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For supplemental materials, we include an HTML page, index.html, containing qualitative results,1

including additional triplets from our dataset and visualizations of image retrieval and image recon-2

struction, and a text file listing the text categories used to generate our dataset, classes.txt. In this3

document, Sec. A contains additional methodological details on dataset collection and model training,4

Sec. B provides more analyses of our model, and Sec. C discusses the broader impact of our work,5

limitations, and licensing.6

A Method7

A.1 AMT Details8

User interface. During the 2AFC study, users are instructed with the following prompt:9

You will see three images: one labeled "Reference",10

one labeled "Image A", and one labeled "Image B".11

Select whether Image A or B is more similar to the Reference.12

For each task, users see an image triplet with the reference in the center and distortions on either13

side (randomized). Each user completes 2 practice tasks, 50 real tasks, and 10 sentinels (randomly14

placed), averaging 3 minutes for the entire assignment. We discard responses from users who do not15

respond with 100% sentinel accuracy. See Figure 1 (left) for an example of the user interface.16

Instructions for JND are as follows:17

You will see four images one after the other.18

Determine whether the first and third images are identical, then whether19

the second and fourth images are identical.20

Each correct answer earns 1 point.21

Users are shown four images for 500 ms each with a 1 second gap inbetween, and are then prompted22

to answer the two questions in Figure 1 (right). They are given feedback and a score, though these23

have no bearing on the JND results themselves. Each user completes 2 practice tasks, 24 tasks with24

“different" pairs, and 12 tasks with “same" pairs, averaging 10 minutes for the entire assignment.25

The object retrieval study instructs users with the following text:26

You will see a reference image and five other images under it.27

Pick the image that is most similar to the reference.28
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Figure 1: User interface for AMT studies. (Left) One image triplet shown to a user in 2AFC, who is prompted
to pick "Image A" or "Image B". (right) In each JND task, users are shown a sequence of images and asked
whether the image pairs were identical. Upon answering, they are given the correct answers.

Figure 2: User interface for image retrieval study. To evaluate object retrieval performance, users are asked
to pick the image (A-E) most similar to the reference.

See Figure 2 for an example of an object retrieval task. Each user completes 2 practice tasks, 40 real29

tasks, and 5 sentinels (randomly placed), averaging 3 minutes for the entire assignment. We discard30

responses from users who do not respond with 100% sentinel accuracy.31

Cost breakdown. Across 10 rounds of 2AFC studies, we show users 477,964 triplets (see Table 1 for32

the full breakdown). Each user is paid $0.50 for one assignment consisting of 50 triplets, averaging33

$10.00/hr. In total, we pay users $4779.64 to collect 2AFC judgments on our dataset.34

We run JND on image triplets in our test set that received >5 2AFC judgments (1,824 triplets total).35

Each user is paid $2.00 for one assignment consisting of 48 image pairs, averaging $12.00/hr. In total,36

we pay users $156.00 to collect JND judgments on our test set.37

Our object retrieval user study is conducted over 200 query images with 10 nearest neighbors. Users38

are paid $0.50 for one assignment consisting of 40 tasks, averaging $10.00/hr. In total, we pay users39

$40.50 to collect object retrieval judgments.40

A.2 Additional Dataset Details41

2AFC task. Following Sec. 3.2 in the main text, we filter the images over 10 rounds to obtain42

cognitively impenetrable triplets where humans tend to vote the same way despite various differences43

between the images. Statistics for each round of filtering is reported in Tab. 1, which leaves us with44

roughly 20% of the original triplets containing unanimous votes. We discard all votes from any45

turker who fails the sentinel task. As a result, not all triplets have the same number of votes. During46
2



Round # unanimous # additional # kept
sentinel failures

1 100,000 0 100,000
2 74,346 6,750 81,096
3 63,423 2,411 65,834
4 51,097 592 51,689
5 43,615 289 43,904
6 37,696 113 37,809
7 30,420 16 30,436
8 25,079 0 25,079
9 22,098 0 22,098

10 20,019 0 20,019

Table 1: Filtering for cognitively impenetrable triplets. We start with 100K triplets, and advance triplets to
the subsequent round if the human vote remains unanimous, or if the added vote came from a user who did not
pass the sentinels and thus the vote is inconclusive (the vote from this user is discarded).

training, we further discard triplets with five or fewer unanimous votes. The resulting sizes of the47

train, validation, and test splits and additional statistics on each split are reported in Tab. 2-top.48

JND task. The JND triplets are meant to capture the decision boundary where two different images49

are similar enough to be confused as identical, in the presence of a masking image. Each triplet is50

divided into two pairs – Ref vs. A and Ref vs. B. These pairs are presented to different turkers in51

different interleaving sequences, and we collect three judgments for each pair and take the majority52

vote among the three judgments, thus six judgments in total per triplet (Tab. 2-bottom).53

Dataset Split # Samples Avg # Votes Consensus Type

2AFC
Train 15941 7.11 Unanimous

Validation 1958 7.07 Unanimous
Test 2120 7.04 Unanimous

JND Test 608 6 Majority

Table 2: Dataset Statistics. For each dataset, we report the number of samples and the average number of votes
for each triplet after filtering for sentinel failures. Labels for the 2AFC dataset are based on a unanimous vote,
while for JND we take the majority vote over three trials per pair (six trials per triplet).

A.3 Model Training.54

For all fine-tuned models (both Tuned - MLP and Tuned - LoRA) we use the NIGHTS training55

dataset, with an 80%-10%-10% split as described in Tab. 2, and images of size 768× 768 resized to56

224× 224. We train on a single NVIDIA GeForce RTX 3090 or NVIDIA TITAN RTX GPU with an57

Adam optimizer, learning rate of 3e − 4, weight decay of 0, and batch size of 512 (non-ensemble58

models) and 16 (ensemble models). We tune the number of training epochs using the validation59

set; for the Tuned - LoRA ensemble model (DreamSim) we train for 6 epochs. For Tuned - LoRA60

models we use rank r = 16, scaling α = 0.5, and dropout p = 0.3. Training time is approximately61

30 min/epoch for LoRA-tuned models, and 15 min/epoch for MLP-tuned models.62

B Experiments63

B.1 Additional Evaluations64

Full Evaluation on Large Vision Models. In Sec. 5.1 and Fig. 4 in the main text we report results65

using the best-performing setting of various large vision model backbones. Tab. 4 evaluates additional66

model settings, spanning different ViT model sizes, patch sizes, and strides. Tab. 3 shows the67

3



experimental variation over multiple runs, in which the LoRA variation consistently outperforms the68

MLP variation.69

Independent training seeds

Ensemble tuning Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg. Stdev.
MLP 93.4 93.1 93.1 93.9 92.9 93.3 0.326

LoRA 96.2 96.3 95.1 96.0 95.8 95.9 0.416

Table 3: Experimental variation for ensemble models. We train the Tuned - MLP and Tuned - LoRA
ensemble models on 5 seeds each and record their test accuracies at the same epoch as was recorded in the main
paper.

Model Alignment
Model Class Model Name Model Type Feature Overall ImageNet Non-ImageNet

Base
Models

PSNR – – 57.2 57.3 57.0
SSIM – – 57.0 58.5 55.8

Prior-Learned
Metrics

LPIPS AlexNet-Linear – 70.8 69.3 72.7
DISTS VGG16 – 86.0 87.1 84.5

Base
Models

CLIP
ViT B/16 Embedding 82.2 82.6 81.7
ViT B/32 Embedding 83.1 83.8 82.1
ViT L/14 Embedding 89.8 83.3 79.8

DINO

ViT S/8 CLS 89.0 89.7 88.0
ViT S/16 CLS 89.6 90.2 88.8
ViT B/8 CLS 88.6 88.6 88.5
ViT B/16 CLS 90.1 90.6 89.5

MAE
ViT B/16 CLS 81.6 81.7 81.5
ViT L/16 CLS 81.5 81.1 82.0
ViT H/14 CLS 81.7 81.4 82.2

OpenCLIP
ViT B/16 Embedding 87.1 87.8 86.2
ViT B/32 Embedding 87.5 87.5 87.6
ViT L/14 Embedding 85.9 86.7 84.9

Ensemble ViT B/16 Mixed 90.8 91.6 89.8

Tuned
MLP

CLIP ViT B/32 Embedding 87.3 88.2 86.2
DINO ViT B/16 CLS 91.2 91.8 90.3
MAE ViT B/16 CLS 84.9 85.3 84.3

OpenCLIP ViT B/32 Embedding 89.9 91.0 88.5
Ensemble ViT B/16 Mixed 93.3 94.2 92.2

Tuned
LoRA

CLIP ViT B/32 Embedding 93.8 94.0 93.6
DINO ViT B/16 CLS 94.6 94.6 94.5
MAE ViT B/16 CLS 86.5 87.3 85.4

OpenCLIP ViT B/32 Embedding 95.5 96.5 94.1
Ensemble ViT B/16 Mixed 96.1 96.6 95.5

Table 4: Alignment on NIGHT test set. We evaluate alignment on additional model settings, and separate the
test set into ImageNet categories and non-ImageNet categories.

As some models are adapted from backbones trained on ImageNet [3] (including the prior learned70

metrics and DINO), we split our dataset into categories contained in ImageNet and those not in71

ImageNet, and evaluate alignment on each split. Performance on both splits is highly correlated72

(Fig. 3), suggesting that the notions of visual similarity are related regardless of whether or not the73

triplet was generated from an ImageNet category, and whether or not the model was trained only on74

ImageNet.75

Alignment on Alternative Datasets. As depicted in the left plot of Figure 4, training on our dataset76

(with either tuning method) indeed improves BAPPS metric-human alignment in nearly every model,77

suggesting that some of these patch-based distortions are implicitly still captured in our dataset. We78

observe that MAE exhibits the best out-of-the-box performance, indicating a greater sensitivity to79
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Figure 3: Alignment on ImageNet and Non-ImageNet triplets. We split the test set into triplets generated
from ImageNet categories and Non-ImageNet categories, as some model backbones are trained only on ImageNet
images. For all models, alignment is highly correlated between the two splits.
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Figure 4: Evaluation on existing low-level and high-level similarity datasets. (Left) Despite never being
trained for low-level similarity, LoRA-finetuned models on OpenCLIP, DINO, and Ensemble achieve similar
human alignment to LPIPS, which was directly trained on the BAPPS dataset. (Right) The THINGS dataset
measures high-level conceptual similarity, rather than appearance similarity. As such, we find that LoRA
finetuning on our dataset degrades performance, as our triplets contain appearance similarity, by design.

lower-level image distortions (e.g. color and shape) than DINO, CLIP or OpenCLIP. Surprisingly80

however, it is the only model whose performance decreases on BAPPS as it is further tuned. DINO,81

CLIP and OpenCLIP are not as sensitive to the image distortions in BAPPS, suggesting that before82

tuning, they are more attuned to higher-level image attributes that the dataset does not capture.83

On THINGS, further training actually diminshes alignment with humans (see right plot of Figure84

4). CLIP and OpenCLIP’s superior performance on this dataset supports our hypothesis that they85

are more well-adjusted to higher-level image attributes, which THINGS aims to capture, rather than86

appearance-level variations.87

Our evaluations across these three datasets show that, as we train perceptual metrics that align more88

closely with human perceptual similarity, we also improve on low-level similarity but perform slightly89

worse on high-level image distortions. These results suggests that humans, when making an automatic90

judgment, are more inclined to focus on immediate visual differences (captured in BAPPS and our91

dataset) rather than the image’s category, context, or related words.92
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Metric Image Part Ours DINO OpenCLIP DISTS LPIPS
Color (RGB) Foreground 0.583 0.537 0.512 0.594 0.605
Color (RGB) Background 0.587 0.572 0.555 0.64.1 0.647
Color (RGB) Total 0.584 0.558 0.541 0.629 0.653

Luminance Foreground 0.545 0.519 0.499 0.568 0.556
Luminance Background 0.555 0.543 0.541 0.577 0.544
Luminance Total 0.541 0.529 0.515 0.569 0.556

Depth Total 0.542 0.536 0.533 0.547 0.558

Category Histogram Things 0.587 0.583 0.551 0.553 0.538
Category Histogram Stuff 0.595 0.588 0.579 0.625 0.613

Presence of Person - 0.553 0.526 0.552 0.518 0.538
Presence of Furniture - 0.531 0.522 0.542 0.534 0.536
Presence of Textiles - 0.528 0.524 0.531 0.516 0.536

Table 5: Automated Metrics on COCO. Alignment of hand-crafted metrics with model decisions on the
COCO dataset, which provides ground-truth semantic labels.

Metric Image Part Ours DINO OpenCLIP DISTS LPIPS

Color (RGB) Foreground 0.717 0.70 0.693 0.687 0.606
Color (RGB) Background 0.654 0.662 0.647 0.664 0.62
Color (RGB) Total 0.698 0.679 0.676 0.66 0.643

Luminance Foreground 0.631 0.626 0.622 0.614 0.561
Luminance Background 0.593 0.595 0.588 0.603 0.568
Luminance Total 0.594 0.606 0.598 0.592 0.565

Depth Total 0.542 0.536 0.533 0.547 0.558

Table 6: Automated Metrics on NIGHTS. Alignment of hand-crafted metrics with model decisions on our
dataset.

Alignment with low-level features. In Sec. 5.2 and Fig. 7 of the main text we report results93

on the alignment between our metric, OpenCLIP, DINO, LPIPS, and DISTS with low-level and94

semantic metrics for the COCO dataset. In Tab. 5 we also report additional, fine-grained results for95

COCO triplets. We use CarveKit [1] to segment out the foreground and background of each image,96

and then breakdown how well each metric agrees with RGB color histogram similarity, luminance97

histogram similarity, and depth map distance, for foreground, background, and the full image. For98

color histograms we use 32 bins for each channel, and for luminance histograms we use 10 bins.99

We also examine semantic features. For each image, we find the percentage of area that each semantic100

category occupies, and then compute the alignment between the difference in area for each category101

and perceptual metrics. Note that when the difference in area is the same for both pairs in a triplet,102

it is counted as 50% alignment. When the difference in area is smaller for the pair chosen by the103

perceptual metric, it is counted as 100% alignment (and 0% in the case of disagreement). In Tab. 5 we104

show the five semantic categories most aligned with our metric. Our metric has a 55% alignment score105

with the "people" category, however does not seem to align well above chance for other categories.106

In Tab. 6 we show alignment with low-level metrics for our dataset (which does not have semantic107

annotations). On our dataset there is higher alignment with color, luminance, and depth across all108

metrics, as compared to COCO triplets. This is likely because the images in each of our dataset’s109

triplets all share the same semantic category, making lower-level features more important than for110

the randomly-chosen COCO triplets. Our model aligns significantly better with foreground metrics –111

particularly foreground color – whereas LPIPS aligns slightly better with background.112
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Figure 5: Ablating Feature Dimension. We apply a
PCA decomposition to the output features of our model
and vary the number of dimensions kept.

# PCA Components 2AFC Score
1 63.4

512 95.7
768 96.1

1792 96.1

Table 7: Feature PCA Decomposition. We list 2AFC
scores as a function of the number of PCA components
kept, beating both the CLIP/OpenCLIP dimensionality
(512) and DINO (768).

113

Dimensionality reduction with PCA. Our model consists of the concatenation of the DINO, Open-114

CLIP, and CLIP backbones, and therefore uses a higher-dimensional feature space to compute115

similarity compared to each of these models independently. To investigate whether the increased116

dimensionality is critical for improving human alignment, we ablate feature dimensions by applying117

PCA, taking a certain number of the top components, as seen in Fig. 5 and Tab. 7. We can achieve118

comparable performance using just 500 of the top components, similar to the 512 dimensions of the119

CLIP and OpenCLIP embedding outputs, suggesting that the improved alignment is not just due to120

the higher-dimensional feature space used to compute similarity, but rather the additional capacity121

and model priors obtained from ensembling different models.122

B.2 Additional Visualizations123

Qualitative metric comparisons. In Sec. 5.2 and Fig. 6-7 of the main text we quantitatively analyze124

the differences between metrics. Here, we also provide a qualitative analysis by comparing image125

pairs that achieve high and low similarity scores for each metric.126

NIGHTS

COCO

Figure 6: Correlation between metric scores. For image pairs from our dataset (above), and the COCO dataset
(below), we plot similarity scores from our metric against similarity scores from DINO, OpenCLIP, LPIPS, and
DISTS. Our metric’s scores are most correlated with other ViT-based metrics, and correlate better with DISTS
than LPIPS.

In Fig. 6 we plot, for each image pair in our dataset, the similarity scores from our metric against127

similarity scores from DINO, OpenCLIP, DISTS, and LPIPS. We show the same for image pairs128

drawn from the COCO dataset. In Fig. 7 and Fig. 8 we show the pairs where our metric most agrees129

and most disagrees with DINO, OpenCLIP, DISTS, and LPIPS, for our dataset’s test set and the130

COCO dataset. Note that for COCO we draw random pairs of images that share at least instance131

category so that pairs have some semantic commonality, enabling better visualization of qualitative132

differences between metrics.133

Comparing DISTS, the top-performing prior learned similarity metric, to our model, we find that134

DISTS is sensitive to structural changes despite similar overall appearance (such as the width of135
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Figure 7: Visualizing differences between our model and other metrics for NIGHTS. We show the examples
where our metric most agrees and disagrees with other metrics. Primary differences are that our metric is more
sensitive to major changes in pose, semantics, and color. It is less sensitive to granular changes in structure when
overall appearance is preserved, such as the honeycomb example in the DISTS quadrant and the forest example
in the DINO quadrant.
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Figure 8: Visualizing differences between our model and other metrics for COCO. We show examples
where our metric most agrees and disagrees with other metrics for pairs drawn from the COCO dataset. These
pairs share fewer appearance similarities than pairs drawn from our dataset. Our metric seems particularly
sensitive to foreground semantic similarities, such as the horse pair in in the OpenCLIP quadrant and the
snowboarders in the LPIPS quadrant.

the honeycomb or the position of similar objects), while our model rates these pairs as nearby. On136

the other hand, pairs that are far in our feature space but close in DISTS feature space have less137

appearance similarity (e.g. the houses and rooms of different colors). Comparing to deep ViT features138

(DINO, OpenCLIP) our model is more likely to rate pairs with similar foreground color/appearance139

as similar, and less likely for pairs that are similar semantically but not appearance-wise. For COCO140

pairs, where there are fewer appearance similarities than in our dataset, our model chooses pairs that141

are similar semantically first, and only then appearance-wise.142
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Figure 9: Visualizing attention maps. The finetuned DINO branch of our model has the largest contribution
in the attention map [2], with the largest median activation compared to the CLIP and OpenCLIP branches
(computed over 400 test set images). As such, in our model, the overall attention map is similar to the attention
map from only the DINO branch. Compared to the pretrained backbones, our model better captures the entire
object of interest (the fish body) while reducing spurious attention in background regions.
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Figure 10: Comparing our model and baseline attention maps from the DINO branch. Focusing on the
DINO branch, which has the largest contribution in our model’s attention map, we compare the attention maps
of the pretrained and finetuning models. The finetuned attention map in our model better captures the foreground
object or relevant regions of interest. In all examples, the DINO baseline selects the A image, while humans and
our model select the B image.

Attention Map Visualizations. As an alternate way of understanding our model’s similarity decisions,143

we visualize the transformer attention maps following Chefer et al. [2]. Our model consists of144

finetuned version of DINO, CLIP, and OpenCLIP backbones, and the resulting attention map places145

the largest activations on the finetuned DINO backbone (Fig. 9-left). Accordingly, the overall attention146

map looks largely similar to the attention map constructed from only the finetuned DINO branch.147

Compared to the pretrained versions of each model backbone, the finetuned model better captures148

full object identity (such as over the entire body of the fish), while also minimizing spurious attention149

values in the background (Fig. 9-right). Consistent with earlier analysis, this supports the fact that the150

foreground plays a larger role in the DreamSim similarily judgement than the background.151

As the DINO model has the largest contribution in the attention maps, Fig. 10 shows additional152

examples focusing on the difference between the finetuned DINO backbone within our model, and153

9



the pretrained DINO backbone prior to finetuning. This visualizes how the DINO backbone changes154

as it is finetuned on our dataset. Our finetuned model better captures the foreground object, while155

attention maps from the pretrained DINO backbone may only focus on small portions of the object.156

In the lobster example (Fig. 10 top-right), our model places attention on the relevant parts of the157

object, such as the lobster body rather than the claws in the A image as the claws do not appear in the158

other two images.159

B.3 Additional Results on Applications160

Please see additional results on image retrieval and image reconstruction in the attached HTML page.161

To quantitatively evaluate our image retrieval results, we conduct a user study to collect preferences162

across returned results from LPIPS, DISTS, DINO, OpenCLIP, and DreamSim. In Figure 11, we163

provide a detailed breakdown of user preferences for neighbors 1 through 10 across ImageNet-R and164

COCO, along with error bars marking 1 standard deviation above and below each result.165
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Figure 11: User preferences for image retrieval results by metric. We conduct a user study that collects
preferences for retrieval results output by LPIPS, DISTS, DINO, OpenCLIP, and DreamSim. For most instances
of the first 10 nearest neighbors, users preferred our metric’s output, followed by DINO and OpenCLIP. We
visualize one standard deviation above and below each bar.

C Discussion166

Broader Impacts and Limitations. Our model and dataset are developed from pretrained Stable167

Diffusion, CLIP, OpenCLIP and DINO backbones. As such, our model can inherit and propagate168

biases existing in these models for decisions on downstream tasks. Our dataset is generated using169

prompts that describe a single-word category and is filtered to remove images containing sensitive170

topics, such as violence or human faces. As a result, the dataset has a large focus on object-centric171

domains, and content containing humans is considered out-of-domain. The resulting dataset and172

model does not capture the full range of human similarity judgements, but only the variations that we173

can capture in our synthetically-generated dataset.174

Licenses. The Icons for the teaser figure as well as the images for the inversion experiments are175

licensed by Adobe Stock, under the Adobe Stock Standard License, and by Pixabay, under their176

content license.177

IRB Disclosure. We received IRB approvals for our AMT experiments from all of the institutions178

involved. Accordingly, we took measures to ensure participant anonymity and refrained from showing179

them potentially offensive content.180
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