X) = [k(·,x1), . . . , k(·,xn)]

⊤, the parameter635

λ > 0 is there to stablise the inversion. Now for f ∈ Hk, the conditional expectation can then be636

estimated as,637

Ê[f(X) | Y = y] = ⟨µ̂X|Y=y, f⟩ (43)

= l(y,y)(Lyy + λI)−1f , (44)

where f = [f(x1), . . . , f(xn)]
⊤.638

Proof. This is standard result from literature, please read Song et al. [49], Muandet et al. [38] for639

more details.640

Now we can apply these propositions to estimate the mean and covariance functions of the induced641

stochastic game from GP,642

Proposition 8 (Estimating νf ). Given D = (X,y) and the posterior GP f | D ∼ GP(m̃, k̃), the643

mean and covariance function of the stochastic cooperative game νf can be estimated as,644

m̂ν(x, S) = b(x, S)⊤m̃(X), k̂ν ((x, S), (x
′, S′)) = b(x, S)⊤K̃XXb(x′, S′), (7)

where b(x, S) := (KXSXS
+ λI)−1kS(XS ,xS), m̃(X) = [m̃(x1), . . . , m̃(xn)]

⊤, and kS :645

XS × XS → R is the kernel defined on the sub-feature space of X and we write kS(xS ,XS) :=646

[kS(xS ,x1S), ..., kS(xS ,xnS)] and KXX and K̃XX as the gram matrix of X using kernel k and k̃647

respectively. The parameter λ > 0 is a fixed hyperparameter to stabilise the inversion.648

Proof. Without loss of generality, we will demonstrate this proposition with m̃, k̃ obtained via649

standard GP regression, i.e.,650

m̃(x) = k(x,X)(KXX + σ2I)−1y (45)

k̃(x,x′) = k(x,x′)− k(x,X)(KXX + σ2)−1k(X,x′). (46)

Starting with the mean function,651

E[m̃(X) | XS = xS ] = EX [k(X,X)(KXX + σ2I)−1y | XS = xS ] (47)

= ⟨k(·,X)(KXX + σ2I)−1y, µX|XS=xS
⟩Hk

. (48)

We can replace the population conditional mean embedding with the empirical version, and expand,652

Ê[m̃(X) | XS = xS ] = ⟨k(·,X)(KXX + σ2I)−1y, µ̂X|XS=xS
⟩Hk

(49)

= kS(XS ,xS)(KXSXS
+ λI)−1KXX(KXX + σ2I)−1y (50)

= b(x, S)⊤m̃(X). (51)

Analogously, the conditional expectation of the posterior covariance function, i.e., E[k̃(X,X ′) |653

XS = xS , X
′
S = x′

S ], can be estimated following the steps above,654

µ⊤
X|XS=xS

µX′|X′
S=x′

S
− µ⊤

X|XS=xS
k(·,X)(KXX + σ2I)−1k(X, ·)µX′|X′

S=x′
S
. (52)

After replacing the population conditional mean embedding as their empirical estimates, we can655

arrive at the solution.656
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Proposition 9 (GP-SHAP). Let the matrix A be defined as in Theorem 7. The mean and covariance657

for the multivariate stochastic Shapley values can be estimated as,658

ϕ (ν̂f (x, ·)) = N
(
AB(x, [d])⊤m̃(X),AB(x, [d])⊤K̃XXB(x, [d])A⊤

)
(8)

where B(x, [d]) = [b(x, [d]1), . . . ,b(x, [d]2d)]
⊤.659

Proof. The result follows directly from the previous proposition. Recall ϕ(ν̂f (x, ·)) = Av̂x for v̂x660

the vector of stochastic payoffs for each coalition. To estimate the mean, we661

E[ϕ(ν̂f (x, ·))] = AE[v̂x] (53)

= A

 m̂ν(x, S1)
...

m̂ν(x, S2d)

 (54)

= A

 b(x, S1)
⊤m̃(X)

...
b(x, S2d)

⊤m̃(X)

 (55)

= AB(x, [d])⊤m̃(X). (56)

Recall V[vx]i,j = k̂ν((x, Si), (x, Sj)) = b(x, Si)
⊤K̃XXb(x, Sj), the derivation for the covariance662

matrix then follows analogously as the derivation for the mean,663

V[ϕ(ν̂f (x, ·))] = AV[v̂x]A
⊤ (57)

= A
[
b(x, Si)

⊤K̃XXb(x, Sj)
]2d,2d
i=1,j=1

A⊤ (58)

= AB(x, [d])⊤K̃XXB(x, [d])A⊤. (59)

664

Proposition 10 (BayesSHAP [20]). Given the data generation above, the posterior distribution on ϕ̄665

and σ2 follows:666

ϕ̄ | σ2,Zℓ, f,x,D ∼ N (Aℓv̄x, (Z
⊤
ℓ WℓZℓ)

−1σ2) (11)

σ2 | Zℓ, f,x,D ∼ Scaled-Inv-χ2

(
ℓ0 + ℓ,

ℓ0σ
2
0 + ℓs2(v̄x)

ℓ0 + ℓ

)
(12)

where ℓ is the number of coalitions S = {Sj}ℓj=1 we sample uniformly from 2[d], Zℓ is the binary667

matrix representing S, and Wℓ is the corresponding weight matrix, and Aℓ = (Z⊤
ℓ WℓZℓ)

−1Z⊤
ℓ Wℓ668

is the WLS matrix, v̄x = [ν̄f (x, S1), ..., ν̄f (x, Sℓ)]
⊤ is the vector of deterministic payoffs, and669

s2(v̄x) =
1

ℓ

[
(v̄x − ZℓAℓv̄x)

⊤Wℓ(v̄x − ZℓAℓv̄x) + (Aℓv̄x)
⊤(Aℓv̄x)

]
(13)

measures the average weighted error in the regression and the norm of the mean explanations.670

Proof. See Slack et al. [20, Section. 3.1].671

Proposition 11 (BayesGP-SHAP). Continuing from Propositions 9 and 10, the posterior distribution672

of the stochastic Shapley values can be estimated using the Bayesian WLS approach as,673

ϕ | σ2,Zℓ,x,D ∼ N
(
AℓB(x,S))⊤m̃(X),AℓB(x,S)⊤K̃XXB(x,S)A⊤

ℓ + (Z⊤
ℓ WℓZℓ)

−1σ2
)

where σ2 is sampled from σ2 | Zℓ ∼ Scaled-Inv-χ2
(
ℓ0 + ℓ,

ℓ0σ
2
0+ℓs2(E[vx])

ℓ0+ℓ

)
.674

Proof. We drop the bar notation of ϕ̄ to unify notations. Given the posterior GP f | D ∼ GP(m̃, k̃)675

p(ϕ | σ2,Zℓ,x,D) =

∫
p(ϕ | σ2,Zℓ, f,x,D)p(f | D)df (60)
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Using a standard Gaussian conjugacy procedure, we can derive the variance as the sum of variances676

from GP-SHAP and BayesSHAP. While it is possible to integrate p(σ2 | Zℓ, f,x,D) with respect to677

the posterior, this leads to a complex scaled mixture of normals that is difficult to model. Instead,678

we construct a scaled inverse chi-square distribution with s2[E[bx]], which represents the error of679

the weighted regression with respect to the mean payoffs E[vx]. We sample σ2 from the following680

distribution:681

σ2 | Zℓ,x,D ∼ Scale-Inv-χ2

(
ℓ0 + ℓ,

ℓ0σ
2
0 + ℓs2(E[vx])

ℓ0 + ℓ

)
. (61)

682

B.4 Proofs for section 4 on predictive explanation and Shapley prior683

Proposition 12 (The Shapley prior over ϕ). The prior f ∼ GP(0, k) and the corresponding stochastic684

game νf (x, S) = E[f(X) | XS = xS ] induce a vector-valued GP prior over the explanation685

functions ϕ ∼ GP(0, κ) where κ : X × X → Rd×d is the matrix-valued covariance kernel686

κ(x,x′) = A(x)⊤A(x′), A(x) = Ψ(x)A⊤ (14)

where Ψ(x) =
[
E[k(·, X) | XS1 = xS1 ], . . . ,E[k(·, X) | XS

2d
= xS

2d
]
]
.687

Proof. The proof is similar to how we proved previous propositions but applied to prior GP f ∼688

GP(0, k) instead. If we set,689

νf (x, S) = E[f(X) | XS = xS ], (62)

then νf is a GP on the joint space of data and coalitions with mean 0, and covariance function,690

cov (νf (x, S), νf (x
′, S′)) = E[k(X,X ′) | XS = xS , X

′
S′ = x′

S′ ] (63)

= µ⊤
X|XS=xS

µX|XS′=x′
S′
. (64)

Since ϕ = Avx for vx the vector of stochastic payoff from the game induced by the GP prior, the691

mean stays 0, and the covariance is,692

κ(x,x′) = A
[
µ⊤
X|XSi

=xSi
µX|XSj

=x′
Sj

]2d,2d
i=1,j=1

A⊤ (65)

= AΨ(x)⊤Ψ(x′)A⊤ (66)

= A(x)⊤A(x′), (67)

therefore we have a matrix-valued covariance kernel κ to build a prior over the induced Shapley693

values.694

Proposition 13 (Predictive explanations as multi-output GPs). Given Dϕ = {(xi,ϕi)}ni=1 =695

(X,ΦX) where ϕi ∈ Rd are the Shapley values computed under predictive model f and ΦX =696

[ϕ1, ...,ϕn]
⊤, the predictive explanations for new data x′ is distributed as,697

ϕ(x′) | Dϕ ∼ N (m̃ϕ(x
′), κ(x′,x′)− κ(x′,X)bκ(x

′,X)) (15)

where m̃ϕ(x
′) = bκ(x

′,X)⊤ vec(ΦX), bκ(x′,X) := (κXX + σ2
ϕI)

−1κ(X,x′), κXX is the gram698

matrix for kernel κ of size nd× nd, κ(x′,X) = [κ(x′,x1), . . . , κ(x
′,xn)] is of size d× nd and σ2

ϕ699

is the noise parameter for regression.700

Proof. Follows from standard vector-valued Gaussian process regression results. See Alvarez et al.701

[50] for a detailed discussion on regression with matrix-valued kernels.702

Proposition 14 (Posterior mean as Shapley values for payoff vector ṽx′). The posterior mean703

m̃ϕ(x
′) corresponds to Shapley values for the payoff vector ṽx′ , i.e., m̃ϕ(x

′) = Aṽx′ , where704

ṽx′ =
∑n

i=1 Ψ(x′)⊤Ψ(xi)A
⊤αi and αi ∈ Rd is the [i, ..., i + (d − 1)] subvector of (κXX +705

σ2
ϕI)

−1 vec(ΦX).706
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Proof. There are two ways to see this. First is by brute force and rearranging the terms in the posterior707

mean expression. The other is to leverage the vector-valued representer theorem [51] and write the708

posterior mean as,709

m̃ϕ(x
′) =

n∑
i=1

A(x′)⊤A(xi)αi, αi ∈ Rd (68)

=

n∑
i=1

AΨ(x′)⊤Ψ(xi)A
⊤αi (69)

= A

(
n∑

i=1

Ψ(x′)⊤Ψ(xi)A
⊤αi

)
(70)

= Aṽx′ (71)

after some linear algebra exercises, we can see that αi is the [i : i + (d − 1)] sub-vector of710

(κXX + σ2
ϕI)

−1 vec(ΦX)711

C Implementation details and further illustrations.712

All illustrations are run locally on a MacbookPro 2021 with Apple M1 pro chip.713

C.1 Ablation study on different notions of uncertainties captured714

To demonstrate the difference between the uncertainties captured by GP-SHAP, BayesSHAP, and715

BayesGP-SHAP, we utilise the California housing dataset [41]. This dataset was derived from the716

1990 U.S. census, each observation represent a census block group. A block group is the smallest717

geographical unit for which the U.S. Census Bureau publishes sample data (a block group typically718

has a population of 600 to 3,000 people). The dataset includes 20640 instances with 8 numerical719

features measuring the following:720

• MedInc: Median income in block group721

• HouseAge: Median house age in block group722

• AveRooms: Average number of rooms per household723

• AveBedrms: Average number of bedrooms per household724

• Population: Block group population725

• AveOccup: Average number of houehold members726

• Latitude: Block group latitude727

• Longitude: Block group longitude728

The target variable is the median house value for California districts, expressed in hundreds of729

thousands of dollars. In the following, we train a GP model and extract explanations using GP-SHAP,730

BayesSHAP, and BayesGP-SHAP, for 4 different configurations:731

1. trained on 25% of data, estimate the Shapley values using 50% of coalitions.732

2. trained on 25% of data, estimate the Shapley values using 100% of coalitions.733

3. trained on 100% of data, estimate the Shapley values using 50% of coalitions.734

4. trained on 100% of data, estimate the Shapley values using 100% of coalitions.735

To fit the GP model, we employ a sparse Variational GP approach with 200 learnable inducing point736

locations. The evidence lower bound is optimized using batch gradient descent with a batch size of737

64, a learning rate of 0.01, and 100 iterations. The RBF kernel with learnable bandwidths initialized738

using the median heuristic approach is used for the sparse GP. The inducing locations are initialized739

using a standard clustering approach to obtain a representative set of inducing points.740

After training the model, we reuse the learned inducing points and kernel bandwidths for the741

explanation algorithms. The explanations are obtained using the procedure described in Algorithm 1742

of our work.743
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Figure 4: We plot the beeswarm plot of the mean and standard deviations of each stochastic explana-
tions from BayesGP-SHAP fitted on the housing dataset. The features are ranked according to the
distance span by the largest and smallest mean (std) stochastic Shapley values.

In Figure 1 of our paper, we present the stochastic Shapley values for the 11th observation, computed744

using the three explanation algorithms. The plot includes the 95% credible interval to visualize the745

uncertainties associated with the explanations.746

Further illustration: In Figure 4, we plot the beeswarm plot on the mean and standard deviation747

of each stochastic explanations respectively. We color the point based on the relative size of the748

feature value compared to the rest. We see that in Figure 4a, which plotted the mean stochastic749

shapley values for each observation, the relationship between most features’ explanation to the target750

variable is quite linear. For example, the higher the median income (MedInc), the more positive those751

feature contribute to predicting the respective median house value. On the other hand, Figure 4b752

illustrated the standard deviation of each stochastic explanations. In general, we see that the larger753

the feature values are, the more uncertain the explanation becomes. Nonetheless, we see that the754

feature contributing the most, defined as the feature having largest distance spanned by their most755

positive and most negative mean stochastic Shapley values, does not necessarily have the largest756

variation respectively.757

C.2 Exploratory analysis of the stochastic explanations758

For this illustration, we utilise the breast cancer dataset [42], containing 569 patients with 30 numeric759

features. They are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass760

and describe characteristics of the cell nuclei present in the image:761

• radius (mean of distances from center to points on the perimeter)762

• texture (standard deviation of gray-scale values)763

• perimeter764

• area765

• smoothness (local variation in radius lengths)766

• compactness ( perimeter2

area−1 )767

• concavity (severity of concave portions of the contour)768

• concave points (number of concave portions of the contour)769

• symmetry770

• fractal dimension (“coastline approximation” - 1)771

The goal is to predict whether a tumour is malignant or benign. We first fit a GP model with RBF772

kernel using again the sparse Variational GP formulation with 200 learnable inducing locations. We773

initialise the inducing points using standard clustering techniques on the data. The evidence lower774

bound objective is optimised with a learning rate of 1e−4 and 1000 iterations using batch gradient775

descent of batch size 64. To obtain the explanations, we run the BayesGP-SHAP algorithm with 216776
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Figure 5: We plot the violin plot of the mean and standard deviations of each stochastic explanations
from BayesGP-SHAP fitted on the breast cancer. The features are ranked according to the distance
span by the largest and smallest mean (std) stochastic Shapley values.

number of coalitions. We do not compare GP-SHAP and BayesSHAP here because the BayesSHAP777

uncertainties have shrunk to almost zero, i.e., the mean standard deviations from the BayesSHAP778

uncertainties across all features and data is 0.0002. This reconfirms the fact from Slack et al. [20]779

that as we increase the sample size the estimation error goes to zero, thus the uncertainties from780

BayesSHAP goes to zero as well. On the other hand, GP-SHAP uncertainties still remain valid781

because it represents the GP predictive uncertainties, which do not shrink to zero as we increase the782

number of coalitions we use to esitmate the SVs.783

Further illustrations: In Figure 5, we plot two violin plots to illustrate the relationship between784

mean and standard deviation of the stochastic values with respect to the size of the original feature.785

We see that the feature “worst fractal dimension” are the second most influential feature in terms of786

mean stochastic explanations and also the feature that has highest uncertainty around its explanations.787

In comparison with the housing prediction problem illustrated in Figure 4, the higher the feature788

value doesn’t necessary give higher uncertainty around its explanation.789

C.3 Predictive explanations790

For this illustration, we utilise the Diabetes dataset [47] with 442 patient data and 10 numeric features791

measuring the following:792

• age: age in years793

• sex794

• bmi: body mass index795

• bp: average blood presuure796

• s1: total serum cholesterol797

• s2: low-density lipoproteins798

• s3: high-density lipoproteins799

• s4: total cholesterol800

• s5: Log of serum triglycerides level801
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• s6: blood sugar level802

The experiment is to assess the effectiveness of the Shapley prior we proposed in predicting explana-803

tions estimated using SHAP algorithms for general models, including GP-SHAP, TreeSHAP, and804

DeepSHAP. We use the implementation of TreeSHAP and DeepSHAP from the shap package [2].805

While algorithms such FastSHAP [22] also learn a vector-valued function that returns explanations806

given instances, the algorithm require access to the underlying model f during training while ours807

required previously computed explanations. Due to this importance difference in the problem setup,808

we do not compare the two algorithm.809

We first generate three sets of explanations to set up three regression problems:810

1. Fit a Gaussian process model and then run GP-SHAP to obtain explanations.811

2. Fit a random forest model and then run TreeSHAP to obtain explanations.812

3. Fit a neural network model and then run DeepSHAP to obtain explanations.813

After obtaining explanations as groundtruths for this experiment, we randomly divide 70% of them814

as training data and 30% of them as testing data. We then do the following,815

1. We fit a multi-output GP using the proposed Shapley prior on the training data and predict816

the explanations of the unseen test data.817

2. We fit a multi-output random forest model on the training data and predict the explanations818

of the unseen test data.819

3. We fit a multi-output neural network model on the training data and predict the explanations820

of the unseen test data.821

We repeat this experiment 10 times using different seeds and compute the RMSE between the822

predicted and groundtruths explanations. The results are then plotted in Figure 3.823

C.4 Further ablation study: Impact of increased posterior prediction uncertainty on824

explanation uncertainties825

In this ablation study, we aim to examine the effect of increasing the uncertainty in posterior826

predictions on the corresponding uncertainty in stochastic Shapley values. To demonstrate this, we827

utilize the diabetic dataset [47] and split the data based on recorded sex. We train our GP model on828

the male data and employ BayesGP-SHAP to explain the prediction results for both the male training829

data and the female testing data. We adopt this split because we expect the biological characteristics830

between males and females to be distinct enough to treat the female data as out-of-sample data,831

thereby naturally resulting in increased predictive uncertainty for the female data. To further amplify832

this uncertainty, we multiply each instance in the female testing data by distortion factors of two and833

three, respectively, and assess the corresponding uncertainties in the explanations.834

We begin by illustrating the relationship between the out-of-sampleness of the data and the corre-835

sponding increase in predictive posterior uncertainties. This is depicted in Figure 6a, where we836

observe that as the data becomes more out-of-sample, the predictive uncertainties consistently rise.837

Even at distortion level 1, which represents the original female data, we can already observe increased838

uncertainties compared to the uncertainties derived from male data prediction.839

Furthermore, these increased uncertainties in the predictive posterior are reflected in the associated840

feature explanations. This is evident in Figure 6b, where we visualize the uncertainties associated841

with the feature explanations. For instance, the green bars representing the average uncertainties in842

explaining female data with no distortion are consistently larger than the red bars, which represent the843

average uncertainties of male data explanations. This observation aligns with the higher predictive844

uncertainties observed in Figure 6a for the female data compared to the male training data.845

It is worth noting that the uncertainty for the feature “sex” remains consistently close to zero. This is846

because the feature “sex” is constant within both the female and male datasets. As a result, it acts as847

the null player in each dataset and obtains an almost Dirac zero as its stochastic Shapley value.848
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Figure 6: Ablation study: (left) We begin by training a Gaussian Process (GP) model on the male
data. We then make predictions using this trained model on both the male data and out-of-sample
female data. To assess the impact of increasing posterior uncertainties, we multiply the female data
by distortion levels of 1.0, 2.0, and 3.0. We visualize the results by plotting the density plot of the
standard deviations obtained from the predictive posterior distributions. (right) Next, we focus on
analyzing the average standard deviations of explanations per feature from the male and female data,
considering different distortion levels. We observe that as we progressively increase the posterior
uncertainties in the sample, these uncertainties are reflected in the uncertainties of the explanations
provided.
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