
Sparse Parameterization for Epitomic
Dataset Distillation

Xing Wei1 Anjia Cao1 Funing Yang1 Zhiheng Ma2∗
1School of Software Engineering, Xi’an Jiaotong University

2Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
weixing@mail.xjtu.edu.cn zh.ma@siat.ac.cn

{caoanjia7, moolink}@stu.xjtu.edu.cn

Abstract

The success of deep learning relies heavily on large and diverse datasets, but the
storage, preprocessing, and training of such data present significant challenges. To
address these challenges, dataset distillation techniques have been proposed to ob-
tain smaller synthetic datasets that capture the essential information of the originals.
In this paper, we introduce a Sparse Parameterization for Epitomic datasEt Distilla-
tion (SPEED) framework, which leverages the concept of dictionary learning and
sparse coding to distill epitomes that represent pivotal information of the dataset.
SPEED prioritizes proper parameterization of the synthetic dataset and introduces
techniques to capture spatial redundancy within and between synthetic images. We
propose Spatial-Agnostic Epitomic Tokens (SAETs) and Sparse Coding Matrices
(SCMs) to efficiently represent and select significant features. Additionally, we
build a Feature-Recurrent Network (FReeNet) to generate hierarchical features with
high compression and storage efficiency. Experimental results demonstrate the su-
periority of SPEED in handling high-resolution datasets, achieving state-of-the-art
performance on multiple benchmarks and downstream applications. Our framework
is compatible with a variety of dataset matching approaches, generally enhancing
their performance. This work highlights the importance of proper parameteriza-
tion in epitomic dataset distillation and opens avenues for efficient representation
learning. Source code is available at https://github.com/MIV-XJTU/SPEED.

1 Introduction

Deep learning has achieved remarkable success across diverse domains, thanks to its ability to
extract insightful representations from large and diverse datasets [1–5]. Nevertheless, the storage,
preprocessing, and training of these massive datasets introduce significant challenges that strain
storage and computational resources. In response to these challenges, dataset distillation techniques
have arisen as a means to distill a more compact synthetic dataset that encapsulates the pivotal
information of the original dataset. The central concept of dataset distillation is the extraction of an
epitomic representation, capturing the core characteristics and patterns of the original dataset while
minimizing storage demands. By doing so, deep learning models trained on the distilled dataset can
attain performance levels similar to those trained on the original dataset but with significantly reduced
storage and training costs. This approach opens new horizons for applications requiring cost-effective
storage solutions and expedited training times, such as neural architecture search [6–8] and continual
learning [9–11].

The success of dataset distillation heavily relies on two essential factors: proper parameterization of
the synthetic dataset and an effective design of the matching objective to align it with the original

∗Zhiheng Ma is the corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/MIV-XJTU/SPEED

0000

000.70

0000

1.1000

0

0

1. 3

0

0. 2

0

0

0 Concat &
 Linear

M
LP

Add &
 N

orm

Linear

Dataset Matching

Real Data

Matching
Network

Gradient
Feature

Parameter
···Synthetic Data

Synthetic Patches

Recurrent Input
headsH

R

Add &
 N

orm

Sparse Coding Matrices (SCMs) Feature-Recurrent Network (FReeNet)

Spatial-Agnostic Epitomic Tokens (SAETs)

Figure 1: SPEED Overview. We take spatial-agnostic epitomic tokens as the shared dictionary of the
dataset and perform multi-head sparse combinations to synthesize instance-specific features. Subse-
quently, we utilize feature-recurrent blocks to generate hierarchical representations for non-linear
synthesis of image patches, while reusing the sparse features. In this way, we sparsely parameterize
the dataset, alleviating the storage burden and producing highly representative synthetic images.

dataset. While many dataset distillation methods have primarily focused on optimizing the matching
objective [12–18], the critical aspect of synthetic dataset parameterization has often been overlooked.
Typically, these methods employ a naive image-independent parameterization approach, where each
learnable parameter basis (synthetic image) is optimized independently. Although some studies have
recognized the inefficiency of image-independent parameterization and explored the mutual coherence
and relationship between different synthetic images to improve compression efficiency [19–22], none
of the previous methods have fully considered the spatial redundancy that exists within individual
images and between different images.

In this paper, we present an efficient parameterization framework, named Sparse Parameterization
for Epitomic datasEt Distillation (SPEED), which addresses the aforementioned limitations. SPEED
leverages principles from representation learning paradigms, including convolutional neural network
(CNN) [23, 1], vision transformer (ViT) [3], dictionary learning [24–30], and sparse coding [31–36].

SPEED introduces Spatial-Agnostic Epitomic Tokens (SAETs) that are shared among all synthetic
image patches, and employs the Sparse Coding Matrices (SCMs) to select the most significant tokens.
Subsequently, these selected tokens are assembled sequentially to form higher-level representations
that facilitate the reconstruction of synthetic patches via non-linear mapping. To further minimize
storage requirements, we propose a Feature-Recurrent Network (FReeNet) that utilizes recurrent
blocks to generate hierarchical features, with SAETs and SCMs shared by all blocks, while leveraging
a multi-head mechanism to enhance feature diversity.

In comparison to previous methods, our approach demonstrates significant advantages in handling
high-resolution real-world datasets with substantial spatial redundancy. Notably, it achieves out-
standing performance on ImageNet subsets, surpassing most of the previous state-of-the-art meth-
ods [21, 37] by achieving an average improvement of 11.2% with 1 image per class storage space.
Additionally, our sparse parameterization approach exhibits superior performance on unseen network
architectures, outperforming previous state-of-the-art approaches [19, 21, 22], and even surpassing
our own full-element baseline, highlighting the potential of sparse representation for storage efficiency
and improved generalization abilities.

Our method demonstrates competitive results across three standard dataset distillation benchmarks,
such as surpassing the previous state-of-the-art [22] on CIFAR100 by 6.0% and on TinyImageNet by
10.9% when using 1 image per class storage space. It also exhibits strong performance on downstream
applications, such as continual learning. Furthermore, our framework is compatible with multiple
existing matching objectives [13, 16, 17], generally enhancing their performance through the use of
our sparse parameterization strategy.

In summary, our work highlights the importance of proper parameterization in epitomic dataset
distillation and introduces the SPEED framework as a solution. We showcase its superiority in
handling high-resolution datasets, achieving exceptional performance on benchmarks and downstream

2

applications. Our framework not only enhances storage efficiency but also improves generalization
capabilities, opening new avenues for efficient representation learning in deep learning applications.

2 Method

The purpose of dataset distillation [12] is to learn a synthetic dataset S = {(X̃i, yi)}Ni=1 that is much
smaller in size than the original dataset T = {(Xi, yi)}Mi=1, i.e., N ≪ M , while minimizing the loss
of information. Formally, previous methods optimize the synthetic dataset by minimizing various
matching objectives, all of which can be expressed using the following formulation:

S∗ = argmin
S

Eθ∼Θ

[
D
(
φ(T , θ), φ(S, θ)

)]
, (1)

where Θ represents the distribution used for initializing the network parameters, θ parameterize the
training network, D(·, ·) is the dataset matching metric, φ(·) maps the dataset to other informative
spaces (e.g. gradient [13], feature [17, 18], and parameter spaces [16]).

However, rather than exclusively focusing on matching objectives, this paper introduces a universal
parameterization method for synthetic datasets that can be seamlessly integrated with most existing
matching objectives. The naive parameterization method, which optimizes each synthetic image X̃
independently [12–14, 16–18], fails to leverage shared information between images, resulting in
unnecessary redundancy. In the following sections, we will present our parameterization framework,
which decomposes the synthetic dataset into Spatial-Agnostic Epitomic Tokens, Sparse Coding
Matrices, and a Feature-Recurrent Network. This framework significantly mitigates redundancy
within and between images, irrespective of the spatial locations of features.

2.1 Spatial-Agnostic Recurrent Parameterization

Taking inspiration from the Vision Transformer (ViT) [3], we propose a more efficient parame-
terization approach applied at the patch level, utilizing cascade non-linear combinations to reduce
complex and fine-level redundancy. To further minimize the storage footprint, we share Sparse Coding
Matrices (SCMs) and Spatial-Agnostic Epitomic Tokens (SAETs) across all recurrent blocks. The
main approach can be formulated as follows:

X̃i = Φϕ(E,Ai). (2)

Here X̃i = [x̃
(1)
i , x̃

(2)
i , ..., x̃

(J)
i] ∈ RL×J , and x̃j

i ∈ RL represents the j-th patch of X̃i, which is
flatten into a vector. L equals to the product of the patch height, width, and number of channels,
and J is the total patch number. Similar to ViT, we divide the synthetic image into non-overlapping
rectangular patches. E = [e1, e2, ..., eK] ∈ RD×K is the Spatial-Agnostic Epitomic Tokens (SAETs)
shared by all synthetic patches, where D is the feature dimension, and K is the total number of tokens.
Ai = [a

(1)
i , a

(2)
i , ..., a

(J)
i] ∈ RK×J is the Sparse Coding Matrix (SCM) for the i-th synthetic image,

where a
(j)
i ∈ RK is the specific coding vector for patch x̃

(j)
i . Ai will be further sparsified and saved

in a storage-efficient format. Φϕ(·) is a non-linear recurrent transformer-style network that maps
SAETs and the SCM to a synthetic image. Its learnable parameters are denoted as ϕ. This network is
referred to as the Feature-Recurrent Network (FReeNet), which is described in detail below.

Feature-Recurrent Network. In the Feature-Recurrent Network (FReeNet), each recurrent block
shares the same SAETs and SCMs for the sake of parameter efficiency. However, this shared
approach can lead to a lack of diversity in the resulting representations, as a single pool of SAETs
must model multi-scale features. Drawing inspiration from the multi-head mechanism introduced in
the transformer architecture, we introduce the concept of "multi-head" SAETs, aiming to strike a
balance between storage efficiency and feature diversity. Initially, the original SAETs are split along
the feature dimension to create multiple SAET pools, denoted as {Eh}Hh=1, where Eh ∈ RD

H ×K .
Additionally, each pool is assigned an independent SCM, denoted as {Ah

i }Hh=1, where Ah
i ∈ RK×J .

The coding matrix Ah
i will undergo further sparsification to select the most significant tokens. We

refer to the mechanism that combines the multi-head SAETs and SCMs as Multi-Head Sparse Coding
(MHSC), which can be formulated as follows:

MHSCr

(
{Eh}Hh=1, {Ah

i }Hh=1

)
= Wr[E

1A1
i , E

2A2
i , ..., E

HAH
i] + br, (3)

3

where Wr ∈ RD×D is a linear projection and br is the bias, both of which are specific to each
recurrent block and not shared across blocks. Using MHSC as the central component, we can
construct the FReeNet in a recurrent manner, with SAETs and SCMs shared across different scales:

Z ′
r = LN1

r(MHSCr

(
{Eh}Hh=1, {Ah

i }Hh=1

)
) + Zr−1), r = 1, 2, ..., R,

Zr = LN2
r(MLPr(Z

′
r) + Z ′

r), r = 1, 2, ..., R,

X̃i = WZR + b,

(4)

where R is the total number of recurrent blocks, and ZR ∈ RD×J is the output of the last block. Z0

is initialized with a zero matrix. W ∈ RL×D and b make up the final linear projection layer, and
X̃i ∈ RL×J is the output synthetic image, which is then rearranged into its original shape. MLP
stands for the multi-layer perceptron. In our implementation, we set the MLP to have one hidden
layer with the same dimension as the input, and incorporate layer normalization (LN) [38] and
residual connection [2] in each block. It is worth noting that the parameters other than the SAETs
and SCMs are not shared between different blocks to ensure that each block processes a different
scale of features. Despite the use of shared SCMs across different blocks, our analysis demonstrates
that SCMs still occupy the majority of the stored parameters. Therefore, we introduce a sparsification
method to further enhance the storage efficiency of SCMs, motivated by the theories and techniques
of sparse coding [31, 32]. In the subsequent section, we will reuse X̃i = Φϕ({Eh}Hh=1, {Ah

i }Hh=1) to
refer to the multi-head implementation of the FReeNet, without any ambiguity.

2.2 Training Objective and Feature Sparsification

Since the ℓ0 norm is not differentiable and difficult to optimize [39–42], we instead adopt the ℓ1
norm as the sparsity penalty function. By promoting sparsity in solutions, it can effectively remove
redundant features [40, 43–45]. Our optimization objective can be expressed as follows:

S =
{
(Φϕ({Eh}Hh=1, {Ah

i }Hh=1), yi)
}N

i=1
,

argmin
{Eh}H

h=1,{{A
h
i }H

h=1}
N
i=1,ϕ

Eθ∼Θ

[
D
(
φ(T , θ), φ(S, θ)

)]
+ λ

N∑
i=1

H∑
h=1

||Ah
i ||1,

(5)

where || · ||1 is the ℓ1 norm of a matrix, λ controls the amount of regularization. Using this approach,
we decompose synthetic images into a multi-head SAET {Eh}Hh=1 and network parameters ϕ that
are shared by all synthetic images, and a multi-head SCM {Ah

i }Hh=1 for each synthetic image.

Feature Sparsification with Global Semantic Preservation. Sparse codes allow for the ranking of
features [33, 46], with higher coefficients indicating more important features. Therefore, we can select
the most influential sub-parameters of SCM to achieve the desired sparsity ||Ah

i ||0 ≤ k. This process
reduces storage inefficiency while preserving the global semantics of synthetic images. Moreover, all
existing matching objectives [13, 16–18] optimize synthetic images using a specific training network,
but these synthetic images are then used to train various agnostic network architectures. By pruning
unnecessary features of synthetic images, we can further enhance their generalization ability on
unseen network architectures. We experimentally validate this claim in Sec. 3.3. Specifically, given a
learned SCM A ∈ RK×J , we assign a binary mask B ∈ RK×J to it:

B[i, j] =

{
1, A[i, j] ∈ topk(abs(A))

0, otherwise
, Ā = B ⊙A, (6)

where topk(·) obtains the largest k elements, and abs(·) takes the absolute value of each element of
the input matrix. We operate a Hadamard product on the two to preserve the top-k efficient elements
of the SCM, i.e., select the most critical epitomic features. By operating on each learned SCM, we
receive {{Āh

i }Hh=1}Ni=1, which can be directly applied to synthesize images.

For the compressed storage of SCMs, we adopt the widely-used coordinate (COO) format, utilizing
the uint8 data type to store the row and column coordinates of non-zero elements as the size of the
sparse matrix is always smaller than or equal to 256 × 256 in our implementation. Consequently,
the storage needed for each non-zero element is 1.5 times that of a single float32 tensor. In this
way, the storage complexity of SCMs can be greatly reduced from O(NHKJ) to O(NHk), where
k ≪ KJ . The algorithm of our approach is summarized in Alg. 1.

4

Algorithm 1 Sparse Parameterization for Epitomic Dataset Distillation (SPEED).
Input: T : original dataset; N : total number of synthetic images; H: number of heads; k: expected number of
non-zero elements of SCM; SPARSIFY(·, ·): feature sparsification.
1: Randomly initialize SAETs {Eh}Hh=1, SCMs {{Ah

i }Hh=1}Ni=1, and the parameters ϕ of FReeNet
2: for each distillation step... do
3: Get a random initialized training backbone for the matching strategy
4: Construct the synthetic dataset: S =

{
(Φϕ({Eh}Hh=1, {Ah

i }Hh=1), yi)
}N

i=1
5: Inner optimization of the training backbone with respect to the matching strategy (if necessary)
6: Compute the objective function combined matching loss with sparsity penalty as Eq. (5)
7: Optimize {Eh}Hh=1, {{Ah

i }Hh=1}Ni=1, ϕ with respect to the objective function
8: end for
9: for i = 1 to N do

10: for h = 1 to H do
11: Select most significant features: Āh

i ← SPARSIFY(Ah
i , k), according to Eq. (6)

12: Convert Āh
i to compressed storage format

13: end for
14: end for
Output and Save: {Eh}Hh=1, {{Āh

i }Hh=1}Ni=1 and ϕ.

Storage Analysis. Our storage budget is constrained by the upper bound determined by the storage
requirements of the original synthetic images. Specifically, for a given budget of n images per class
(IPC) [12, 13] with c total classes, the maximum budget is limited to cnLJ , where LJ is the storage
requirement for a single synthetic image. Therefore, the following inequality must be satisfied:

DK + 1.5NHk + R(3D2 + 7D) + L(D + 1) ≤ cnLJ . (7)

SAETs: {Eh}Hh=1

SCMs: {{Āh
i }Hh=1}Ni=1

FReeNet: ϕ

Budget: IPC = n

Noticing that SAETs and FReeNet are shared by all synthetic images, and 1.5Hk ≪ LJ , we can
synthesize a much larger amount of synthetic images than the original one. For instance, considering
the IPC 1 storage budget on CIFAR100, i.e., c = 100 and n = 1, we set D = 96, K = 64, H = 3,
k = 48, R = 2, L = 48, and J = 64, resulting in a more informative synthetic dataset with a size of
N = 1100 (11 final images for each class).

3 Experiments

In this section, we first evaluate our method and compare it with previous work. Then, we conduct
generalization experiments and perform ablation studies. More results and detailed values for hyper-
parameters will be extensively discussed in the appendix. To quantify the performance and guarantee
the fairness of the comparison, we use the default Conv-InstanceNorm-ReLU-AvgPool ConvNet
with 128 channels as our training backbone, consistent with previous methods. We adopt trajectory
matching [16] as our default matching objective.

3.1 Comparisons

Standard Benchmarks. We first conduct experiments on three standard dataset distillation bench-
mark datasets: CIFAR10 [48] and CIFAR100 [48] at a resolution of 32× 32, and TinyImageNet [49]
at a resolution of 64× 64. To adhere to the standard protocol, we employ a 3-layer ConvNet and a
4-layer ConvNet for training and evaluating CIFAR and TinyImageNet, respectively. As illustrated
in Tab. 1, SPEED achieves highly competitive results on all three datasets. Remarkably, we achieve
a test accuracy of 40.0% and 26.9% on CIFAR100 and TinyImageNet, respectively, using 1 image
per class (IPC) storage space, representing improvements of 6.0% and 10.9% over the previous
state-of-the-art [22].

ImageNet Subsets. We evaluate the performance of SPEED on the high-resolution ImageNet [50]
subsets and achieve new state-of-the-art results, as shown in Tab. 2. Consistent with [16, 21], we split

5

Dataset CIFAR10 CIFAR100 TinyImageNet
IPC 1 10 50 1 10 50 1 10 50

C
or

es
et

Random 14.4±2.0 26.0±1.2 43.4±1.0 4.2±0.3 14.6±0.5 30.0±0.4 1.4±0.1 5.0±0.2 15.0±0.4
Herding 21.5±1.3 31.6±0.7 40.4±0.6 8.4±0.3 17.3±0.3 33.7±0.5 2.8±0.2 6.3±0.2 16.7±0.3
K-Center 23.3±0.9 36.4±0.6 48.7±0.3 8.6±0.3 20.7±0.2 33.6±0.4 2.7±0.2 7.8±0.4 16.7±0.4
Forgetting 13.5±1.2 23.3±1.0 23.3±1.1 4.5±0.3 9.8±0.2 - 1.6±0.1 5.1±0.2 15.0±0.3

M
at

ch
in

g

DC [13] 28.3±0.5 44.9±0.5 53.9±0.5 12.8±0.3 25.2±0.3 32.1±0.3 - - -
DSA [14] 28.8±0.7 52.1±0.5 60.6±0.5 13.9±0.3 32.3±0.3 42.8±0.4 - - -
KIP [47] 49.9±0.2 62.7±0.3 68.6±0.2 15.7±0.2 28.3±0.1 - - - -
DM [17] 26.0±0.8 48.9±0.6 63.0±0.4 11.4±0.3 29.7±0.3 43.6±0.4 3.9±0.2 12.9±0.4 24.1±0.3
TM [16] 46.3±0.8 65.3±0.7 71.6±0.2 24.3±0.3 40.1±0.4 47.7±0.2 8.8±0.3 23.2±0.2 28.0±0.3

FRePo [37] 46.8±0.7 65.5±0.4 71.7±0.2 28.7±0.1 42.5±0.2 44.3±0.2 15.4±0.3 25.4±0.2 -

Parameters / Class 3,072 30,720 153,600 3,072 30,720 153,600 12,288 122,880 614,400

Pa
ra

m
. IDC [19] 50.0±0.4 67.5±0.5 74.5±0.1 - 44.8±0.2 - - - -

HaBa [21] 48.3±0.8 69.9±0.4 74.0±0.2 33.4±0.4 40.2±0.2 47.0±0.2 - - -
RTP [22] 66.4±0.4 71.2±0.4 73.6±0.5 34.0±0.4 42.9±0.7 - 16.0±0.7 - -

SPEED (Ours) 63.2±0.1 73.5±0.2 77.7±0.4 40.0±0.4 45.9±0.3 49.1±0.2 26.9±0.3 28.8±0.2 30.1±0.3
Whole Dataset 84.8±0.1 56.2±0.3 37.6±0.4

Table 1: Comparisons with previous dataset distillation and coreset selection methods on standard
benchmarks. "Matching" refers to dataset distillation methods with specific matching objectives.
"Param." refers to dataset distillation methods with synthetic data parameterization. The bold num-
bers represent the highest accuracy achieved in each category.

Dataset ImageNette ImageWoof ImageFruit ImageMeow ImageSquawk ImageYellow
IPC 1 10 1 10 1 10 1 10 1 10 1 10

TM [16] 47.7±0.9 63.0±1.3 28.6±0.8 35.8±1.8 26.6±0.8 40.3±1.3 30.7±1.6 40.4±2.2 39.4±1.5 52.3±1.0 45.2±0.8 60.0±1.5
FRePo [37] 48.1±0.7 66.5±0.8 29.7±0.6 42.2±0.9 - - - - - - - -

Parameters / Class 49,152 491,520 49,152 491,520 49,152 491,520 49,152 491,520 49,152 491,520 49,152 491,520

HaBa [21] 51.9±1.7 64.7±1.6 32.4±0.7 38.6±1.3 34.7±1.1 42.5±1.6 36.9±0.9 42.9±0.9 41.9±1.4 56.8±1.0 50.4±1.6 63.0±1.6
SPEED (Ours) 66.9±0.7 72.9±1.5 38.0±0.9 44.1±1.4 43.4±0.6 50.0±0.8 43.6±0.7 52.0±1.3 60.9±1.0 71.8±1.3 62.6±1.3 70.5±1.5
Whole Dataset 87.4±1.0 67.0±1.3 63.9±2.0 66.7±1.1 87.5±0.3 84.4±0.6

Table 2: Comparisons with previous methods on high-resolution ImageNet subsets.

ImageNet into 6 subsets, namely, ImageNette, ImageWoof, ImageFruit, ImageMeow, ImageSquawk,
and ImageYellow, each consisting of 10 classes with resolutions of 128×128. And a 5-layer ConvNet
is employed as the model for both training and evaluation.

Notably, our results achieved with IPC 1 storage space are highly competitive with the previous
state-of-the-art results [21, 37] obtained with IPC 10. Specifically, we only need to employ 10% of
their parameters to achieve similar or even better performance. Compared to the previous state-of-
the-art [21] using the same IPC 1 storage space, our approach exhibits an average improvement of
11.2% across all subsets. Moreover, we maintain a substantial lead for IPC 10 storage space. For
instance, we achieve 71.8% accuracy on ImageSquawk, which is a 15.0% improvement over the
previous state-of-the-art [21]. These outstanding outcomes are attributed to our design of sharing
SAETs among patches, which enables SPEED to be more effective in reducing spatial redundancy as
data resolution increases.

Continual Learning. Owing to its expressive representations and finer-grained image construction,
SPEED has the ability to synthesize an informative dataset. Synthetic images of each class are of
exceptional quality, thereby contributing to the dataset’s overall richness and relevance. Following the
DM [17] setup based on GDumb [51], we conduct continual learning experiments on CIFAR100 with
IPC 20 storage space and use the default ConvNet and ResNet18 for evaluation. We randomly divide
the 100 classes into 5 learning steps, that is, 20 classes per step. As illustrated in Fig. 2, SPEED
maintains the highest test accuracy at all steps for both evaluation networks.

3.2 Generalization

Universality to Matching Objectives. SPEED exhibits adaptability to multiple existing matching
objectives, including those presented in [13, 16, 17], and can be directly integrated with them. In line
with [52], we evaluate a diverse set of architectures, including the default ConvNet, ResNet [2], MLP,
and ViT [3]. The results and comparisons to corresponding baselines on CIFAR10 are presented
in Tab. 3. For instance, when using MLP for evaluation under the IPC 1 budget, SPEED yields a

6

20 40 60 80 100
Number of Classes

40

45

50

55

60

65

70

Te
st

 A
cc

ur
ac

y
(%

)

DM
HaBa
IDC
SPEED

(a) ConvNet

20 40 60 80 100
Number of Classes

30

35

40

45

50

55

60

65

Te
st

 A
cc

ur
ac

y
(%

)

DM
HaBa
IDC
SPEED

(b) ResNet18

Figure 2: Test accuracy of continual learning. SPEED
maintains the best performance on all steps.

GN

SN

IN

DBGB

MB

ZM

SW

FT

BS

ET PIX

JPEG

SP

GN15 20 25 30 35

TM
HaBa
SPEED

(a) ConvNet

GN

SN

IN

DBGB

MB

ZM

SW

FT

BS

ET PIX

JPEG

SP

GN5 10 15 20 25 30

TM
HaBa
SPEED

(b) ResNet18

Figure 3: Robustness of the synthetic
dataset on different architectures. Each di-
rection represents each type of corruption.

Evaluation ConvNet MLP ResNet18 ViT

Matching IPC 1 10 50 1 10 50 1 10 50 1 10 50

Gradient
DC [13] 29.3±0.4 51.0±0.6 56.8±0.4 29.0±0.5 34.1±0.4 31.6±0.6 27.4±0.7 44.0±1.4 45.9±1.4 28.1±1.1 34.4±0.4 30.1±0.5

w. SPEED 48.5±0.3 52.6±0.3 59.8±0.4 35.5±0.2 39.0±0.4 41.5±0.3 42.5±0.5 47.5±0.5 55.0±0.3 30.4±0.6 38.4±0.4 39.0±0.3
Gain +19.2 +1.6 +3.0 +6.5 +4.9 +9.9 +15.1 +3.5 +9.1 +2.3 +4.0 +8.9

Distribution
DM [17] 26.5±0.4 47.6±0.6 62.0±0.3 10.0±0.6 34.4±0.3 40.5±0.4 20.6±0.5 38.2±1.1 52.8±0.4 20.5±0.5 34.4±0.5 45.2±0.4

w. SPEED 45.0±0.4 62.0±0.3 66.4±0.3 34.8±0.3 42.2±0.5 46.3±0.4 40.7±0.8 57.6±0.5 65.2±0.3 28.4±0.6 43.2±0.2 48.9±0.3
Gain +18.5 +14.4 +4.4 +24.8 +7.8 +5.8 +20.1 +19.4 +12.4 +7.9 +8.8 +3.7

Trajectory
TM [16] 44.2±1.2 63.7±0.4 70.3±0.6 10.4±0.5 30.8±0.6 38.5±0.3 34.2±1.4 45.2±1.4 60.0±0.7 21.5±0.4 33.6±0.6 47.7±0.6

w. SPEED 63.2±0.1 73.5±0.2 77.7±0.4 34.1±0.2 44.4±0.4 47.7±0.2 53.9±0.7 69.5±0.4 76.4±0.3 37.5±0.8 51.5±0.3 54.5±0.5
Gain +19.0 +9.8 +7.4 +23.7 +13.6 +9.2 +19.7 +24.3 +16.4 +16.0 +17.9 +6.8

Table 3: Universality to different matching objectives. SPEED is compatible with a variety of matching
objectives and brings significant accuracy improvements over the corresponding baseline methods.
All experiments are conducted with DSA augmentation [14].

significant improvement of 24.8% and 23.7% in accuracy compared to the distribution [17] and
trajectory [16] matching baselines, respectively. Our experiments reveal that the improvements in
cross-architecture accuracy tend to be more significant than those on the ConvNet. For instance, with
an IPC 10 budget for trajectory matching [16], we achieve a 24.3% gain on ResNet18. This outcome
further showcases the strengths of our sparse parameterization approach in terms of generalization.

Method ConvNet MLP ResNet18 ViT

IDC [19] 67.5±0.5 41.4±0.2 62.9±0.6 47.9±0.8
HaBa [21] 69.9±0.4 35.4±0.4 60.2±0.9 42.2±0.6
RTP [22] 71.2±0.4 27.2±0.2 67.5±0.1 35.7±0.4
SPEED 73.5±0.2 44.4±0.4 69.5±0.4 51.5±0.3

Table 4: Comparision of cross-architecture gener-
alization evaluation. SPEED exhibits outstanding
leads on all architectures.

Cross-Architecture Performance. The main
purpose of dataset distillation is to distill a syn-
thetic dataset that is effective on various even un-
seen architectures. In this study, we evaluate the
cross-architecture performance of our method by
comparing it with previous synthetic data param-
eterization approaches [19, 21, 22] on CIFAR10,
using IPC 10 storage space. The results presented
in Tab. 4 demonstrate that SPEED continues to
outperform other methods significantly in terms of generalization across unseen architectures. As an
illustration, our method achieves an accuracy of 51.5% on ViT, which represents a 3.6% improve-
ment over the previous state-of-the-art [19]. Although various existing dataset distillation matching
objectives tend to overfit the training network, we address this challenge by pruning unnecessary
features through sparse parameterization.

Robustness to Corruption. To explore the out-of-domain generalization of our synthetic dataset,
we conduct experiments on CIFAR100-C [53]. In detail, we evaluate on ConvNet and ResNet18, using
the synthetic dataset trained under the IPC 1 budget. Fig. 3 shows the average accuracy of 14 types
of corruption under 5 levels respectively. Compared with the previous methods, we achieve better
performance under all kinds of corruption. Especially on ResNet18, SPEED outperforms previous
methods significantly, achieving almost double the test accuracy under every corruption scenario.
This demonstrates the generalization and robustness benefits brought by sparse parameterization.

3.3 Ablation Study

Size of k for Feature Sparsification. Our total storage parameters are positively correlated with
the size of k, and the representation ability of the SCM is also related to this k-winner. Therefore, we

7

(a) Before feature sparsification (b) After feature sparsification (density = 0.3%)

Figure 4: ImageSquawk: synthetic data samples before and after feature sparsification. The process
of sparsification does not lead to a significant loss of essential information, resulting in a high degree
of similarity between the two images.

k # Param Budget ConvNet MLP ResNet18 ViT

full 15M - 74.0±0.2 44.8±0.3 69.0±0.4 50.8±0.5
96 575K - 74.6±0.3 44.9±0.1 69.3±0.7 51.8±0.5
48 307K ✓ 73.5±0.2 44.4±0.4 69.5±0.4 51.5±0.3
24 173K ✓ 68.2±0.3 35.9±0.7 66.4±0.5 45.2±0.4
12 106K ✓ 57.8±0.3 24.8±0.4 59.0±0.4 36.7±0.9

Table 5: Different k for feature sparsification.

R N/c ConvNet MLP ResNet18 ViT

1 18 20.7±0.4 4.5±0.2 17.3±0.5 9.9±1.1
2 17 26.9±0.3 6.0±0.3 21.3±0.6 14.9±0.3
3 15 25.4±0.1 5.3±0.1 19.5±0.6 13.9±0.2

Table 6: Depth of FReeNet.

K N/c ConvNet ResNet18

32 11 38.5±0.2 29.8±0.5
64 11 40.0±0.4 29.9±0.3
96 10 37.3±0.1 29.3±0.4

128 10 38.2±0.3 29.6±0.4

Table 7: Number of SAETs.

D N/c ConvNet ResNet18

48 13 38.0±0.1 29.0±0.4
72 12 38.7±0.3 29.8±0.5
96 11 40.0±0.4 29.9±0.3

144 7 35.5±0.4 26.7±0.3

Table 8: Dimension of SAETs.

H N/c ConvNet ResNet18

1 33 38.7±0.1 32.2±0.4
2 16 39.3±0.4 30.5±0.3
3 11 40.0±0.4 29.9±0.3
4 8 35.9±0.4 27.4±0.8

Table 9: Head of SAETs.

discuss the preference for the value of k. Specifically, for cross-architecture evaluation on CIFAR10
with IPC 10 storage space, we set k to {4096, 96, 48, 24, 12}, as shown in Tab. 5 (Budget denotes
whether the storage budget is met). We observe that taking a moderate value of k can effectively
improve the cross-architecture generalization ability of the synthetic dataset while maintaining high
test accuracy on the homogeneous network, i.e., the training backbone. When k is set to 96, the overall
accuracy exceeds that of the result obtained without feature sparsification, thereby demonstrating the
effective removal of inefficient features and the improvement in generalization. In order to meet the
storage budget (10 × 10 × 48 × 64 ≈ 307K), we finally set k to 48, which maintains competitive
performance.

Feature Sparsification Visualizations. To compare the representation capabilities of SCMs after
feature sparsification, we provide some visualization results on ImageSquawk, as shown in Fig. 4.
We note that the visualization results using only the sparsified features are highly similar to the
corresponding original ones. Differences are noticeable only in a few patches, which are insignificant
for classification and mainly consist of meaningless backgrounds. This implies that synthetic images
can be constructed effectively using only a few prominent features.

Trade-off between Quality and Quantity. Eq. (7) illustrates that SPEED’s parameters consist of
three parts. The parameters of SAETs and FReeNet are shared among all synthetic images, while the
parameters of SCMs are specific to each synthetic image. Thus, under the same budget, increasing
shared parameters will lead to a decrease in the number of synthetic images. We conduct ablation
experiments on CIFAR100 with IPC 1 storage space to study the trade-off between quality (more
shared parameters) and quantity (more synthetic images). Tab. 7-9 study the size of SAETs. As can
be seen, keeping a moderate number of synthetic images is important, i.e., N/c > 10. A lack of
diversity caused by too few images can impact the performance. However, once a certain number of
images is reached, further increasing the quantity can lead to a decrease in the quality of each image
and slightly reduce performance. In general, our performance is insensitive to the size of SAETs

8

and outperforms the previous state-of-the-art [22] in multiple settings, except when the number of
synthetic images is too small. Tab. 6 studies the depth of FReeNet, we conduct ablation experiments
on TinyImageNet with IPC 1 storage space. Although using only one block can maximize the number
of synthetic images per class (N/c), the lack of hierarchical features severely compromises the
model’s representational capacity, resulting in poor image quality. However, having too many blocks
can result in increased reconstruction overhead. We find that FReeNet with two blocks already
achieves a great compromise between performance and computation cost.

128×128 256×256 Gain

DM [17] 28.6±0.6 29.5±1.1 +0.9
w. SPEED 53.5±1.2 57.7±0.9 +4.2
Gain +24.9 +28.2 +3.3

Table 10: Effects of increasing image
resolution on ImageNette.

Effects of Increasing Image Resolution. To study the ef-
fectiveness of our method in higher resolution scenarios, we
performed experimental investigations on both the distribu-
tion matching [17] baseline and our method, using the Ima-
geNette dataset with image sizes of 128×128 and 256×256.
In line with the practices of previous methods that handle
higher resolution images with deeper networks, we increased
the depth of the ConvNet to 6 for the 256×256 image size.

As shown in Tab. 10, when the resolution increases from 128×128 to 256×256, the gain brought by
SPEED to the baseline also amplifies from 24.9% to 28.2%. The results demonstrate that our method
achieves more substantial improvements when applied to higher-resolution images.

4 Related Work

Dataset Distillation. Dataset distillation, proposed by Wang et al. [12], aims to learn a smaller
synthetic dataset so that the test performance of the model on the synthetic dataset is similar to that
of the original dataset. For better matching objectives, Zhao et al. [13] present a single-step matching
framework, encouraging the result gradient of the synthetic dataset and the original dataset to be
similar, further extended by [15, 19, 54, 55]. Subsequently, Cazenavette et al. introduce TM [16] to
alleviate the cumulative error problem of single-step matching, which inspires a series of work [56–
58]. To avoid the expensive computational overhead brought by complex second-level optimization,
Zhao et al. [17] suggest DM, a distribution matching approach, and Wang et al. [18] explicitly align
the synthetic and real distributions in the feature space of a downstream network. There are also
some methods based on kernel ridge regression [59, 47, 60, 37], which can bring out a closed-form
solution for the linear model, avoiding extensive inner loop training.

In terms of synthetic data parameterization, Kim et al. introduce IDC [19], using downsampling strate-
gies to synthesize more images under the same storage budget. Zhao et al. [20] propose to synthesize
informative data via GAN [61, 62]. Deng et al. [22] have explored how to compress datasets into
bases and recall them by linear combinations. Liu et al. [21] propose a dataset factorization approach,
utilizing image bases and hallucinators for image synthesis. Lee et al. [63] further factorize the
dataset into latent codes and decoders. These parameterization methods are designed to find shareable
or low-resolution image bases. Still, they either only consider the connections between synthetic
images [21, 22, 63], or do not reduce the redundancy inside the synthetic image thoroughly [19].
So the storage space of their image bases is still proportional to the dataset resolution, bringing out
unsatisfactory performance on high-resolution datasets. SPEED is a universal synthetic data parame-
terization framework, in which the distillation and construction are spatial-agnostic. It allows for joint
modeling correlations between and within the synthetic images, leading to lower storage redundancy
and finer-grained image synthesis, thus performing competently on high-resolution datasets.

Sparse Coding. Sparse coding calls for constructing efficient representations of data as a combina-
tion of a few high-level patterns [31–36]. It has been proven to be an effective approach in the field of
image reconstruction and image classification [64–70]. Typically, a dictionary of basis functions (e.g.
wavelets [71] or curvelets [72]) is used to decompose the image patches into coefficient vectors. By
imposing sparsity constraints on the coefficient vectors, efficient sparse representations of the image
patches can be obtained. In addition, the dictionary is not necessarily fixed, it can also be learned
to adapt to different tasks [25–28], and the penalty function can also be varied [33, 73, 74]. Prior
sparse coding research has primarily focused on compressing individual images [75, 76], with an
emphasis on achieving high compression ratios while minimizing perceptual distortion. However,
there has been limited exploration of how to apply sparse coding to compress entire datasets in a

9

way that enhances the training of downstream neural networks. Our work demonstrates that theories
and techniques in sparse coding can provide valuable inspiration for developing dataset distillation
methods.

Coreset Selection. Coreset selection identifies a representative subset of the original dataset [77–
79, 10]. Its objective is in line with the goals of dataset distillation and can be utilized to tackle
challenges such as continual learning [10, 80, 81] and active learning tasks [82]. This technique
typically performs better when the storage budget is relatively large, while dataset distillation
demonstrates superior performance under extremely limited storage budgets [52].

5 Conclusion and Limitations

In this paper, we introduce SPEED, an efficient and generalizable solution for dataset distillation
that offers the following merits: First, the spatial-agnostic epitomic tokens distilled by our method
are not only shared between the different classes but also shared among patches of every synthetic
image, regardless of their spatial locations. Such efficient modeling enables us to perform well on
high-resolution datasets with much less spatial redundancy. Second, the proposed feature-recurrent
network promotes hierarchical representation in an efficient recurrent manner, resulting in more
informative synthetic data. Finally, the proposed feature sparsification mechanism improves both
the storage efficiency and the generalization ability. SPEED achieves outstanding performance on
various datasets and architectures through extensive experiments.

Limitations. Similar to the previous parameterization methods [19–22], decomposing the original
synthetic datasets into different components will slightly increase distilling costs and incur recon-
struction overhead. We alleviate this issue by designing the network to be as lightweight as possible.
While the dataset synthesized by SPEED offers better privacy protection for users compared to the
original dataset, there remains a possibility of privacy leakage.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant
62006183 and Grant 62206271, in part by the National Key Research and Development Project of
China under Grant 2020AAA0105600, and in part by the Shenzhen Key Technical Projects under
Grant JSGG20220831105801004, CJGJZD2022051714160501, and JCYJ20220818101406014.

References
[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional

neural networks. In NeurIPS, 2012.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, 2016.

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
In NeurIPS, 2020.

[5] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In ICML, 2021.

[6] Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. Generative teaching
networks: Accelerating neural architecture search by learning to generate synthetic training data. In ICML,
2020.

[7] Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In UAI,
2020.

10

[8] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The Journal
of Machine Learning Research, 20(1):1997–2017, 2019.

[9] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investigation
of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211, 2013.

[10] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental
classifier and representation learning. In CVPR, 2017.

[11] Xiaoyu Tao, Xiaopeng Hong, Xinyuan Chang, Songlin Dong, Xing Wei, and Yihong Gong. Few-shot
class-incremental learning. In CVPR, 2020.

[12] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv preprint
arXiv:1811.10959, 2018.

[13] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. In ICLR,
2021.

[14] Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In ICML,
2021.

[15] Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sangdoo Yun, and Sungroh Yoon. Dataset condensation
with contrastive signals. In ICML, 2022.

[16] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Dataset
distillation by matching training trajectories. In CVPR, 2022.

[17] Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In WACV, 2023.

[18] Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan Bilen,
Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features. In CVPR, 2022.

[19] Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong, Jung-Woo
Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameterization. In ICML,
2022.

[20] Bo Zhao and Hakan Bilen. Synthesizing informative training samples with gan. In NeurIPS Workshop,
2022.

[21] Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, and Xinchao Wang. Dataset distillation via factorization.
In NeurIPS, 2022.

[22] Zhiwei Deng and Olga Russakovsky. Remember the past: Distilling datasets into addressable memories
for neural networks. In NeurIPS, 2022.

[23] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation,
1(4):541–551, 1989.

[24] Kenneth Kreutz-Delgado, Joseph F Murray, Bhaskar D Rao, Kjersti Engan, Te-Won Lee, and Terrence J
Sejnowski. Dictionary learning algorithms for sparse representation. Neural computation, 15(2):349–396,
2003.

[25] Ke Huang and Selin Aviyente. Sparse representation for signal classification. In NeurIPS, 2006.

[26] John Wright, Allen Y Yang, Arvind Ganesh, S Shankar Sastry, and Yi Ma. Robust face recognition via
sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2):210–227,
2008.

[27] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y Ng. Self-taught learning:
transfer learning from unlabeled data. In ICML, 2007.

[28] Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro, and Andrew Zisserman. Discriminative learned
dictionaries for local image analysis. In CVPR, 2008.

[29] Bruno A Olshausen, Charles F Cadieu, and David K Warland. Learning real and complex overcomplete
representations from the statistics of natural images. In Wavelets XIII, volume 7446, pages 236–246, 2009.

[30] Xing Wei, Yifan Bai, Yongchao Zheng, Dahu Shi, and Yihong Gong. Autoregressive visual tracking. In
CVPR, 2023.

11

[31] Stéphane G Mallat and Zhifeng Zhang. Matching pursuits with time-frequency dictionaries. IEEE
Transactions on Signal Processing, 41(12):3397–3415, 1993.

[32] Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by learning a
sparse code for natural images. Nature, 381(6583):607–609, 1996.

[33] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 58(1):267–288, 1996.

[34] Scott Shaobing Chen, David L Donoho, and Michael A Saunders. Atomic decomposition by basis pursuit.
SIAM review, 43(1):129–159, 2001.

[35] Joel A Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on
Information Theory, 50(10):2231–2242, 2004.

[36] Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: An algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):4311–4322, 2006.

[37] Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset distillation using neural feature regression. In
NeurIPS, 2022.

[38] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[39] Jason Weston, André Elisseeff, Bernhard Schölkopf, and Mike Tipping. Use of the zero norm with linear
models and kernel methods. The Journal of Machine Learning Research, 3:1439–1461, 2003.

[40] Andrew Y Ng. Feature selection, l 1 vs. l 2 regularization, and rotational invariance. In ICML, 2004.

[41] Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through l_0
regularization. In ICLR, 2018.

[42] Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff pruning. In
ACL-IJCNLP, 2021.

[43] Jun Yu, Yong Rui, and Dacheng Tao. Click prediction for web image reranking using multimodal sparse
coding. IEEE Transactions on Image Processing, 23(5):2019–2032, 2014.

[44] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In AISTATS,
2011.

[45] Alireza Aghasi, Afshin Abdi, Nam Nguyen, and Justin Romberg. Net-trim: Convex pruning of deep neural
networks with performance guarantee. In NeurIPS, 2017.

[46] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino, Jiliang Tang, and Huan Liu.
Feature selection: A data perspective. ACM Computing Surveys, 50(6):1–45, 2017.

[47] Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with infinitely wide
convolutional networks. In NeurIPS, 2021.

[48] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Technical
report, 2009.

[49] cs231n.stanford.edu. Cs231n: Convolutional neural networks for visual recognition.

[50] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, 2009.

[51] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that questions our
progress in continual learning. In ECCV, 2020.

[52] Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Dc-bench: Dataset condensation benchmark. In
NeurIPS, 2022.

[53] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. In ICLR, 2019.

[54] Zixuan Jiang, Jiaqi Gu, Mingjie Liu, and David Z Pan. Delving into effective gradient matching for dataset
condensation. In COINS, 2023.

12

[55] Lei Zhang, Jie Zhang, Bowen Lei, Subhabrata Mukherjee, Xiang Pan, Bo Zhao, Caiwen Ding, Yao Li, and
Dongkuan Xu. Accelerating dataset distillation via model augmentation. In CVPR, 2023.

[56] Guang Li, Ren Togo, Takahiro Ogawa, and Miki Haseyama. Dataset distillation using parameter pruning.
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2023.

[57] Jiawei Du, Yidi Jiang, Vincent YF Tan, Joey Tianyi Zhou, and Haizhou Li. Minimizing the accumulated
trajectory error to improve dataset distillation. In CVPR, 2023.

[58] Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to imagenet-1k with
constant memory. In ICML, 2023.

[59] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel ridge-regression.
In ICLR, 2021.

[60] Noel Loo, Ramin Hasani, Alexander Amini, and Daniela Rus. Efficient dataset distillation using random
feature approximation. In NeurIPS, 2022.

[61] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the ACM, 63(11):139–
144, 2020.

[62] Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan: How to embed images into the stylegan
latent space? In ICCV, 2019.

[63] Hae Beom Lee, Dong Bok Lee, and Sung Ju Hwang. Dataset condensation with latent space knowledge
factorization and sharing. arXiv preprint arXiv:2208.10494, 2022.

[64] José M Bioucas-Dias and Mário AT Figueiredo. A new twist: Two-step iterative shrinkage/thresholding
algorithms for image restoration. IEEE Transactions on Image Processing, 16(12):2992–3004, 2007.

[65] Michael Elad and Michal Aharon. Image denoising via sparse and redundant representations over learned
dictionaries. IEEE Transactions on Image Processing, 15(12):3736–3745, 2006.

[66] Jianchao Yang, John Wright, Thomas Huang, and Yi Ma. Image super-resolution as sparse representation
of raw image patches. In CVPR, 2008.

[67] Jianchao Yang, John Wright, Thomas S Huang, and Yi Ma. Image super-resolution via sparse representation.
IEEE Transactions on Image Processing, 19(11):2861–2873, 2010.

[68] Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro, and Andrew Zisserman. Non-local sparse
models for image restoration. In ICCV, 2009.

[69] Julien Mairal, Jean Ponce, Guillermo Sapiro, Andrew Zisserman, and Francis Bach. Supervised dictionary
learning. In NeurIPS, 2008.

[70] Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang. Linear spatial pyramid matching using sparse
coding for image classification. In CVPR, 2009.

[71] Antonin Chambolle, Ronald A De Vore, Nam-Yong Lee, and Bradley J Lucier. Nonlinear wavelet image
processing: variational problems, compression, and noise removal through wavelet shrinkage. IEEE
Transactions on Image Processing, 7(3):319–335, 1998.

[72] Emmanuel J Candes and David L Donoho. Recovering edges in ill-posed inverse problems: Optimality of
curvelet frames. The Annals of Statistics, 30(3):784–842, 2002.

[73] Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its oracle properties.
Journal of the American Statistical Association, 96(456):1348–1360, 2001.

[74] Yong Liang, Cheng Liu, Xin-Ze Luan, Kwong-Sak Leung, Tak-Ming Chan, Zong-Ben Xu, and Hai
Zhang. Sparse logistic regression with a l1/2 penalty for gene selection in cancer classification. BMC
bioinformatics, 14(1):1–12, 2013.

[75] Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory,
52(2):489–509, 2006.

[76] David L Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–1306,
2006.

13

[77] Max Welling. Herding dynamical weights to learn. In ICML, 2009.

[78] Yutian Chen, Max Welling, and Alex Smola. Super-samples from kernel herding. In UAI, 2010.

[79] Dan Feldman, Matthew Faulkner, and Andreas Krause. Scalable training of mixture models via coresets.
In NeurIPS, 2011.

[80] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for online
continual learning. In NeurIPS, 2019.

[81] Felix Wiewel and Bin Yang. Condensed composite memory continual learning. In IJCNN, 2021.

[82] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach.
In ICLR, 2018.

[83] Fastai. Fastai/imagenette: A smaller subset of 10 easily classified classes from imagenet, and a little more
french.

[84] Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee, and Gary Bradski. Kornia: an open source
differentiable computer vision library for pytorch. In WACV, 2020.

[85] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

[86] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In CVPR, 2015.

[87] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Improved texture networks: Maximizing quality
and diversity in feed-forward stylization and texture synthesis. In CVPR, 2017.

[88] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

14

I Experiment Details

Datasets and Preprocessing. We evaluate our methods on the following datasets: i) CIFAR10 [48]:
A standard image dataset consists of 60,000 32×32 RGB images in 10 different classes, including
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. For each class, 5000 images
are used for training and 1000 images are used for testing. ii) CIFAR100 [48]: CIFAR100 contains
100 classes. It has a training set with 50,000 images and a testing set with 10,000 images. iii)
TinyImageNet [49]: A 64×64 image dataset with 200 classes. Each class has 500 images for training
and 50 images for testing. iv) ImageNet [50] subsets: High resolution (128×128) datasets from
ILSVRC2012 [50]. ImageNette (assorted objects) and ImageWoof (dog breeds) are designed for easy
and hard classification tasks [83]. ImageFruit, ImageMeow, ImageSquawk, and ImageYellow [16]
consist of fruits, cats, birds, and yellowish things, respectively. All the above subsets contain 10
classes.

For fair comparisons, we follow the previous methods [16, 21], adopting ZCA whitening on CIFAR10
and CIFAR100 with the default Kornia [84] implementation, and no ZCA whitening is used on
TinyImageNet and ImageNet subsets.

Evaluation Settings. The objective of dataset distillation is to learn a synthetic dataset that can
be utilized across a range of network structures. This is achieved by matching the raw and synthetic
datasets with the aid of a specific network, with the expectation that can generalize to unseen
network structures. In accordance with the evaluation presented in [52], we consider a diverse set of
architectures, as shown below:

• ConvNet [1, 85, 86]: The standard architecture used for both distilling and evaluating synthetic
datasets in previous distillation work. The default network contains three 3×3 convolution layers,
each followed by 2×2 average pooling and instance normalization. The hidden embedding size is
set to 128. There are around 320K trainable parameters. For TinyImageNet, the number of layers
is increased to 4 for improved performance, as suggested in previous work [16, 17]. Similarly, we
increase it to 5 for ImageNet subsets, following [16].

• MLP: The simple MLP architecture is applied for evaluation, which includes 3 fully connected
layers, and the width is set to 128. For CIFAR10, CIFAR100, and TinyImageNet, the MLP has 411K,
423K, and 2M trainable parameters, respectively.

• ResNet18 [2]: We also evaluate synthetic datasets on the commonly used ResNet architecture with
4 residual blocks. In each block, there are 2 convolution layers followed by ReLU activation and
instance normalization (IN) [87]. The number of trainable parameters is around 11M.

• ViT [3]: Vision Transformer applies standard transformer [88] on non-overlapping image patches,
demonstrating the variants of transformers can also be a competitive alternative to CNNs. We take it as
one of the architectures for evaluating synthetic datasets. There are around 10M trainable parameters
in the adopted implementation of ViT.

Following the mainstream evaluation settings, we train 5 randomly initialized evaluation networks on
the synthetic dataset, using SGD optimizer, where the momentum and weight decay are set to 0.9 and
0.0005, respectively.

Hyper-Parameters. For CIFAR10 (32×32), CIFAR100 (32×32), and TinyImageNet (64×64), we
fix the default number of patches J to 64, and increase it to 256 for ImageNet subsets (128×128).
Then, the default patch dimension L can be directly derived.

In terms of SAETs, which has been studied in Sec. 3.3, we set the number K according to the
resolution of the dataset (e.g. we set K to 256 for ImageNet subsets, and decrease it to 128 and 64 for
TinyImageNet and CIFAR100, respectively). When the budget is enlarged, we expand the dimension
of SAETs D with its head H increased together, while guaranteeing that their divisor D/H ≤ K, so
that each head Eh is a complete (or overcomplete) dictionary. We always build the FReeNet with
shallow blocks, which provides sufficient nonlinear capabilities while making it lightweight enough
(e.g. we set 1 block on CIFAR10 with IPC 1 storage space which is excessively stringent, and set 2
blocks for all experiments on TinyImageNet and ImageNet subsets).

15

Bicycle Can Clock Cup Hamster House Lamp Motorcycle Pickup Truck Rabbit Raccoon Sunflower

(a) Patch size 4×4

(b) Patch size 8×8

(c) Patch size 16×16

(d) TM [16] baseline (patch size 32×32)

Figure I: Synthetic data samples under different configurations of patch size. A small patch size can
capture intricate details such as the black eye patch of the hamster, truck tires, and rabbit ears.

The number of non-zero elements k is always set to a value that ensures the matrix density k/JK <
5%, then the number of images N can be computed according to Eq. (7). The setting of the penalty
weight λ depends on the number of images, heads, and patches, satisfying λ ≈ 0.064/NHJ .

Compute Resources. Our experiments were run on a mixture of RTX 3090, RTX A6000, and
A800 GPUs. The GPU memory consumption is mainly dependent on that of the matching objective
and is slightly higher than its baseline, due to the larger data amount. For instance, our experiments
based on gradient matching [13] and distribution matching [17] need one 24GB 3090 GPU. In terms
of trajectory matching [16], the VRAM usage will be higher, ranging from one 24GB 3090 GPU to
six 80GB A800 GPUs.

II Additional Results and Analyses

Patch Size. The patch size plays an important role in determining the granularity of our distillation
modeling. Let each patch x̃ be of P × P resolution and contains C channels, then its dimension
L will be P 2C. Tab. I presents the results on CIFAR100 with IPC 1 storage space. We observe
that setting a relatively small patch size can lead to better performance, as it reduces redundancy
within synthetic images and enables finer-grained synthesis. Therefore, we set a default patch size
of 4×4 for the 32×32 resolution datasets (CIFAR10 and CIFAR100) and increase it appropriately
when the resolution of the dataset increases. For instance, we adopt a default patch size of 8×8 for
TinyImageNet (64×64).

Patch size N/c ConvNet MLP ResNet18 ViT

4 × 4 11 40.0±0.4 15.5±0.2 29.9±0.3 20.7±0.5
8 × 8 10 39.3±0.3 14.6±0.3 29.4±0.5 20.2±0.2

16 × 16 7 37.3±0.3 12.9±0.3 27.1±0.8 16.5±0.2

Table I: Patch size. Small patch sizes allow finer-grained modeling.

Furthermore, we provide a visualization of synthetic images with varying patch sizes, as depicted in
Fig. I. The utilization of small patches can facilitate the expression of finer-grained features, leading
to synthetic images that contain more classifiable information. For instance, when a 4×4 patch is
employed, it can capture intricate details such as the black eye patch of the hamster, in addition to
more noticeable features like truck tires and rabbit ears. Also, sparse parameterization allows for
efficient storage of background information with limited significance by allocating fewer non-zero
elements in SCMs to represent it.

16

1e-7 2e-7 3e-7 5e-7 1e-6
Penalty Weight

25

30

35

40

Te
st

 A
cc

ur
ac

y
(%

)

TM
w. SPEED

64 128 192 256
Size of k

39

40

41

42

Te
st

 A
cc

ur
ac

y
(%

)

Local
Global

0 20 40 60 80
Distilling Time (mins)

0

20

40

60

Te
st

 A
cc

ur
ac

y
(%

)

TM
HaBa
RTP
SPEED

Figure II: Left: Effects of different penalty weight λ on test accuracy. TM [16] denotes the baseline
method of the trajectory matching objective with naive image-independent parameterization. A
moderate weight can trade off sparsity and accuracy. Middle: Comparison of different feature
sparsification strategies. Global sparsification performs better in various settings, especially when the
storage budget is stringent. Right: Test accuracy and distilling time.

full top-48 top-24 top-12 full top-48 top-24 top-12 full top-48 top-24 top-12

Figure III: Visualization of our SCMs with varying values of k (patch corresponds to zero column
vector in its SCMs is marked grey). SPEED learns to efficiently allocate more storage for foreground
objects that contain more classifiable information. Therefore, a small k still allows for salient features
of objects to be synthesized well.

Sparsity Penalty Weight λ. In SPEED, the sparsity penalty term constrains the overall scale of
elements in SCMs. Ablation studies of the penalty weight λ are conducted on CIFAR100 with IPC
1 storage space, as shown in Fig. II (left). For these experiments, we fix the number of sparsified
features to 48. If the penalty weight is too small, our SCM tends to comprise a higher number of
elements with larger absolute values, which necessitates more features to be maintained during feature
sparsification, thereby guaranteeing the test performance. It consequently implies a larger storage
burden. On the other hand, setting the penalty weight too high may limit the representation capability
required for synthesizing informative images. Therefore, we prefer the moderate penalty weight,
which allows for sufficient combinations of required epitomic tokens while efficiently eliminating
inefficient ones without the risk of losing important information.

Local Feature Sparsification. To assess the efficacy of our feature sparsification with global
semantic preservation on SCMs, we introduce the contrast, local feature sparsification, that attempts
to store an equal number of non-zero elements for each patch, i.e., each column of SCM has the same
number of non-zero elements. Consequently, local feature sparsification constructs all patches using
the same number of parameters (keep k/J elements for each column of SCM), while the feature
sparsification with global semantic preservation does not (keep k elements for whole SCM). We
evaluate the performance of these two methods using different values of k, while maintaining the
other hyper-parameters constant.

As illustrated in Fig. II (middle), we conduct tests on CIFAR100 with k set to {64, 128, 192, 256},
where the SCM size is 64 × 64. Accordingly, the local feature sparsification strategy preserves
{1, 2, 3, 4} features for each synthetic patch (e.g. when k is set at 128, J = 64, then each patch is
represented by the 2 most prominent SAETs). In all cases, the global feature sparsification outperforms
the local one. Notably, the advantages of the global approach are more apparent when the storage

17

(a) no convolutional layers

(b) 1 layer, kernel size = 3×3

(c) 1 layer, kernel size = 5×5

(d) 2 layers, kernel size = 3×3

(e) 2 layers, kernel size = 5×5

Figure IV: Visualizations (border terrier class in ImageNette) regarding the incorporation of convolu-
tional layers after the rearrangement of patches. The presence of the chessboard artifact gradually
diminishes with increases in the number of convolutional layers and the size of convolutional kernels.

budget is stringent, i.e., for small k. This indicates that our global feature sparsification technique
produces synthetic images with more classifiable information under the same storage budget, making
it more efficient for dataset distillation. Similar to the conclusion drawn in Sec. 3.3, we observe that
as k increases to a certain extent, the accuracy reaches an upper bound and then fluctuates.

Test Accuracy vs. Distilling Time. We observe the test accuracy and distilling time on CIFAR10
with IPC 1 storage space, and compare with the previous methods [16, 21, 22], as illustrated in
Fig. II (right). Overall, SPEED consistently outperforms previous methods when compared at similar
distilling time points.

Visualization of SCMs. We visualize our SCMs with varying values of k in Fig. III, where the
patch corresponds to zero column vector in its SCMs is marked grey. As k decreases, we observe a
higher preference for column vectors that correspond to background patches to be zero vectors in
SCMs. This indicates that SPEED automatically learns to allocate more storage budget to foreground
objects that contain more useful clues for classification. Even when k is set as low as 12, the salient
foreground object is still well synthesized. It should be noted that the zeroed-out patches do not
occupy any storage budget since the SCMs are saved in the COO compressed format.

Kernel size 3×3 5×5

1 layer 66.3±1.8 66.4±1.3
2 layers 65.9±1.3 64.0±0.5
None 66.9±0.7

Table II: Enlargement of the image res-
olution on ImageNette.

Incorporation of Additional Convolutional Layers. We
find a chessboard (blocky) artifact on synthetic images of
high-resolution datasets. To investigate its influence on test
accuracy, we perform multiple experiments on ImageNette
with IPC 1 storage space, adding 1 and 2 convolutional lay-
ers with kernel sizes 3 and 5, as shown in Tab. II. As evident
from the results, the incorporation of additional convolu-
tional layers in our experiments does not yield a significant
improvement in downstream training. However, it does provide slight relief from the chessboard
artifact, as depicted in Fig. IV. The impact of the chessboard artifact on downstream training and the
exploration of parameter-efficient methods to eliminate these artifacts warrant further investigation.

18

Spar. Block-shared Evaluation

SAET SCM # Param ConvNet MLP ResNet18 ViT

- - - 27M 41.2±0.4 15.6±0.2 29.8±0.5 21.1±0.3
- ✓ - 27M 41.3±0.2 15.6±0.3 29.4±0.4 20.6±0.1
- ✓ ✓ 14M 41.2±0.4 15.3±0.1 29.6±0.6 20.9±0.4

✓ - - 549K 40.0±0.6 15.6±0.1 30.3±0.5 20.7±0.4
✓ ✓ - 543K 40.3±0.7 15.6±0.1 29.7±0.7 21.0±0.4
✓ ✓ ✓ 305K 40.0±0.4 15.5±0.2 29.9±0.3 20.7±0.5

Table III: Storage efficiency study. The checkmark ✓ in the Spar. column indicates the use of sparsified
SCMs, while the absence of a mark indicates the use of full-element SCMs. The checkmark ✓ in the
Block-shared SAET/SCM column indicates sharing SAETs/SCMs across different scales of blocks,
while the absence of a mark indicates using block-specific SAETs/SCMs.

IPC 1 10 50
Parameters / Class 3,072 30,720 153,600

IDC [19] - 40 (44.8±0.2) -
HaBa [21] 5 (33.4±0.4) 45 (40.2±0.2) 245 (47.0±0.2)
RTP [22] 16 (34.0±0.4) 232 (42.9±0.7) -
SPEED 11 (40.0±0.4) 62 (45.9±0.3) 100 (49.1±0.2)

Table V: Comparisons on quantity (N/c) and quality (test accuracy) of synthetic images.

Storage Efficiency Study. To investigate the storage efficiency of recurrent blocks that involves
utilizing block-shared SAETs and SCMs, we attempt to allocate specific SAETs and SCMs for
each block, along with setting a uniform value for k in feature sparsification, as studied in Tab. III.
Our results indicate that applying recurrent blocks leads to the highest efficiency. While the block-
specific strategy shows a marginal improvement over the block-shared strategy with or without
feature sparsification, it lacks a significant performance advantage. However, recurrent blocks using
block-shared SAETs and SCMs come with significantly lower storage, saving about 44% parameters
while achieving competitive results. Furthermore, we observe that feature sparsification can enhance
both the overall cross-architecture generalization performance and storage efficiency.

IPC 1 10
Parameters / Class 49,152 491,520

Synthetic images 15 111

Table IV: Number of synthetic images
on ImageNet subsets.

Number of Synthetic Images. The number of our syn-
thetic images on ImageNet subsets is summarized in Tab. IV.
Our method synthesizes 15 images under the IPC 1 budget,
and remarkably, it achieves performance that is competitive
with other methods operating under the IPC 10 budget, i.e.,
10 synthetic images, while utilizing only 10% of the param-
eters. For instance, on ImageNette, our method achieves an
impressive accuracy of 66.9% with IPC 1, surpassing the previous state-of-the-art [37] result of
66.5% achieved with IPC 10. These findings demonstrate the efficiency of our method and the high
quality of the synthetic images it produces.

To further prove the above claim, we conclude the number of synthetic images on CIFAR100,
compared with other parameterization work [19, 21, 22], as shown in Tab. V. As evident, while the
number of our synthetic images is not the highest among all approaches, our outstanding performance
clearly showcases the high quality of the synthetic images. This further emphasizes that our approach
enhances performance by improving both the quality and quantity of the synthetic images. Moreover,
it demonstrates the highly efficient reduction of spatial redundancy achieved by our method.

III Additional Visualizations

We include additional visualizations here. Fig. V-VII show the synthetic datasets for CIFAR10 and
CIFAR100. Higher-resolution datasets are visualized in Fig. VIII-XV. We find that visualizations
of lower-resolution datasets are more human-friendly since they contain less spatial redundancy.
For high-resolution datasets, storage budgets are primarily allocated to salient foreground features,
resulting in a significant reduction of useless patches. Nevertheless, the main texture and rough shape
can still be recognized.

19

Figure V: Synthetic images on CIFAR10.

20

Figure VI: Synthetic images on CIFAR100. (Classes 1-50)

21

Figure VII: Synthetic images on CIFAR100. (Classes 51-100)

22

Figure VIII: Synthetic images on TinyImageNet. (Classes 1-100)

23

Figure IX: Synthetic images on TinyImageNet. (Classes 101-200)

24

Figure X: Synthetic images on ImageNette.

Figure XI: Synthetic images on ImageWoof.

25

Figure XII: Synthetic images on ImageFruit.

Figure XIII: Synthetic images on ImageMeow.

26

Figure XIV: Synthetic images on ImageSquawk.

Figure XV: Synthetic images on ImageYellow.

27

	Introduction
	Method
	Spatial-Agnostic Recurrent Parameterization
	Training Objective and Feature Sparsification

	Experiments
	Comparisons
	Generalization
	Ablation Study

	Related Work
	Conclusion and Limitations
	Experiment Details
	Additional Results and Analyses
	Additional Visualizations

