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Abstract

The current trend of scaling language models involves increasing both parameter
count and training dataset size. Extrapolating this trend suggests that training
dataset size may soon be limited by the amount of text data available on the internet.
Motivated by this limit, we investigate scaling language models in data-constrained
regimes. Specifically, we run a large set of experiments varying the extent of data
repetition and compute budget, ranging up to 900 billion training tokens and 9
billion parameter models. We find that with constrained data for a fixed compute
budget, training with up to 4 epochs of repeated data yields negligible changes to
loss compared to having unique data. However, with more repetition, the value of
adding compute eventually decays to zero. We propose and empirically validate
a scaling law for compute optimality that accounts for the decreasing value of
repeated tokens and excess parameters. Finally, we experiment with approaches
mitigating data scarcity, including augmenting the training dataset with code data
or removing commonly used filters. Models and datasets from our 400 training runs
are freely available at https://github.com/huggingface/datablations.

Figure 1: Return and Allocation when repeating data. (Left): Loss of LLMs (4.2B parameters)
scaled on repeated data decays predictably (§6). (Right): To maximize performance when repeating,
our data-constrained scaling laws and empirical data suggest training smaller models for more epochs
in contrast to what assuming Chinchilla scaling laws [42] hold for repeated data would predict (§5).
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1 Introduction

Recent work on compute-optimal language models [42] shows that many previously trained large
language models (LLMs, which we define as having more than one billion parameters) could have
attained better performance for a given compute budget by training a smaller model on more data.
Notably, the 70-billion parameter Chinchilla model [42] outperforms the 280-billion parameter
Gopher model [89] while using a similar compute budget by being trained on four times more data.
Extrapolating these laws for compute allocation (hereafter "Chinchilla scaling laws") to a 530 billion
parameter model, such as the under-trained MT-NLG model [99], would require training on a massive
11 trillion tokens, corresponding to more than 30 terabytes of text data. For most languages, available
data is several orders of magnitude smaller, meaning that LLMs in those languages are already
data-constrained. Villalobos et al. [112] estimate that even high-quality English language data will be
exhausted by the year 2024 given the Chinchilla scaling laws and the trend of training ever-larger
models. This motivates the question [112, 81]: what should we do when we run out of data?

In this work we investigate scaling large language models in a data-constrained regime, and whether
training an LLM with multiple epochs of repeated data impacts scaling. Using multiple epochs
is, of course, standard in machine learning generally; however, most prior large language models
have been trained for a single epoch [51, 15] and some work explicitly advocates against reusing
data [40]. An exception is the recent Galactica models [108] that were trained for 4.25 epochs and
exhibit continually decreasing validation loss and improving downstream performance throughout
training. However, the experiments of Galactica do not compare this setup to an alternative non-data-
constrained model trained for one epoch on unique data. Without this comparison, it is difficult to
quantify the trade-off between additional compute versus additional data collection.

Our main focus is to quantify the impact of multiple epochs in LLM training such that practitioners
can decide how to allocate compute when scaling models. Toward this end, we assembled a battery
of empirical training runs of varying data and compute constraints. Specifically, we train more
than 400 models ranging from 10 million to 9 billion parameters for up to 1500 epochs and record
final test loss. We use these results to fit a new data-constrained scaling law that generalizes the
Chinchilla scaling law [42] to the repeated data regime and yields a better prediction of loss in
this setting. Figure 1 summarizes our main results targeting the value of repeated data (Return)
and optimal allocation of resources in that regime (Allocation). We find that, while models trained
for a single epoch consistently have the best validation loss per compute, differences tend to be
insignificant among models trained for up to 4 epochs and do not lead to differences in downstream
task performance. Additional epochs continue to be beneficial, but returns eventually diminish to
zero. We find that, in the data-constrained regime, allocating new compute to both more parameters
and epochs is necessary, and that epochs should be scaled slightly faster. These findings suggest a
simple way to continue scaling total training compute budgets further ahead in the future than the
previously anticipated limits.

Finally, given the challenges imposed by data constraints, we consider methods complementary to
repeating for improving downstream accuracy without adding new natural language data. Experiments
consider incorporating code tokens and relaxing data filtering. For code, English LLMs, such as
PaLM [19] or Gopher [89], are trained on a small amount of code data alongside natural language
data, though no benchmarking was reported to justify that decision. We investigate training LLMs
on a mix of language data and Python data at 10 different mixing rates and find that mixing in code
is able to provide a 2⇥ increase in effective tokens even when evaluating only natural language
tasks. For filtering, we revisit perplexity and deduplication filtering strategies on both noisy and clean
datasets and find that data filtering is primarily effective for noisy datasets.

2 Background

Predicting the scaling behavior of large models is critical when deciding on training resources.
Specifically, two questions are of interest: (Allocation) What is the optimal balance of resources?
(Return) What is the expected value of additional resources? For scaling LLMs, the resource is
compute (measured in FLOPs), and it can be allocated to training a larger model or training for more
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steps.1 The metric used to quantify progress is the model’s loss on held-out data, i.e. the ability to
predict the underlying data as measured in the model’s cross-entropy [2, 42]. We aim to minimize the
loss (L) subject to a compute resource constraint (C) via optimal allocation to N and D as:

argmin
N,D

L(N,D) s.t. FLOPs(N,D) = C (1)

Currently, there are established best practices for scaling LLMs. Return follows a power-law: loss
scales as a power-law with the amount of compute used for training [39, 46, 6, 35, 7, 41]. Allocation
is balanced: resources are divided roughly equally between scaling of parameters and data [42]. These
scaling laws were established empirically by training LLMs and carefully extrapolating behavior.

Chinchilla [42] uses three methods for making scaling predictions:

• (Fixed Parameters) Train with a fixed model size but on varying amounts of data.
• (Fixed FLOPs) Train with fixed computation while parameters and training tokens vary.
• (Parametric Fit) Derive and fit a formula for the loss.

For the parametric fit, the loss (L) is a function of parameters (N ) and training tokens (D):

L(N,D) =
A

N↵
+

B

D�
+ E (2)

Where {A,↵, B,�, E} are learned variables fit using the training runs from the first two ap-
proaches [42]. Using these learned variables, they propose calculating the optimal allocation of
compute (C) to N and D as follows:

Nopt(C) = G(C/6)a Dopt(C) = G�1(C/6)b

where G =

✓
↵A

�B

◆ 1
↵+�

a =
�

↵+ �
b =

↵

↵+ �

(3)

These methods lead to the conclusion that ↵ ⇡ � and hence N and D should be scaled proportionally
for compute-optimal training. As loss can be an imperfect proxy for performance on natural language
tasks [123, 97, 105], they also validate their conclusions on various downstream tasks.

3 Method: Data-Constrained Scaling Laws

We are interested in scaling behavior in the data-constrained regime. Specifically, given a limited
amount of unique data, what is the best Allocation of and Return for computational resources. Prior
work [46, 42] assumes that the necessary data to support scaling is unlimited. Our aim is therefore to
introduce a modified version of Equation 2 that accounts for data constraints and fit the terms in the
modified scaling law to data from a large body of experiments.

The primary method we consider is repeating data, i.e. allocating FLOPs to multiple epochs on the
same data. Given a budget of unique data DC , we split the Chinchilla total data term D into two parts:
the number of unique tokens used, UD, and the number of repetitions, RD (i.e. epochs - 1). Given
total training tokens D and data budget DC these terms are simply computed as UD = min{DC , D}
and RD = (D/UD)� 1. When training for a single epoch like done in prior scaling studies, RD = 0.
We are thus interested in minimizing Equation 1 with the additional constraint of a data budget DC :

argmin
N,D

L(N,D) s.t. FLOPs(N,D) = C,UD  DC (4)

Symmetrically, for mathematical convenience, we split the parameter term N into two parts: the
base number of parameters needed to optimally fit the unique tokens UN , and the number of times

1In this work we use [46]’s approximation for the compute cost: FLOPs(N,D) ⇡ 6ND, where N denotes
the number of model parameters and D denotes the number of tokens processed.
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to “repeat” this initial allocation, RN . We compute UN by first rearranging Equation 3 to find the
optimal compute budget for the unique tokens used (UD). We input this value into the Nopt formula
of Equation 3 to get UN = min{Nopt, N}. UN thus corresponds to the compute-optimal number
of parameters for UD or less if N < Nopt. Once we have UN , we compute the repeat value as
RN = (N/UN )� 1.

To empirically explore the scaling behavior in a data-limited setting we train LLMs under these
constraints. We consider three different experimental protocols in this work:

• (Fixed Unique Data) In §5 we fix the data constraint DC and train models varying epochs
and parameters. These experiments target Allocation, specifically tradeoff of D and N .

• (Fixed FLOPs) In §6 we fix the computation available and vary DC (and thus also UD and
UN ). These experiments target Return, i.e. how well does repeating scale compared to
having more unique data.

• (Parametric Fit) We fit a formula introduced in §3.1 on all our training runs and evaluate its
predictive capability throughout §5 and §6.

Before discussing experimental results we describe the parametric assumptions.

3.1 Parametric Fit

To extrapolate scaling curves, it is necessary to incorporate repetition into the Chinchilla formula
(Equation 2). We generalize Equation 2 by replacing D and N with terms corresponding to the
effective data (D0) and effective model parameters (N 0).

L(N,D) =
A

N 0↵ +
B

D0� + E

Intuitively, D0 should be smaller or equal to D where D is the total number of processed tokens since
repeated tokens provide less useful information to the model than new ones. We use an exponential
decay formulation, where the value of a data token processed loses roughly (1� 1/R⇤

D) fraction of
its value per repetition, where R⇤

D is a learned constant. After some derivations and approximations
(see Appendix A), this boils down to

D0 = UD + UDR⇤
D(1� e

�RD
R⇤

D ) . (5)

Note that for RD = 0 (no repetitions), D0 = UD = D. For RD ⌧ R⇤
D, e�RD/R⇤

D ⇡ 1� RD
R⇤

D
and so

D0 ⇡ UD + UDR⇤
D(1� 1 +RD/R⇤

D) = UD(1 +RD) = D

and hence in this case, repeated data is worth almost the same as fresh data. (This is also consistent
with the predictions of the “deep bootstrap” framework [76].) As RD grows, the value of repeated
tokens tends to zero, and the effective data D0 becomes much smaller than D. The formula implies
that no matter how many times we repeat the data, we will not get a better loss than could be obtained
with a single epoch on UD + UDR⇤

D fresh tokens.

Just as processing repeated tokens yields a diminishing return, both intuitively and empirically, models
with sizes that vastly outstrip the available data also offer diminishing returns per parameter. Hence
we use a symmetric formula for the number of effective parameters, where again R⇤

N is learned,

N 0 = UN + UNR⇤
N (1� e

�RN
R⇤

N ) . (6)

The learned constants R⇤
D, R⇤

N roughly correspond to the “half-life” of repeated data and excess
parameters. For example, at RD = R⇤

D, the number of effective tokens D0 is UD +UDRD(1� e�1)
which means that the UDRD repeated tokens are worth on average 1� 1/e fraction of fresh ones.

Using a methodology similar to [42], R⇤
N and R⇤

D can be fit on empirical measurements, which yields
data-driven estimates. See Appendix A for more details on the derivations and the fitting procedure.
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Figure 3: IsoLoss contours for 100 million unique tokens. (Left): 93 models trained with varying
parameters and epochs on a fixed dataset. Contours show an interpolation of results with the same
final test loss. (Right): Comparison with the loss predictions from our proposed scaling laws for
the same budget of 100 million unique tokens and the predicted efficient frontier. The diminishing
returns from training on repeated data can be seen in the increase in distance of the contour curves.

4 Experimental Setup

Figure 2: Dataset setup. We ensure that
runs using less data (more epochs) al-
ways use a subset of the data used in
runs with more data (fewer epochs).

For all experiments, we train transformer language models
with the GPT-2 architecture and tokenizer [88]. Mod-
els have up to 8.7 billion parameters and are trained for
up to 900 billion total tokens. Following [42] we use
cosine learning rate schedules that decay 10⇥ over the
course of training for each model (different schedules led
to different estimates in [46]). Unlike [46], we do not
use early stopping to also explore the extent of overfitting
when repeating. Other hyperparameters are based on prior
work [89, 42] and detailed in Appendix S. Models are
trained on subsets of C4 [90]. The data constraints are
carefully defined to ensure maximal overlap as shown in
Figure 2. Unlike [40], we always repeat the entire avail-
able data rather than subsets of it. Data is shuffled after
each epoch. As repeating data can result in extreme overfitting (see Appendix H), we report loss on
a held-out test set unless otherwise specified (see Appendix K). This contrasts training loss used
in [42], but should not alter our findings as the held-out data stems from the same underlying dataset.

5 Results: Resource Allocation for Data-Constrained Scaling

Our first experimental setting considers scaling in a setting where all models have the same data
constraint. For these experiments, the unique training data budget DC is fixed at either 100M, 400M
or 1.5B tokens. For each data budget, we train a set of language models with increasing amounts of
compute that is allocated to either more parameters or more epochs on the unique training data.

Figure 3 (left) shows the main results for scaling with 100M unique tokens2 (see Appendix C for
400M and 1.5B tokens). For 100M tokens, the corresponding one-epoch compute-optimal model

2Although small, for example, this is the order of magnitude of a realistic data constraint reflecting data
available after filtering the OSCAR dataset [84] for Basque, Punjabi, or Slovenian.
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FLOP budget (C) Parameters (N ) Training tokens (D) Data budget (DC)

9.3⇥ 1020 2.8B 55B { 55, 28, 18, 14, 11, 9, 4, 1.25}B
2.1⇥ 1021 4.2B 84B { 84, 42, 28, 21, 17, 12, 6, 1.9}B
9.3⇥ 1021 8.7B 178B {178, 88, 58, 44, 35, 25, 13, 4}B

Figure 4: Validation Loss for Different Data Constraints (IsoFLOP). Each curve represents the
same number of FLOPs spent on an equal size model. Colors represent different numbers of epochs
due to repeating because of data constraints. Parameters and training tokens are set to match the
single-epoch compute-optimal configurations for the given FLOPs. Models trained on data that is
repeated for multiple epochs have consistently worse loss and diverge if too many epochs are used.

according to scaling laws from [42] has UN of approximately 7M parameters (see Appendix B
for the scaling coefficients we use). Results show that more than a 50% reduction in loss can be
attained by training for several epochs (RD > 0) and increasing model size beyond what would be
compute-optimal for 100M tokens (RN > 0). We find the best loss to be at around 20-60⇥ more
parameters and epochs, which corresponds to spending around 7000⇥ more FLOPs. These results
suggest that one-epoch models significantly under-utilize their training data and more signal can be
extracted by repeating data and adding parameters at the cost of sub-optimal compute utilization.

Figure 3 (right) shows the predicted contours created by fitting our data-constrained scaling laws
on 182 training runs. In the single-epoch case (RD = 0) with near compute-optimal parameters
(RN = 0) our scaling equation (§3.1) reduces to the Chinchilla equation. In this case, both formulas
predict the optimal allocation of compute to parameters and data to be the same, resulting in
overlapping efficient frontiers. As data is repeated for more than a single epoch, our fit predicts
that excess parameters decay faster in value than repeated data (R⇤

N < R⇤
D). As a result, the data-

constrained efficient frontier suggests allocating most additional compute to more epochs rather than
more parameters. This contrasts the Chinchilla scaling laws [42], which suggest equally scaling both.
However, note that they do not repeat the entire training data and their parametric fit explicitly relies
on the assumption that models are trained for a single epoch only. Thus, there is no guarantee that
their scaling predictions hold for repeated data.

For all three data budgets, our results suggest that Allocation is optimized by scaling epochs faster
than additional parameters. We confirm this at scale by training the data-constrained compute-optimal
model for 9.3 ⇥ 1021 FLOPs and 25 billion unique tokens as suggested by our efficient frontier.
Despite having 27% less parameters, this model achieves better loss than the model suggested by the
Chinchilla scaling laws (Figure 1, right). Similarly, the 120 billion parameter Galactica model trained
on repeated data should have been significantly smaller according to data-constrained scaling laws
(Appendix G). An additional benefit of using a smaller model is cheaper inference, though adding
parameters can make it easier to parallelize training across GPUs.
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Figure 5: Empirical and Extrapolated loss with constrained data. (Left): Loss as a function of
repeated tokens for three different training budgets each with fixed number of parameters. Loss
curves predicted by our data-constrained scaling laws are shifted to exactly match the loss at 100%
unique data. Return on FLOPs decays with repeated data in a regular pattern. (Right): Extrapolating
from the proposed data-constrained scaling law shows that at small numbers epochs are benign, but
at large number of epochs loss stops improving.

Adding parameters and epochs causes the loss to decrease and eventually increase again, suggesting
that too much compute can hurt performance. Results from [46] also show that loss can increase
when too many parameters are used, even with early stopping. However, we expect that appropriate
regularization (such as simply removing all excess parameters as an extreme case) could prevent this
behavior. Thus, our formula presented in §3 and its predicted isoLoss contours in Figure 3 do not
model the possibility that excess epochs or parameters could hurt performance.

6 Results: Resource Return for Data-Constrained Scaling

Next, consider the question of Return on scaling. To quantify this value, we run experiments with
three FLOP budgets across eight respective data budgets to compare return on FLOPs.

Figure 4 shows the configurations and validation curves for models trained on the same number of
total tokens. Conforming to intuition and prior work on deduplication [55], repeated data is worth
less, thus models trained on less unique data (and, correspondingly, more epochs) have consistently
higher loss. However, the loss difference for a few epochs is negligible. For example, the N = 8.7
billion parameter model trained for four epochs (DC = 44 billion unique tokens) finishes training
with only 0.5% higher validation loss than the single-epoch model (DC = 178 billion unique tokens).

In Figure 5 (left), we compare the final test loss of each model to predictions from our parametric fit.
The data-constrained scaling laws can accurately measure the decay in the value of repeated data as
seen by the proximity of empirical results (dots) and parametric fit (lines). We note however that it
significantly underestimates the final test loss of failing models where loss increases midway through
training, such as models trained for 44 epochs (not depicted).

In Figure 5 (right), we extrapolate the three budgets by further scaling compute while keeping the
data constraints (DC) at 55B, 84B, and 178B tokens, respectively. The parameter R⇤

D introduced in
§3 represents roughly the “half-life” of epochs: specifically the point where repeated tokens have
lost 1

e of their value. Through our fitting in Appendix A, we found R⇤
D ⇡ 15, corresponding to

15 repetitions (or 16 epochs). Graphically, this can be seen by the stark diminishing returns in the
proximity of the 16-epoch marker and the flattening out soon after.

Overall, the Return when repeating data is relatively good. Meaningful gains from repeating data can
be made up to around 16 epochs (R⇤

D) beyond which returns diminish extremely fast.

7



Repeat Repeat

DATA BUDGETRepeating

Filling with
Code

DATA BUDGET

Repeat Repeat Repeat

Filtering

Deduplicate /
Perplexity-filter

DATA BUDGET CODE DATA

Figure 6: Strategies for data-constrained settings and their downstream performance. (Left):
Schematic showing alternative data use strategies of code filling and filtering. (Right): N = 4.2
billion parameter models trained for a total of D = 84 billion tokens with varying budgets DC . For
repeating and filling with code, five models with different seeds are trained for each dot and the
standard deviation is visualized as the shaded area.

7 Results: Complementary Strategies for Obtaining Additional Data

While repeating data is effective, it has diminishing returns. We therefore consider strategies for
scaling D targeting improved downstream performance as opposed to directly minimizing loss.

Figure 6 (left) illustrates the strategies: (a) Code augmentation: We use Python code from The
Stack [49] to make up for missing natural language data. The combined dataset consisting of code
and natural language samples is shuffled randomly. (b) Adapting filtering: We investigate the
performance impact of deduplication and perplexity filtering, two common filtering steps that can
severely limit available data. Removing such filtering steps can free up additional training data.

For these experiments, we set a maximum data budget (DC) of 84 billion tokens. For repetition and
code filling, only a subset of DC is available and the rest needs to be compensated for via repeating
or adding code. For both filtering methods, we start out with approximately twice the budget (178
billion tokens), as it is easier to gather noisy data and filter it than it is to gather clean data for training.
For perplexity filtering, we select the top 25% samples with the lowest perplexity according to a
language model trained on Wikipedia. This results in 44 billion tokens that are repeated for close
to two epochs to reach the full data budget. For deduplication filtering, all samples with a 100-char
overlap are removed resulting in 21 billion tokens that are repeated for four epochs during training.
See Appendix N for more details on the filtering procedures.

When comparing across data strategies, loss ceases to be a good evaluation metric as the models are
trained on different data distributions. We thus evaluate models on 19 natural language tasks with zero
to five in-context few-shot exemplars [15] producing 114 scores per model. As our evaluation tasks
cover different metrics and random baselines, we re-scale all scores to be in the same range to better
reflect performance ranges before averaging. Details on the evaluation datasets are in Appendix K.

In Figure 6 (right) we compare the downstream performance of all strategies. For repeating data,
differences in downstream performance are insignificant for up to around 4 epochs (25% budget) and
then start dropping, which aligns with our results on test loss in §6. Filling up to 50% of data with
code (42 billion tokens) also shows no deterioration. Beyond that, performance decreases quickly
on natural language tasks. However, adding more code data may benefit non-natural language tasks,
which are not considered in the benchmarking. Two of the tasks benchmarked, WebNLG [17, 34], a
generation task, and bAbI [122, 57], a reasoning task, see jumps in performance as soon as code is
added, possibly due to code enabling models to learn long-range state-tracking capabilities beneficial
for these tasks.

Of the filtering approaches, we find perplexity-filtering to be effective, while deduplication does
not help. Prior work found deduplication was able to improve perplexity [55]; however, it did not
evaluate on downstream tasks. Deduplication may have value not captured in our benchmark, such as
reducing memorization [45, 40, 16, 10]. We also investigate filtering on a different noisier dataset
in Appendix O, where we find it to be more effective. Overall, in a data-constrained regime, we
recommend reserving filtering for noisy datasets and using both code augmentation and repeating to
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increase data tokens. For example, first doubling the available data by adding code and then repeating
the new dataset for four epochs results in 8⇥ more training tokens that are expected to be just as good
as having had 8⇥ more unique data from the start.

8 Related Work

Large language models Scaling up transformer language models [111] across parameter count
and training data has been shown to result in continuous performance gains [19]. Starting with
the 1.4 billion parameter GPT-2 model [88], a variety of scaled-up language models have been
trained, commonly referred to as large language models (LLMs). They can be grouped into dense
models [15, 47, 58, 89, 20, 13, 132, 109, 103, 108, 130, 95, 56, 65] and sparse models [30, 131,
28, 135] depending on whether each forward pass makes use of all parameters. These models are
generally pre-trained to predict the next token in a sequence, which makes them applicable to various
language tasks directly after pre-training [15, 118, 50, 71, 102] by reformulating said NLP tasks
as context continuation tasks (see [67] for an earlier proposal on this topic). We focus on the most
common scenario, where a dense transformer model is trained to do next-token prediction on a large
corpus and evaluated directly after pre-training using held-out loss or zero- to few-shot prompting.

Scaling laws Prior work has estimated an optimal allocation of compute for the training of LLMs.
Kaplan et al. [46] suggested a 10⇥ increase in compute should be allocated to a 5.5⇥ increase in
model size and a 1.8⇥ increase in training tokens. This first scaling law has led to the creation
of very large models trained on relatively little data, such as the 530 billion parameter MT-NLG
model trained on 270 billion tokens [99]. More recent work [42], however, showed that model size
and training data should rather be scaled in equal proportions. These findings called for a renewed
focus on the scaling of pre-training data rather than scaling model size via complex parallelization
strategies [98, 91, 9, 78]. Up-sampling is often employed when pre-training data is partly limited, such
as data from a high-quality domain like Wikipedia or text in a rare language for training multilingual
LLMs [60, 82]. Hernandez et al. [40] study up-sampling of data subsets and find that repeating only
0.1% of training data 100 times significantly degrades performance. In contrast, our work focuses on
repeating the entire pre-training corpus for multiple epochs rather than up-sampling parts of it.

Alternative data strategies Large pre-training datasets are commonly filtered to remove undesired
samples or reduce noise [101]. Perplexity-based filtering, whereby a trained model is used to filter out
samples with high perplexity, has been found beneficial to reduce noise in web-crawled datasets [121].
Mixing of data is employed for the pre-training data of multilingual LLMs, where text data from
different languages is combined [23, 126, 100, 74]. However, both for code and natural language
models, mixing different (programming) languages has been reported to under-perform monolingual
models [80, 113]. Some work has investigated mixing code and natural language data for prediction
tasks, such as summarizing code snippets [44] or predicting function names [4]. Several pre-training
datasets for LLMs include low amounts of code data [31, 89, 95]. However, these past works generally
do not provide any ablation on the drawbacks of including code or the benefits for natural language
task performance. We perform a detailed benchmarking of mixing Python and natural language in
LLM pre-training at 10 different mixing rates.

9 Conclusion

This work studies data-constrained scaling, focusing on the optimal use of computational resources
when unique data is limited. We propose an extension to the Chinchilla scaling laws that takes into
account the decay in value of repeated data, and we fit this function using a large set of controlled
experiments. We find that despite recommendations of earlier work, training large language models
for multiple epochs by repeating data is beneficial and that scaling laws continue to hold in the
multi-epoch regime, albeit with diminishing returns. We also consider complementary approaches to
continue scaling models, and find that code gives the ability to scale an additional 2⇥. We believe that
our findings will enable further scaling of language models to unlock new capabilities with current
data. However, our work also indicates that there are limits on the scaling horizon. In addition to
collecting additional data, researchers should explore using current data in a more effective manner.

9



Acknowledgments and Disclosure of Funding

This work was co-funded by the European Union under grant agreement No 101070350. The authors
wish to acknowledge CSC – IT Center for Science, Finland, for generous computational resources on
the LUMI supercomputer.3 We are thankful for the immense support from teams at LUMI and AMD,
especially Samuel Antao. Hugging Face provided storage and additional compute instances. This
work was supported by a Simons Investigator Fellowship, NSF grant DMS-2134157, DARPA grant
W911NF2010021, and DOE grant DE-SC0022199. We are grateful to Harm de Vries, Woojeong
Kim, Mengzhou Xia and the EleutherAI community for exceptional feedback. We thank Loubna Ben
Allal for help with the Python data and Big Code members for insightful discussions on scaling laws.
We thank Thomas Wang, Helen Ngo and TurkuNLP members for support on early experiments.

References
[1] Armen Aghajanyan, Lili Yu, Alexis Conneau, Wei-Ning Hsu, Karen Hambardzumyan, Susan

Zhang, Stephen Roller, Naman Goyal, Omer Levy, and Luke Zettlemoyer. 2023. Scaling Laws
for Generative Mixed-Modal Language Models. arXiv preprint arXiv:2301.03728.

[2] Ibrahim M Alabdulmohsin, Behnam Neyshabur, and Xiaohua Zhai. 2022. Revisiting neural
scaling laws in language and vision. Advances in Neural Information Processing Systems,
35:22300–22312.

[3] Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Car-
los Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, et al. 2023.
SantaCoder: don’t reach for the stars! arXiv preprint arXiv:2301.03988.

[4] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2015. Suggesting accurate
method and class names. In Proceedings of the 2015 10th joint meeting on foundations of
software engineering, pages 38–49.

[5] Stephen H. Bach, Victor Sanh, Zheng-Xin Yong, Albert Webson, Colin Raffel, Nihal V.
Nayak, Abheesht Sharma, Taewoon Kim, M Saiful Bari, Thibault Fevry, Zaid Alyafeai, Manan
Dey, Andrea Santilli, Zhiqing Sun, Srulik Ben-David, Canwen Xu, Gunjan Chhablani, Han
Wang, Jason Alan Fries, Maged S. Al-shaibani, Shanya Sharma, Urmish Thakker, Khalid
Almubarak, Xiangru Tang, Xiangru Tang, Mike Tian-Jian Jiang, and Alexander M. Rush.
2022. PromptSource: An Integrated Development Environment and Repository for Natural
Language Prompts.

[6] Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. 2021. Explain-
ing neural scaling laws. arXiv preprint arXiv:2102.06701.

[7] Yamini Bansal, Behrooz Ghorbani, Ankush Garg, Biao Zhang, Colin Cherry, Behnam
Neyshabur, and Orhan Firat. 2022. Data scaling laws in NMT: The effect of noise and
architecture. In International Conference on Machine Learning, pages 1466–1482. PMLR.

[8] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. 2021.
On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? In Proceedings of
the 2021 ACM Conference on Fairness, Accountability, and Transparency, pages 610–623.

[9] Zhengda Bian, Hongxin Liu, Boxiang Wang, Haichen Huang, Yongbin Li, Chuanrui Wang,
Fan Cui, and Yang You. 2021. Colossal-AI: A unified deep learning system for large-scale
parallel training. arXiv preprint arXiv:2110.14883.

[10] Stella Biderman, USVSN Sai Prashanth, Lintang Sutawika, Hailey Schoelkopf, Quentin
Anthony, Shivanshu Purohit, and Edward Raf. 2023. Emergent and Predictable Memorization
in Large Language Models. arXiv preprint arXiv:2304.11158.

[11] Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff,
et al. 2023. Pythia: A suite for analyzing large language models across training and scaling.
arXiv preprint arXiv:2304.01373.

3https://www.lumi-supercomputer.eu/

10

http://arxiv.org/abs/2202.01279
http://arxiv.org/abs/2202.01279
https://www.lumi-supercomputer.eu/


[12] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. 2020. PIQA: Rea-
soning about Physical Commonsense in Natural Language. In Thirty-Fourth AAAI Conference
on Artificial Intelligence.

[13] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding,
Horace He, Connor Leahy, Kyle McDonell, Jason Phang, et al. 2022. GPT-NeoX-20B: An
Open-Source Autoregressive Language Model. arXiv preprint arXiv:2204.06745.

[14] Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. 2021. GPT-Neo: Large
scale autoregressive language modeling with mesh-tensorflow. If you use this software, please
cite it using these metadata, 58.

[15] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language
models are few-shot learners. Advances in neural information processing systems, 33:1877–
1901.

[16] Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and
Chiyuan Zhang. 2022. Quantifying memorization across neural language models. arXiv
preprint arXiv:2202.07646.

[17] Thiago Castro Ferreira, Claire Gardent, Nikolai Ilinykh, Chris van der Lee, Simon Mille, Diego
Moussallem, and Anastasia Shimorina. 2020. The 2020 Bilingual, Bi-Directional WebNLG+
Shared Task Overview and Evaluation Results (WebNLG+ 2020). In Proceedings of the 3rd
WebNLG Workshop on Natural Language Generation from the Semantic Web (WebNLG+
2020), pages 55–76, Dublin, Ireland (Virtual). Association for Computational Linguistics.

[18] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya
Sutskever. 2020. Generative pretraining from pixels. In International conference on machine
learning, pages 1691–1703. PMLR.

[19] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. 2022.
Palm: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311.

[20] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav
Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov,
Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling Instruction-Finetuned Language Models. arXiv preprint arXiv:2210.11416.

[21] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. 2019. BoolQ: Exploring the Surprising Difficulty of Natural Yes/No
Questions. In NAACL.

[22] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. 2018. Think you have Solved Question Answering? Try ARC, the AI2
Reasoning Challenge. arXiv:1803.05457v1.

[23] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wen-
zek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoy-
anov. 2019. Unsupervised Cross-lingual Representation Learning at Scale. arXiv preprint
arXiv:1911.02116.

[24] Ido Dagan, Oren Glickman, and Bernardo Magnini. 2006. The pascal recognising textual
entailment challenge. In Machine Learning Challenges. Evaluating Predictive Uncertainty,
Visual Object Classification, and Recognising Tectual Entailment: First PASCAL Machine
Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005, Revised
Selected Papers, pages 177–190. Springer.

[25] Marie-Catherine De Marneffe, Mandy Simons, and Judith Tonhauser. 2019. The commitment-
bank: Investigating projection in naturally occurring discourse. In proceedings of Sinn und
Bedeutung, volume 23, pages 107–124.

11

https://arxiv.org/abs/2210.11416


[26] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin
Gilmer, Andreas Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. 2023.
Scaling vision transformers to 22 billion parameters. arXiv preprint arXiv:2302.05442.

[27] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. 2018.
Universal transformers. arXiv preprint arXiv:1807.03819.

[28] Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu,
Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. 2022. Glam: Efficient
scaling of language models with mixture-of-experts. In International Conference on Machine
Learning, pages 5547–5569. PMLR.
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