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A Useful Lemmas

A.1 Remarks on Assumption 1

Here we show that the assumption on the functional class of f is satisfied if f is linear and injective,
whenever the support of PU has non-empty interior. Recall Assumption 1.
Assumption 1. Let U be a p-dimensional random vector. Following [3], we assume that the interior
of the support of PU is a non-empty subset of Rp, and that f is a full row rank polynomial.7

Denote the support of PU ,PX as U,X respectively. Let U� be the interior of U.
Lemma 2. Suppose U� is a non-empty subset of Rp. If f : U ! X is linear and injective, then it
must be a full row rank polynomial.

Proof. Since f is linear, it can be written as f(U) = UH + h for some H 2 Rp⇥n and h 2 Rp.
If H is not of full row rank, then there exists a non-zero vector V 2 Rp such that V H = 0. Let
U 2 U�, then there exists ✏ > 0 such that U+✏V 2 U. We have f(U+✏V ) = f(U), which violates
f being injective. Therefore H must have full row rank.

A.2 Proof of Lemma 1

The proof of Lemma 1 follows from [3]. For completeness, we present a concise proof here. Then
we state a few remarks. Recall Lemma 1.
Lemma 1. Under Assumption 1, we can identify the dimension p of U as well as its linear transfor-
mation U⇤ + b for some non-singular matrix ⇤ and vector b. In fact, with observational data, we
can only identify U up to such linear transformations.

Proof. We solve for the smallest integer p̂ such that there exists a full row rank polynomial f̂ : Rp̂
!

Rn where Û := f̂
�1(X) for X 2 X has non-empty support Û�

✓ Rp̂. In other words, denote all
pairs of PU , f that satisfy Assumption 1 as Fp, we solve for

min(PÛ ,f̂)2Fp̂
p̂ subject to Pf̂(Û) = PX . (4)

Note that f̂(Û) = X = f(U) for all U 2 U. Since f̂ , f are full row rank polynomials, there exist
full row rank matrices Ĥ 2 R(p+...+pd̂)⇥n

, H 2 R(p+...+pd)⇥n and vectors ĥ, h 2 Rn such that

(Û , ⌦̄Û
2
, ..., ⌦̄Û

d)Ĥ + ĥ = f̂(Û) = X = f(U) = (U, ⌦̄U
2
, ..., ⌦̄U

d)H + h. (5)

Since Ĥ,H are of full rank, they have pseudo-inverses Ĥ
†
, H

† such that ĤĤ
† = Ip+...+pd̂ and

HH
† = Ip+...+pd . Multiplying Ĥ

† to Eq. (5), we have

(Û , ⌦̄Û
2
, ..., ⌦̄Û

d) = (U, ⌦̄U
2
, ..., ⌦̄U

d)HĤ
† + (h� ĥ)Ĥ†

.

Therefore Û can be written as a polynomial of U , i.e., Û = poly1(U). Similarly, we have U =
poly2(Û). Therefore U = poly2(poly1(U)) for all U 2 U. Since U� is non-empty, we know that
U = poly2(poly1(U)) on some open set. By the fundamental theorem of algebra [14], we know
that poly1 and poly2 must have degree 1. Thus Û = U⇤ + b for some full row rank matrix ⇤ and
vector b. Since ⇤ 2 Rp⇥p̂ is of full row rank, it indicates that p  p̂. Since PU , f 2 Fp satisfy
Pf(U) = PX , by Eq. (4), we must have p̂  p. Thus p̂ = p and Û = U⇤+ b for some non-singular
matrix ⇤ and vector b.

This proof also shows that we can only identify U up to such linear transformations with observa-
tional data. Since for any non-singular matrix ⇤ and vector b, let f̂(Û) = f((Û � b)⇤�1). We have
PÛ , f̂ satisfy Assumption 1 and they generate the same observational data.

7There exists some integer d, a full row rank H 2 R(p+...+pd)⇥n and a vector h 2 Rn such that f(U) =
(U, ⌦̄U

2
, ..., ⌦̄U

d)H+h, where ⌦̄U
k denotes the size-pk vector with degree-k polynomials of U as its entries.
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Remark 1. With observational data X = f(U) 2 D, we can identify Û = ĝ(X) such that Û =
U⇤ + b for non-singular ⇤. Then for any interventional data X = f(U) 2 D

I , the analytic
continuation of ĝ to D

I satisfies Û := ĝ(X) = U⇤+ b for all X 2 D
I .

Proof. The proof follows immediately by writing ĝ, f
�1 as polynomial functions.

Next, we discuss identifiability of the underlying DAG G. First, we give an example showing that
any causal DAG can explain the observational data.
Example 4. Suppose the ground-truth DAG is an empty graph G = ?. With observational data
alone, any DAG can explain the data.

Proof. Let Ĝ be an arbitrary DAG with topological order ⌧(1), ..., ⌧(p), i.e., ⌧(j) 2 pa
Ĝ
(⌧(i)) only

if j < i. Let ⇤ be the permutation matrix such that Û = U⇤ satisfies Û⌧(i) = Ui for any i 2 [p].
Then Û factorizes as P(Û) = P(U) =

Qp
i=1 P(Ui) =

Qp
i=1 P(Û⌧(i)). This implies Û⌧(i)?? Û⌧(j)

for j  i � 1. Therefore P(Û⌧(i)) = P(Û⌧(i) | ÛpaĜ(i)
) and P(Û) =

Qp
i=1 P(Û⌧(i) | ÛpaĜ(i)

)

factorizes with respect to Ĝ. Thus Ĝ can explain the data.

Therefore with observational data alone, we cannot identify the underlying DAG G up to any nontriv-
ial equivalence class. In [3], it was shown that with a do intervention8 per latent node and assuming
the interior of the support of the non-targeted variables is non-empty, one can identify U up to a finer
class of linear transformations. Namely, one can identify U up to CD-equivalence (permutation and
element-wise affine transformation); see Definition 1. Then, assuming for example faithfulness and
influentiality [57], one can identify G.

While several extensions beyond do-interventions are discussed in [3], they all involve manipulat-
ing the support of the intervention targets. In the case where the support of the intervention targets
remains unchanged (e.g., additive Gaussian SCMs with shift interventions), a completely new ap-
proach and theory needs to be developed.

B Proof of Identifiability with Soft Interventions

In this section, we provide the proofs for the results in Section 4. While our main focus is on
general types of soft interventions, our results also apply to hard interventions which include do-
interventions as a special case.

Notation. We let ei denote the indicator vector with the i-th entry equal to one and all other entries
equal to zero. To be consistent with other notation in the paper, let ei 2 Rp be a row vector. We call
j 2 chG(i) a maximal child of i if pa

G
(j) \ deG(i) = ?. Denote the set of all maximal children of

i as mchG(i). For node i, define deG(i) := deG(i) [ {i}. Given a DAG G, we denote the transitive
closure of G by T S(G), i.e., i ! j 2 T S(G) if and only if there is a directed path from i to j in G.

B.1 Faithfulness Assumptions

We start by discussing previous interventional faithfulness assumptions. Prior interventional faith-
fulness assumptions [57, 66, 24] vary by a few technicalities; but they all assume that all causal
variables are observed (causal sufficiency), and, more importantly, that intervening on a node will
always change the marginal of its descendants. In particular, [57] (Definition 2, called “influential-
ity”) only made this assumption and showed that the causal graph is identifiable up to its transitive
closure by detecting marginal changes. [57] showed that their algorithm consistently identifies the
full causal graph by assuming additionally that intervening on a node changes the conditional distri-
bution of its direct children giving its neighbors (details can be found in Assumption 4.5 of [66]). A
similar notion was also introduced in [24] where they made further assumptions regarding changes
in the conditional distributions.

8Do interventions are a special type of hard interventions where the intervention target collapses to one
specific value.
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We now show our linear interventional faithfulness (Assumption 2) is satisfied by a large class of
nonlinear SCMs and soft interventions. Recall Assumption 2.
Assumption 2. Intervention I with target i satisfies linear interventional faithfulness if for every
j 2 {i} [ chG(i) such that pa

G
(j) \ deG(i) = ?, it holds that P(Uj + USC

>) 6= PI(Uj + USC
>)

for all constant vectors C 2 R|S|, where S = [p] \ ({j} [ deG(i)).

In Example 2, we discussed a 2-node graph where Assumption 2 is satisfied. This example can be
extended in the following way, which subsumes the case in Example 3.
Example 5. Consider an SCM with additive noise, where each mechanism P(Uk | UpaG(k)) is
specified by Uk = sk(UpaG(k))+✏k, where ✏k for k 2 [p] are independent exogenous noise variables.
Assumption 2 is satisfied if I only changes the variance of ✏i and sj is a quadratic function with non-
zero coefficient of U2

i for each j 2 mchG(i).

Proof. If j = i in Assumption 2, then S = [p] \ deG(i) � pa
G
(i). Since US??✏i, we have

Var(Ui + USC
>) = Var(✏i) + Var(si(UpaG(i)) + USC

>).

Note that PI does not change the joint distribution of US , and therefore

VarP(si(UpaG(i)) + USC
>) = VarPI (si(UpaG(i)) + USC

>).

By VarP(✏i) 6= VarPI (✏i), we then know thatVarP(Ui + USC
>) 6= VarPI (Ui + USC

>). Thus
P(Ui + USC

>) 6= PI(Ui + USC
>).

If j 6= i in Assumption 2, then by linearity of expectation E(Uj + USC
>) = E(Uj) + E(US)C>.

Note that S = [p] \ ({j} [ deG(i)) = [p] \ deG(i), and therefore EP(US) = EPI (US). Next
we show that EP(Uj) 6= EPI (Uj). Once this is proven, then we have that EP(Uj + USC

>) 6=
EPI (Uj + USC

>), which concludes the proof for P(Uj + USC
>) 6= PI(Uj + USC

>).

Since sj is a quadratic function of Ui, suppose the coefficient of U2
i in sj is � 6= 0. Then

E(Uj)� E(✏j) = E(Uj � ✏j)

= E
�
sj,0(UpaG(j)\{i}) + sj,1(UpaG(j)\{i}) · Ui + �U

2
i

�

= E
�
sj,0(UpaG(j)\{i}) + s

0

j,1(UpaG(j)\{i}, UpaG(i)) · ✏i + �✏
2
i

�

= E
�
sj,0(UpaG(j)\{i})

�
+ E

�
s
0

j,1(UpaG(j)\{i}, UpaG(i)) · ✏i
�
+ �E(✏2i ),

(6)

for some functions sj,0, sj,1 and s
0

j,1. Since pa
G
(j)\ deG(i) = ?, we know that PI will not change

the joint distribution of UpaG(j)\{i} and that ✏i??UpaG(j)\{i}, UpaG(i). Therefore we have

EP
�
sj,0(UpaG(j)\{i})

�
= EPI

�
sj,0(UpaG(j)\{i})

�
,

EP
�
s
0

j,1(UpaG(j)\{i}, UpaG(i)) · ✏i
�
= EP

�
s
0

j,1(UpaG(j)\{i}, UpaG(i))
�
· EP(✏i)

= EPI

�
s
0

j,1(UpaG(j)\{i}, UpaG(i))
�
· EPI (✏i)

= EPI

�
s
0

j,1(UpaG(j)\{i}, UpaG(i)) · ✏i
�
.

By EP(✏j) = EPI (✏j), EP(✏2i ) 6= EPI (✏2i ) and Eq. (6), we have EP(Uj) 6= EPI (Uj), which concludes
the proof.

This example shows how we may check P(Uj+USC
>) 6= PI(Uj+USC

>) by examining the mean
and variance of Uj + USC

>. In general, this can be extended to checking any finite moments of
Uj + USC

> as stated in the following lemma.
Lemma 3. Assumption 2 is satisfied if for each i 2 [p] one of the following conditions holds:

(1) if EP(Ui | UpaG(i)) = EPI (Ui | UpaG(i)), then there exits an integer m > 1 such that

EP(U
m
i | UpaG(i)) 6= EPI (Um

i | UpaG(i)),

and the smallest m that satisfies this also satisfies EP(Um
i ) 6= EPI (Um

i ). In addition, for
all j 2 mchG(i), it holds that EP(Uj) 6= EPI (Uj);
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(2) if EP(Ui) 6= EPI (Ui), then for all j 2 mchG(i), there exists an integer m > 1 such that
EP((Uj + cjUi)

m
| US\{i}) 6= EPI ((Uj + cjUi)

m
| US\{i}),

where S is as defined in Assumption 2, and the smallest m that satisfies this also satisfies
EP((Uj + cjUi)m) 6= EPI ((Uj + cjUi)m), where

cj = �
(EP(Uj)� EPI (Uj))

(EP(Ui)� EPI (Ui))
.

Proof. Suppose (1) holds true. If j = i in Assumption 2, then P(US) = PI(US) for S = [p]\deG(i),
and

EP
�
(Ui + USC

>)m
�

= EP(U
m
i ) +

m�1X

l=0

✓
m

l

◆
EP
�
U

l
i (USC

>)m�l
�

= EP(U
m
i ) +

m�1X

l=0

✓
m

l

◆
EP
⇣
EP(U

l
i |US) · (USC

>)m�l
⌘

(law of total expectation)

= EP(U
m
i ) +

m�1X

l=0

✓
m

l

◆
EP
⇣
EP(U

l
i |UpaG(i)) · (USC

>)m�l
⌘

(since Ui??US\paG(i) | UpaG(i))

6= EPI (Um
i ) +

m�1X

l=0

✓
m

l

◆
EP
⇣
EPI (U l

i |UpaG(i)) · (USC
>)m�l

⌘

= EPI (Um
i ) +

m�1X

l=0

✓
m

l

◆
EPI

⇣
EPI (U l

i |UpaG(i)) · (USC
>)m�l

⌘
= EPI

�
(Ui + USC

>)m
�
,

where the inequality is because of EP(Um
i ) 6= EPI (Um

i ) and EP(U l
i |UpaG(i)) = EPI (U l

i |UpaG(i))

for any l < m. Therefore P(Ui + USC
>) 6= PI(Ui + USC

>).

If j 6= i in Assumption 2, then EP(Uj) 6= EPI (Uj) implies EP(Uj + USC
>) 6= EPI (Uj + USC

>),
which proves that P(Uj + USC

>) 6= PI(Uj + USC
>).

Suppose (2) holds true. If j = i in Assumption 2, then EP(Ui) 6= EPI (Ui) implies EP(Ui +
USC

>) 6= EPI (Ui + USC
>), which proves that P(Ui + USC

>) 6= PI(Ui + USC
>).

If j 6= i in Assumption 2, then for C 2 R|S|, if the coordinate for Ui is not cj , then
EP(Ui + USC

>) = EP(Ui) + EP(US)C>
6= EPI (Ui) + EPI (US)C> = EPI (Ui + USC

>), since
EP(US\{i}) = EPI (US\{i}). If the coordinate for Ui in C is cj , denote USC

> = US\{i}C
>

�j+cjUi,
and then similar to above we obtain

EP
�
(Uj + USC

>)m
�

= EP
�
(Uj + cjUi + US\{i}C

>

�j)
m
�

= EP
�
(Ui + cjUi)

m
�
+

m�1X

l=0

✓
m

l

◆
EP
�
(Ui + cjUi)

l(US\{i}C
>

�j)
m�l

�

= EP
�
(Ui + cjUi)

m
�
+

m�1X

l=0

✓
m

l

◆
EP
⇣
EP
�
(Ui + cjUi)

l
|US\{i}

�
· (US\{i}C

>

�j)
m�l

⌘

6= EPI

�
(Ui + cjUi)

m
�
+

m�1X

l=0

✓
m

l

◆
EP
⇣
EPI

�
(Ui + cjUi)

l
|US\{i}

�
· (US\{i}C

>

�j)
m�l

⌘

= EPI

�
(Ui + cjUi)

m
�
+

m�1X

l=0

✓
m

l

◆
EPI

⇣
EPI

�
(Ui + cjUi)

l
|US\{i}

�
· (US\{i}C

>

�j)
m�l

⌘

= EPI

�
(Uj + USC

>)m
�
.

Thus P(Uj + USC
>) 6= PI(Uj + USC

>), which completes the proof.

19



This lemma gives a sufficient condition for Assumption 2 to hold. Since it involves only finite
moments of the variables, one can easily check if this is satisfied for a given SCM associated with
soft interventions. Note that Example 5 satisfies the first condition of Lemma 3 for m = 2.

Next we show that Assumption 3 is satisfied on a tree graph if Assumption 2 holds, under mild
regularity conditions such as that the interventional support lies within the observational support.
Recall Assumption 3.
Assumption 3. For every edge i ! j 2 G, there do not exist constants cj , ck 2 R for k 2 S such
that Ui??Uj + cjUi | {Ul}l2paG(j)\(S[{i}), {Uk + ckUi}k2S , where S = pa

G
(j) \ deG(i).

Lemma 4. Suppose G is a polytree and Assumption 2 holds for an intervention I targeting node i.
Then for any edge i ! j 2 G, Assumption 3 holds if 9

P(Ui = u | UpaG(j)\{i}) = 0 ) PI(Ui = u | UpaG(j)\{i}) = 0, (7)

for almost every u and all realizations of UpaG(j)\{i}.

Proof. Suppose G is a tree graph and Assumption 2 holds for I targeting i. For any edge i ! j 2 G,
since there is only one undirected path between i and j, we have S = pa

G
(j) \ deG(i) = ?.

Therefore we only need to show that Ui and Uj + cjUi are not conditionally independent given
UpaG(j)\{i} for any cj 2 R.

The regularity condition in Eq. (7) ensures that
Z

P(Ui=r|UpaG(j)\{i}) 6=0
PI(Ui = r | UpaG(j)\{i})dr = 1, (8)

for any realization of UpaG(j)\{i}.

Suppose Ui and Uj + cjUi are conditionally independent given UpaG(j)\{i}. Then for any l 2 R and
realization of UpaG(j)\{i}, Ui (denote the realization of Ui as r),

P(Uj + cjUi = l | UpaG(j)\{i}) = P(Uj + cjUi = l | Ui = r, UpaG(j)\{i})

= P(Uj = l � cjr | Ui = r, UpaG(j)\{i}).

Since this is true for any r with P(Ui = r | UpaG(j)\{i}) 6= 0, by Eq. (8), we have

P(Uj + cjUi = l | UpaG(j)\{i})

=

Z

P(Ui=r|UpaG(j)\{i}) 6=0
P(Uj + cjUi = l | UpaG(j)\{i}) · PI(Ui = r | UpaG(j)\{i})dr

=

Z

P(Ui=r|UpaG(j)\{i}) 6=0
P(Uj = l � cjr | Ui = r, UpaG(j)\{i}) · PI(Ui = r | UpaG(j)\{i})dr.

Note that P(Uj | Ui, UpaG(j)\{i}) = PI(Uj | Ui, UpaG(j)\{i}) since I targets i, and we therefore
have

P(Uj + cjUi = l | UpaG(j)\{i})

=

Z

P(Ui=r|UpaG(j)\{i}) 6=0
PI(Uj = l � cjr | Ui = r, UpaG(j)\{i}) · PI(Ui = r | UpaG(j)\{i})dr

=

Z

P(Ui=r|UpaG(j)\{i}) 6=0
PI(Uj = l � cjr, Ui = r | UpaG(j)\{i})dr

=

Z

PI(Ui=r|UpaG(j)\{i}) 6=0
PI(Uj = l � cjr, Ui = r | UpaG(j)\{i})dr

= PI(Uj + cjUi = l | UpaG(j)\{i}),

where the second-to-last equality uses the regularity condition in Eq. (7).
9For simplicity, we assume U is continuous and treat P as the density. For discrete U , the proofs extend by

replacing
R

with
P

.

20



Since pa
G
(j) \ deG(i) = ?, it holds that P(UpaG(j)\{i}) = PI(UpaG(j)\{i}), and thus P(Uj +

cjUi) = PI(Uj+cjUi), which is a contradiction to linear interventional faithfulness of I . Therefore,
we must have that Ui and Uj + cjUi are not conditionally independent given UpaG(j)\{i}, which
completes the proof.

Essentially, Assumption 2 guarantees influentiality and Assumption 3 guarantees adjacency faith-
fulness. These assumptions differ from existing faithfulness conditions (c.f., [57, 58, 67]) due to the
fact that we can only observe a linear mixing of the causal variables.

B.2 Summary of representations

In the remainder of this appendix, we will develop a series of representations which are increasingly
related to the underlying representation U . These representations are summarized in Table 1.

Symbol Definition Section
U Section 2
X X = U⇤+ b, ⇤ 2 Rp⇥p, b 2 Rp Section 2
Ũ Ũ = U �̃+ c̃, �̃ = ⇤⇧, c̃ = b⇧ for ⇧ 2 Rp⇥p Appendix B.3.1
Û Û = U �̂+ ĉ, �̂ = �̃R̂, ĉ = c̃R̂ for R̂ 2 Rp⇥p upp. tri. Appendix B.3.2
Ū Ū = U �̄+ c̄, �̄ = �̂R̄, c̄ = ĉR̄ for R̄ 2 Rp⇥p upp. tri. Appendix B.4

Table 1: Representations of U that are used in this appendix. Note that, under Assumption 1, we
can assume X = U⇤+ b without loss of generality, by Lemma 1 and Remark 1.

B.3 Proof of Theorem 1

In the main text (Section 4.2), we laid out an illustrative procedure to identify the transitive closure
of G when we consider a simpler setting with K = p. This process relies on iteratively finding
source nodes of G. In the generalized setting with K � p, the proof works in the reversed way,
where we iteratively identify the sink nodes10 of G.

In Section B.3.1, we introduce the concept of a topological representation: a representation Ũ of
the data for which marginal distributions change in a way consistent with an assignment ⇢1, . . . , ⇢p
of intervention targets. In Lemma 5, we show that under Assumptions 1 and 2, a topological rep-
resentation is guaranteed to exist. In Lemma 6, we show that any topological representation is also
topologically consistent in a natural way with the underlying representation U .

In Section B.3.2, we consider transforming a topological representation Ũ into a different topologi-
cal representation Û . For any such representation Û = Ũ R̂

0, we define an associated graph Ĝ
R̂0

. In
Lemma 7, we show that picking R̂ so that ĜR̂0

has the fewest edges will yield that ĜR̂ = T S(G⌧ ).

Together, these results are used to prove Theorem 1: that we can identify G up to transitive closure.

B.3.1 Topologically ordered representations

We begin by introducing the concept of a topological representation.

Definition 2. Suppose X = U⇤+ b. Let ⇧ 2 Rp⇥p be a non-singular matrix, let Ũ = X⇧, and let
⇢1, . . . , ⇢p 2 [K]. We call Ũ a topological representation of X with intervention targets ⇢1, . . . , ⇢p
if the following two conditions are satisfied for all j 2 [p]:

(Condition 1) P(Ũj) 6= PI⇢j (Ũj).

(Condition 2) P(Ũ1:j�1C
>) = PI⇢j (Ũ1:j�1C

>) and for any C 2 Rj�1.

Here, P(Ũ),PIk(Ũ) are the induced distributions for Ũ when X ⇠ PX and X ⇠ PIk
X , respectively.

10A sink node is a node without children
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The next result shows that a topological representation always exists. In particular, we show that a
topological representation can be recovered simply be re-ordering the nodes of G.
Lemma 5. Suppose that Assumption 2 hold. Then, there exists a topological representation of X .

Proof. Assume without loss of generality that G has topological order ⌧ = (1, 2, ..., p), i.e., i !

j 2 G only if i < j. Let ⇧ = ⇤�1, then Ũ = U + c̃ for constant vector c̃ = b⇧. Set ⇢1, ..., ⇢p to be
such that T (I⇢j ) = j for j 2 [p]. Let j 2 [p] and C 2 Rj�1.

Condition 1. Since I⇢j targets Uj , by Assumption 2, we have P(Uj) 6= PI⇢j (Uj), and thus P(Ũj) 6=

PI⇢j (Ũj).

Condition 2. Since I⇢j targets Uj and U1:j�1 ⇢ U[p]\deG(j), we have P(U1:j�1C
>) 6=

PI⇢j (U1:j�1C
>), and thus P(Ũ1:j�1C

>) 6= PI⇢j (Ũ1:j�1C
>).

Now, we show that any topological representation is also consistent with the underlying representa-
tion U up to some linear transformation which respects the topological ordering.

Lemma 6. Suppose that Assumptions 2 hold. Let Ũ = X⇧ be a topological representation of X
and denote �̃ = ⇤⇧. Then, there exists a topological ordering ⌧ of G such that for any j 2 [p], we
have that

i < j =) �̃⌧(j),i = 0 and �̃⌧(j),j 6= 0. (9)

Proof. We prove by induction. Let c̃ = b⇧. Note that Ũ = U �̃+ c̃.

Base case.
Consider I⇢p . Let T (I⇢p) = i. We will show that i must be a sink node in G.

Suppose i is not a sink node, and let j 2 mchG(i). Since �̃ is nonsingular,
rank(span(�̃:,1, ..., �̃:,p�1)) = p�1. Therefore, we must have span(ei, ej)\span(�̃:,1, ..., �̃:,p�1) 6=
{0}. Thus,

�̃�> = ae
>

i + be
>

j for some a, b 2 R, � 2 Rp such that a2 + b
2
6= 0, �p = 0

By Condition 2, we have that P(Ũ�
>) = PI⇢p (Ũ�

>). Since c̃�
> is a constant, this implies that

P(aUi + bUj) = PI⇢p (aUi + bUj). However, this contradicts Assumption 2. Thus, i must be a sink
node, which we denote by ⌧(p).

We also have that �̃⌧(p),i = 0 for any i < p. Otherwise suppose �̃⌧(p),i 6= 0, then Ũi = U �̃:,i + hi

can be written as �̃⌧(p),i · U⌧(p) + USC
> + c̃i with S = [p] \ ({⌧(p)}) = [p] \ deG(⌧(p)). By

Assumption 2, we have P(Ũi) 6= PI⇢p (Ũi), a contradiction to Condition 2.

Induction step.
Suppose that we have proven the statement for q  p. Denote the intervention targets of I⇢q , . . . , I⇢p

as ⌧(q), . . . , ⌧(p), respectively. Let K = [p] \ {⌧(q), . . . , ⌧(p)}.

Consider I⇢q�1 with T (I⇢q�1) = i. Let Gq denote the graph G after removing the nodes
⌧(q), . . . , ⌧(p). We will show that i must be a sink node in Gq .

Suppose that i is not a sink node Gq and let j be a maximal child of i in Gq . Since �̃[p]\K,[q] = 0,
|K| = q, and �̃ is nonsingular, we have that �̃K,[q] is nonsingular. Thus, as above,

�̃�> = ae
>

i(q)+be
>

j(q) for some a, b 2 R, � 2 Rp such that a2+b
2
6= 0, �q = �q+1 = . . . = �p = 0

where ei(q), ej(q) are indicator vectors in Rq with ones at positions of i, j in 1, ..., p after removing
⌧(q + 1), ..., ⌧(p), respectively. Thus, by Condition 2, we have that P(Ũ�

>) = PI⇢q (Ũ�
>), which

contradicts Assumption 2. Therefore I⇢q targets a sink node of Gq .

To show that �̃⌧(q),i = 0 for any i < q, use �̃⌧(k),i = 0 for all k � q and write Ũi = U �̃:,i + c̃i as
�̃⌧(q�1),i · U⌧(q�1) + USC

> + c̃i with S = [p] \ {⌧(q � 1), ⌧(q), ..., ⌧(p)} ⇢ [p] \ deG(⌧(q)). By
Assumption 2, we have P(Ũi) 6= PI⇢q (Ũi) if �̃⌧(q),i 6= 0, a contradiction to Condition 2.
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By induction, we have thus proven that the solution to Condition 1 and Condition 2 satisfies i <

j ) �̃⌧(j),i = 0. Therefore �̃⌧,: is upper triangular. Since it is also non-singular, it must hold that
�̃⌧(j),j 6= 0. Thus Eq. (9) holds for some unknown ⌧ . Furthermore, the proof shows that I⇢1 , ..., I⇢p

target U⌧(1), ..., U⌧(p) respectively.

B.3.2 Sparsest topological representation

In the section, we will introduce a graph associated to any topological representation. We consider
picking a topological representation such that the associated graph is as sparse is possible, and we
show that this choice recovers the underlying graph G up to transitive closure.

We begin by establishing the following property of a topological representation Ũ , which relates
ancestral relationships in the underlying graph G to changes in marginals of Ũ .

Proposition 1. Suppose that Assumptions 2 hold. Let Ũ be a topological representation with inter-
vention targets ⇢1, . . . , ⇢p.

Then, for any i < j such that ⌧(j) 2 deG(⌧(i)), we must have

P(Ũj) 6= PI⇢k (Ũj) for some i  k < j such that ⌧(k) 2 deG(⌧(i)).

Proof. By Lemma 6, Eq. (9), Ũj is a linear combination of U⌧(1), ..., U⌧(j) with nonzero coefficient
of U⌧(j). Let k0 be

(Case 1) the largest such that i  k0 < j where ⌧(k0) 2 deG(⌧(i)) and the coefficient of
U⌧(k0) in Ũj is nonzero,

(Case 2) i, if no k0 satisfies Case 1.

Then let k = k0 if ⌧(j) /2 deG(⌧(k0)); otherwise let k be such that ⌧(k) 2 deG(⌧(k0)) and
⌧(j) 2 mchG(⌧(k)) (such k exists by considering the parent of ⌧(j) on the longest directed path
from ⌧(k0) to ⌧(j) in G). Figure 8 illustrates the different scenarios for k0, k. Note that we always
have ⌧(k) 2 deG(⌧(i)).

(A) Case 1-1 (B) Case 1-2 (C) Case 2

Figure 8: Illustration of k0, k.

(Case 1): We first show that Ũj can be written as a linear combination of U⌧(j), U⌧(k0) and US for
S ⇢ [p] \ deG(⌧(k0)) with nonzero coefficient for U⌧(j), U⌧(k0). Consider an arbitrary l 2 [p]. If
the coefficient for U⌧(l) in Ûj is nonzero, by Eq. (9), we have l  j. Also since k0 is the largest,
we have l = k0 or l = j or l < k0 or ⌧(l) /2 deG(⌧(i)). If l < k0, then by the topological order,
it holds that ⌧(l) /2 deG(⌧(k0)). If ⌧(l) /2 deG(⌧(i)), since ⌧(k0) 2 deG(⌧(i)), it also holds that
⌧(l) /2 deG(⌧(k0)). Therefore Ũj can be written as a linear combination of U⌧(j), U⌧(k0) and US

with nonzero coefficient for U⌧(j), U⌧(k0). Next, we show that P(Ũj) 6= PI⇢k (Ũj) by considering
two subcases of Case 1.

If ⌧(j) /2 deG(⌧(k0)), then k = k0 (illustrated in Figure 8A). Then S [ {⌧(j)} ⇢ [p] \ deG(⌧(k)).
Therefore Ũj can be written as a linear combination of U⌧(k) and US0 for S0

⇢ [p] \ deG(⌧(k)) with
nonzero coefficient for U⌧(k). By Assumption 2, we have P(Ũj) 6= PI⇢k (Ũj).
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If ⌧(j) 2 deG(⌧(k0)), then since ⌧(k) 2 deG(⌧(k0)), we have ⌧(k0) 2 [p] \ deG(⌧(k)) (illustrated
in Figure 8B). Then we have S ⇢ [p] \ deG(⌧(k0)) ⇢ [p] \ deG(⌧(k)), and thus S [ {⌧(k0)} ⇢

[p]\deG(⌧(k)). In fact, S[{⌧(k0)} is a subset of [p]\(deG(⌧(k))[{⌧(j)}), since ⌧(j) 2 deG(⌧(k))
by ⌧(k) 2 pa

G
(⌧(i)) (definition of k). Therefore Ũj can be written as a linear combination of

U⌧(j) and US0 for S
0
⇢ [p] \ (deG(⌧(k)) [ {⌧(j)}) with nonzero coefficient for U⌧(j). Since

⌧(j) 2 mchG(⌧(k)) (definition of k), by Assumption 2, we have P(Ũj) 6= PI⇢k (Ũj), as I⇢k targets
U⌧(k).

(Case 2): In this case k0 = i (illustrated in Figure 8C). Then for any l < j such that ⌧(l) 2

deG(⌧(k)), the coefficient of U⌧(l) in Ũj is zero. Otherwise since deG(⌧(k)) ⇢ deG(⌧(k0)) =
deG(⌧(i)), it holds that ⌧(l) 2 deG(⌧(i)), which by Eq. (11) implies i < l < j. Thus l satisfies Case
1, a contradiction. Therefore, also by Eq. (11), Ũi can be written as a linear combination of U⌧(j)

and US with nonzero coefficient of U⌧(j), where S ⇢ [p] \ deG(⌧(k)).

Since ⌧(j) 2 deG(⌧(i)) = deG(⌧(k0)), by definition of k, we have ⌧(j) 2 mchG(⌧(k)). Note that
Ũi can be written as a linear combination of U⌧(j) and US0 with nonzero coefficient of U⌧(j), where
S
0
⇢ [p] \ (deG(k) [ {⌧(j)}). By Assumption 2, P(Ũj) 6= PI⇢k (Ũj), as I⇢k targets U⌧(k).

Therefore, in both cases it holds that P(Ũj) 6= PI⇢k (Ũj). Since i  k < j and ⌧(k) 2 deG(⌧(i)),
the claim is proven.

Now, we use marginal changes to define a graph associated to any topologically-ordered representa-
tion. We use Proposition 1 to show that picking the the topologically-ordered representation which
yields the sparsest graph will recover the transitive closure of G.

Lemma 7. Let Ũ be a topological representation of X with intervention targets ⇢1, ..., ⇢p. Let
R̂

0
2 Rp⇥p be an invertible upper triangular and let Û = Ũ R̂

0. Define the following:

• Let ĜR̂0

0 be the DAG such that i ! j 2 Ĝ0 if and only if i < j 2 [p] and P(Ûj) 6= PI⇢i (Ûj).

• Let ĜR̂0
= T S(ĜR0

0 ).

Let R̂ be such that ĜR̂ has the fewest edges over any choice of R̂0. Then Ĝ
R̂ = T S(G⌧ ). We call Û

a sparsest topological representation of X .

Proof.
Direction 1.
We first show that for any R̂

0,
T S(G⌧ ) ✓ Ĝ

R̂0
. (10)

Let i ! j 2 T S(G⌧ ), so i < j. By Proposition 1, we have k such that i  k < j with ⌧(k) 2

deG(⌧(i)). By definition of ĜR̂0

0 , we have k ! j 2 Ĝ
R̂0

0 . Repeating this argument iteratively, we
obtain a directed path from i to j in Ĝ

R̂0

0 . Thus, by definition of ĜR̂0
, we have T S(G⌧ ) ✓ Ĝ

R̂0
.

Direction 2.
Now we give an example of R̂ such that the constructed Ĝ

R̂ satisfies

Ĝ
R̂
✓ T S(G⌧ ).

Denote �̃R̂ = �̂ and ĉ = c̃R̂. Since R̂ is upper-triangular and invertible, by Eq. (9), we have
Û = U �̂+ ĉ, where

i < j ) �̂⌧(j),i = 0 and �̂⌧(j),j 6= 0, (11)
where ⌧ is the topological order in Eq. (9). By Eq. (11), there exists an invertible upper-triangular
matrix R 2 Rp⇥p such that Û = (U �̃ + c̃)R = (U⌧(1), ..., U⌧(p)) + c for some constant vector c.
Now for i < j 2 [p], we have i ! j 2 Ĝ

R
0 , P(U⌧(j)) 6= PI⇢i (U⌧(j)). Since I⇢i targets U⌧(i), this

would only be true when ⌧(j) 2 deG(⌧(i)). Therefore i ! j 2 Ĝ
R̂
0 ) ⌧(j) 2 deG(⌧(i)). Thus

Ĝ
R̂
0 ✓ T S(G⌧ ). As T S(G⌧ ) is a transitive closure, this means ĜR̂ = T S(ĜR̂

0 ) ✓ T S(G⌧ ).
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Analogously to Lemma 6, the following result shows that a sparsest topological representation is
topologically consistent with U in a stronger sense than a topological representation.

Lemma 8. Let Assumption 2 hold. For �̃ 2 Rp⇥p and c̃ 2 Rp, let Ũ = U �̃ + c̃ be a sparsest
topological representation of U with intervention targets ⇢1, . . . , ⇢p. Let ⌧ be a topological ordering
of G such that

i < j ) �̃⌧(j),i = 0 and �̃⌧(j),j 6= 0. (12)

Then �̃⌧(j),l = 0 for ⌧(l) /2 deG(⌧(j)).

Proof. For sake of contradiction, let l, j 2 [p]. Without loss of generality, let j be the largest value
for which �̃⌧(j),l 6= 0 and ⌧(l) 62 deG(⌧(j)). By transitivity of deG and the choice of j as the largest
value, there is no j

0 such that ⌧(j0) 2 deG(⌧(j)) and �̃⌧(j0),l 6= 0. Therefore Ũl can be written as a
linear combination of U⌧(j) and US with nonzero coefficient of U⌧(j), where S ⇢ [p] \ deG(⌧(j)).

By Assumption 2, we have P(Ũl) 6= PI⇢j (Ũl). Since ⌧(l) /2 deG(⌧(j)) and Ĝ = T S(G⌧ ), we have
j ! l /2 Ĝ, in which case P(Ũl) 6= PI⇢j0 (Ũl) violates Condition 1, a contradiction.

B.3.3 Proof of Theorem 1

Theorem 1. Under Assumption 1 and Assumption 2 for I1, ..., IK , we can identify hĜ, Î1, ..., ÎKi,
where Ĝ = T S(G⇡), and Îk = (Ik)⇡ for some permutation ⇡.

Here, we combine the results of the previous two sections to show that we can recover G up to
transitive closure and permutation, and that we recover the intervention targets I1, . . . , IK up to the
same permutation.

Proof. By Lemma 1 and Remark 1, we can assume, without loss of generality, that p is known
and that X = f(U) = U⇤ + b for some non-singular matrix ⇤, as this can be identified from
observational data D.

By Lemma 7, we can identify a topological representation Û = U �̂ + ĉ with intervention targets
⇢1, ..., ⇢p 2 [K], where �̂ 2 Rp⇥p and ĉ 2 Rp. Further, for some unknown topological ordering ⌧

of G, �̂ satisfies Eq. (11), T (I⇢i) = ⌧(i) for i 2 [p], and we identify Ĝ = T S(G⌧ ).

Identifying additional intervention targets.
So far, we only guarantee that we identify the intervention targets for I⇢1 , . . . , I⇢p . Now, consider
any k 2 [K] \ {⇢1, ..., ⇢p}. Let l be such that TG(Ik) = ⌧(l). We now argue that l can be identified
as the smallest l0 in [p] such that P(Ûl0) 6= PIk(Ûl0).

By Assumption 2, we have P(Ûl) 6= PIk(Ûl), since Ik targets U⌧(l) and Ûl can be written as a linear
combination of U⌧(1), ..., U⌧(l) with nonzero coefficient U⌧(l) (note that U⌧(1), ..., U⌧(l�1) 2 [p] ⇢

deG(⌧(l))).

On the other hand, for l
0
< l, we have P(Ûl) = PIk(Ûl), since Ûl0 can be written as a linear

combination of U⌧(1), ..., U⌧(l0) and ⌧ is the topological order.

B.4 Proof of Theorem 2

In this section, we show that by introducing Assumption 3, we can go beyond recovering the transi-
tive closure of G, and we instead recover G. We begin by establishing a basic fact about conditional
independences in our setup.
Claim 1. Under Assumption 1, let A,B,C,D denote (potentially linear combinations of) compo-
nents of U , and assume that A??B | C,D and A??C | B,D. Then A??B | D.

Proof. By Assumption 1, PA,B,C,D has positive measure on some full-dimensional set. By Propo-
sition 2.1 of [56], PA,B,C,D is a graphoid, i.e., it obeys the intersection property. Invoking this
property, we obtain A??B | D, as desired.
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With this, we are ready to prove Theorem 2, which we recall here.
Theorem 2. Under Assumptions 1,2,3, hG, I1, ..., IKi is identifiable up to its CD-equivalence class.

Note that, from Theorem 1, we have already identified the interventions I1, . . . , IK up to CD-
equivalence for a permutation ⌧ . Thus, the only remaining result to show is that we identify G

up to the same permutation.

In particular, we can again characterize the solution in terms of the sparsest solution.

Theorem 2, Constructive. Let Û be a sparsest topological representation of X with intervention
targets ⇢1, ..., ⇢p. Let R̄0

2 Rp⇥p be an invertible upper triangular matrix, and let Ū = Û R̄
0. Define

the following:

• Let Ḡ
R̄0

be the DAG such that i ! j for i < j 2 [p], if and only if Ūi 6?? Ūj |

Ū1, . . . , Ūi�1, Ūi+1, . . . , Ūj�1

Let R̄ be such that ḠR̄ has the fewest edges over any choice of R̄0. Then Ḡ
R̄ = G⌧ for ⌧ satisfying

Eq. (12).

Proof. By Lemma 7, we have Û = U �̂ for some matrix �̂ 2 Rp⇥p satisfying Eq. (9) under some
topological order ⌧ of G. Further, we identify Ĝ = T S(G⌧ ) .

Denoting �̂R̄ = �̄ and c̄ = ĉR̄, by Lemma 8, we have Ū = U �̄+ c̄ with

i < j ) �̄⌧(j),i = 0 and �̄⌧(j),j 6= 0,

⌧(l) /2 deG(⌧(j)) ) �̄⌧(j),l = 0.
(13)

Direction 1.
First, we show that

G⌧ ✓ Ḡ
R̄
.

Assume on the contrary that there exists ⌧(i) ! ⌧(j) 2 G such that i ! j 62 Ḡ
R̄. By

definition, we have Ūi?? Ūj | Ū1, . . . , Ūi�1, Ūi+1, . . . , Ūj�1. By Eq. (13), we know that we
can retrieve U⌧(1), ..., U⌧(i�1) by linearly transforming Ū1, ..., Ūi�1; this implies U⌧(i)?? Ūj |

U⌧(1), ..., U⌧(i�1), Ūi+1, ..., Ūj�1. By subtracting terms in U⌧(1), ..., U⌧(i�1) from Ūi+1, ..., Ūj and
then subtracting terms Ūl from Ūl+1, ..., Ūj for l = i+ 1, ..., j � 1, we have that

U⌧(i)??U⌧(j) + cjU⌧(i) | U⌧(1), ..., U⌧(i�1),

U⌧(i+1) + ci+1U⌧(i), ..., U⌧(j�1) + cj�1U⌧(i), .
(14)

for some ci+1, ..., cj 2 R. Since by Eq. (13) there is �̄⌧(i),l = 0 for any ⌧(l) /2 deG(⌧(i)), this
subtraction gives us cl = 0 if ⌧(l) /2 deG(⌧(i)).

Therefore let

A = U⌧(j) + cjU⌧(i), B = U⌧(i)

C = {U⌧(l) + clU⌧(i)}lj�1,⌧(l)/2paG(⌧(j)), and D = {U⌧(l) + clU⌧(i)}⌧(l)2paG(⌧(j))\{⌧(i)},

where c1 = ... = ci�1 = 0. There is A??B | C,D.

On the other hand, since ⌧(i) ! ⌧(j) 2 G, i.e., ⌧(i) 2 pa
G
(⌧(j)). We will now show

that this implies A??C | B,D. Starting with the local Markov property, we have for any
c1, . . . , ci�1, ci+1, . . . , cj that

U⌧(j)??{U⌧(l)}lj�1,⌧(l)/2paG(⌧(j)) | {U⌧(l)}⌧(l)2paG(⌧(j))

=) U⌧(j) + cjU⌧(i)??{U⌧(l) + clU⌧(i)}lj�1,⌧(l)/2paG(⌧(j)) | {U⌧(l)}⌧(l)2paG(⌧(j))

=) U⌧(j) + cjU⌧(i)??{U⌧(l) + clU⌧(i)}lj�1,⌧(l)/2paG(⌧(j))

| U⌧(i), {U⌧(l) + clU⌧(i)}⌧(l)2paG(⌧(j))\{⌧(i)}

(15)
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where the first implication follows from the definition of conditional independence, and the sec-
ond implication follows since {U⌧(l)}⌧(l)2paG(⌧(j)) is a deterministic function of U⌧(i), {U⌧(l) +
clU⌧(i)}⌧(l)2paG(⌧(j))\{⌧(i)}.

Thus, by Claim 1, if i ! j 62 Ḡ
R̄ and ⌧(i) ! ⌧(j) 2 G, then A??B | D, i.e.,

U⌧(i)??U⌧(j) + cjU⌧(i) | {U⌧(l) + clU⌧(i)}l2paG(⌧(j))\{⌧(i)}.

Since cl = 0 for any ⌧(l) /2 deG(⌧(i)) and ⌧ is the topological order, this can be further written as

U⌧(i)??U⌧(j) + cjU⌧(i) | {U⌧(l)}l2paG(⌧(j))\(S[{⌧(i)}), {U⌧(l) + clU⌧(i)}l2S ,

where S = pa
G
(⌧(j))\deG(⌧(i)), which violates Assumption 3. Therefore we must have G⌧ ✓ Ḡ

R̄.

Direction 2.
There exists an invertible upper-triangular matrix R̄ 2 Rp⇥p such that Ū = Û R̄ =
(U⌧(1), ..., U⌧(p)) + c̄ for some constant vector c̄. Note that clearly Ū satisfies Condition 1. Also for
i < j 2 [p] such that ⌧(i) ! ⌧(j) /2 G, by the Markov property and ⌧ being the topological order,
we have Ūi?? Ūj | Ū1, ..., Ūi�1, Ūi+1, ..., Ūj�1. Thus ⌧(i) ! ⌧(j) /2 G ) i ! j /2 Ḡ, and hence
Ḡ ✓ G⌧ , which completes the proof.

Remark 2. These proofs (Lemma 1, Theorem 1,2) together indicate that under Assumptions 1,2,3,
we can identify hG, I1, ..., IKi up to its CD-equivalence class by solving for the smallest p̂, an
encoder ĝ : Rn

! Rp̂, Ĝ and Î1, ..., ÎK̂ that satisfy

(1) there exists a full row rank polynomial decoder f̂(·) such that f̂ � ĝ(X) = X for all
X 2 D [D

I1 [ ... [D
IK ;

(2) the induced distribution on Û := ĝ(X) by X 2 D factorizes with respect to Ĝ;

(3) the induced distribution on Û by X 2 D
Ik where k 2 [K] changes the distribution of

ÛTĜ(Îk)
but does not change the joint distribution of non-descendants of ÛTĜ(Îk)

in Ĝ;

(4) [p̂] ✓ T
Ĝ
(Î1) [ ... [ T

Ĝ
(ÎK̂);

(5) Ĝ has topological order 1, ..., p̂;

(6) the transitive closure T S(Ĝ) of the DAG Ĝ is the sparsest amongst all solutions that satisfy
(1)-(5);

(7) the DAG Ĝ is the sparsest amongst all solutions that satisfy (1)-(6);

We will use these observations in Appendix E to develop a discrepancy-based VAE and show that it
is consistent in the limit of infinite data.

Proof. We first show that there is a solution to (1)-(7). For this, it suffices to show that there is a
solution to (1)-(5). Then since p̂ and Ĝ are discrete, one can find the solution to (1)-(7) by searching
amongst all solutions to (1)-(5) such that p̂ is the smallest and (6)-(7) are satisfied. Assume without
loss of generality that G has topological order 1, ..., p. Then p̂ = p, ĝ = f

�1, Ĝ = G, and Îk = Ik

for k 2 [K] satisfy (1)-(5).

Next we show that any solution must recover p̂ = p and hĜ, Î1, . . . , ÎKi that is in the same CD
equivalence class as hG, I1, . . . , IKi. Since we solve for the smallest p̂, the former paragraph also
implies that p̂  p. By the proof of Lemma 1, (1) guarantees that p̂ � p. Therefore it must hold that
p̂ = p.

Since we solve for the sparsest transitive closure, the first paragraph implies that T S(Ĝ) ⇢ T S(G).
Also by the proof of Lemma 1, Û can be written as an invertible linear mixing of U . Then (3)-(5)
guarantee that Condition 1 and Condition 2 in Step 1 in the proof of Theorem 1 are satisfied. Then
by the proof of Step 2 in the proof of Theorem 1, we have T S(G) ⇢ T S(Ĝ). Therefore, it must
hold that T S(Ĝ) = T S(G).

27



Lastly, by (2) and (5), we obtain that Ĝ satisfies Condition 1 and Condition 2 in Theorem 2. There-
fore by the proof of Theorem 2, we obtain G ⇢ Ĝ. Again, by the first paragraph and the fact that
the sparsest transitive closure satisfies T S(Ĝ) = T S(G), we obtain that the sparsest Ĝ with this
transitive closure must satisfy Ĝ ⇢ G, and thus Ĝ = G. With this result, it is easy to see that Îk = Ik

for all k 2 [K], as Ik changes the distribution of ÛTG(Ik) but does not change the joint distribution
of Û[p]\deG(TG(Ik))

.

Therefore we can recover p and the CD equivalence class of hG, I1, ..., IKi by solving (1)-(7). Note
that this proof assumes the topological order of G is 1, ..., p, and therefore it does not violate the fact
that G, I1, ..., IK cannot be recovered exactly.

B.5 Proof of Theorem 3

Now, we will show that recovering hU,G, I1, . . . , IKi up to Theorem 1 is sufficient for predicting
the effect of combinatorial interventions..
Theorem 3. Letting hÛ , Ĝ, Î1, ..., ÎKi be the solution identified in the proof of Theorem 1. Then
the interventional distribution PI for any combinatorial intervention I ⇢ {I1, ..., IK} is given by
Eq. (2), i.e., we can generate samples X from the distribution X = f(U), U ⇠ PI .

Proof. Since I contains interventions with different intervention targets, for each i 2 [p], we can
define PÎ(Ûi | ÛpaĜ(i)) as PÎk(Ûi | ÛpaĜ(i)) if i = T

Ĝ
(Îk) for some Ik 2 I and otherwise P(Ûi |

ÛpaĜ(i)). Using this definition, we define the joint distribution of Û as PÎ(Û) =
Qp

i=1 PÎ(Ûi |

ÛpaĜ(i)). In the following we show that PÎ(Û) = PI(U) in the sense that PÎ
�
Û = f̂

�1(x)
�
=

PI(U = f
�1(x)) for all x 2 Rn.

Our proof combines the following equalities. For any i 2 [p], we have

Equality 1: PÎ(Ûi | ÛpaĜ(i)) = PÎ(Ûi | ÛanĜ(i)),

Equality 2: PÎ(Ûi | ÛanĜ(i)) = PI(Ui | UanG(i)),

Equality 3: PI(Ui | UanG(i)) = PI(Ui | UpaG(i)).

Proof of Equality 1. This follows by definition of Ĝ, since it is transitively closed, we have pa
Ĝ
(i) =

an
Ĝ
(i).

Proof of Equality 2. By similar arguments below Eq. (13), we have Û = U �̂ + ĉ for an invertible
matrix �̂, where �̂⌧(j),l = 0 for any ⌧(l) 62 deG(⌧(j)). Therefore we can recover UanG(i) by
linear transforming U �̂:,anG(i) and vise versa. We can also recover Ui by subtracting linear terms of
UanG(i) from U �̂:,i.

Note also, since T S(G) = T S(Ĝ), there must be an
Ĝ
(i) = anG(i). Thus

PÎ(Ûi | ÛanĜ(i)) = PI(U �̂:,i | U �̂:,anĜ(i))

= PI(U �̂:,i | U �̂:,anG(i))

= PI(U �̂:,i | UanG(i)) = PI(Ui | UanG (i)).

Proof of Equality 3. Follows from the Markov property on U .

Combining these equalities, we have PÎ(Ûi | ÛpaĜ(i)) = PI(Ui | UpaG(i)) for all i 2 [p]. Thus

PÎ(Û) =
Qp

i=1 PÎ(Ûi | ÛpaĜ(i)) =
Qp

i=1 PI(Ui | UpaG(i)) = PI(U). Therefore the procedure in
Section 4.4 generates X from the same distribution as X = f(U), U ⇠ PI .
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C Details on Discrepancy-based VAE

In previous sections, we have shown that the data-generating process in Section 2 is identifiable
up to equivalence classes. However, the proofs (Appendix A, B) do not lend themselves to an
algorithmically efficient approach to learning the latent causal variables from data. Therefore, we
propose a discrepancy-based VAE in Section 5, which inherits scalable tools of VAEs that can in
principle learn flexible deep latent-variable models. In this framework, Eq. (3) can be computed and
optimized efficiently using the reparametrization trick [29] and gradient-based optimizers.

C.1 Maximum Mean Discrepancy

We recall the definition of the maximum mean discrepancy measure between two distributions, and
its empirical counterpart.
Definition 3. Let k be a positive definite kernel function and let H be the reproducing kernel Hilbert
space defined by this kernel. Given distributions P and P0, we define

MMD(P,P0) := sup
f2H

(EP[f(X)]� EP0 [f(X)])

The following empirical counterpart is an unbiased estimate of the squared MMD, see Lemma 6 of
[18].
Definition 4. Let k be a positive definite kernel. Let {X(i)}

m
i=1 be samples from P and {X

0

(i)}
m
i=1

be samples from P0. We define

\MMD
2
({X(i)}

m
i=1, {X

0

(i)}
m
i=1) =

1

m(m� 1)

mX

i=1

X

j 6=i

k(Xi, Xj) +
1

m(m� 1)

mX

i=1

X

j 6=i

k(X 0

i, X
0

j)

�
2

m2

mX

i=1

mX

j=1

k(Xi, X
0

j)

C.2 Discrepancy VAE Details

We walk through the details of this model in this section, where we illustrate it using two types of
interventions, namely do interventions and shift interventions.

Noiseless vs. Noisy Measurement Model with General SCMs. Recall that each latent causal
variable Ui is a function of its parents in G and an exogenous noise term Zi. All the Zi’s are
mutually independent. The overall model can be defined (recursively) as

Uj = sj(UpaG(j), Zj),

X = f(U1, ..., Up).
(16)

In particular, there exists a function s
full
? such that U = s

full
? (Z). We model each intervention I as a

set of intervention targets T (I) and a vector aI . Under I , the observations X are generated by

U
I
j =

(
sj(U I

paG(j), Zj) j /2T (I) + a
I
j j2T (I), for do intervention,

sj(U I
paG(j), Zj) + a

I
j j2T (I), for shift intervention,

X
I = f(U I

1 , ..., U
I
p ).

(17)

As above, there exists a function s
full
I such that U I = s

full
I (Z). Note that here we assume that the

measurements (sometimes called “observations” in the literature11) X are noiseless. Our theoretical
results are built upon noiseless measurements. In practice, however, one can consider the noisy
measurement model in which X = f(U)+✏ (resp. XI = f(U I)+✏), where ✏ is some measurement
noise independent of U .

We leave as future work to prove consistency under the noisy measurement model. [28] established
identifiability results of the noisy measurement model, when the latent variables conditioned on

11We use “measurements” to distinguish from the observational distribution defined for U .
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additionally observed variables follow a factorized distribution in an exponential family. Their tech-
niques can be potentially used to generalize our results to the noisy measurement model; however,
further assumptions on the mechanisms si’s will be needed.

Discrepancy-based VAE. We use one decoder

p✓(X|U)

parameterized by ✓ to approximate both X = f(U) and X
I = f(U I) in the noiseless measurement

model (or X = f(U) + ✏ and X
I = f(U I) + ✏ in the noisy measurement model). As for the

encoder, we do not directly learn the posteriors P(U |X) and P(U I
|X

I). Instead, we approximate
one posterior P(Z|X) and then use Eq. (16), (17) to transform Z into U , U I respectively. This is
done by two encoders for Z and (T (I), aI) parameterized by � and denoted as

q�(Z|X), (T�(I), a�(I))

The dimension p of Z is set as a hyperparameter. Note that the procedure of learning a posterior
P(Z|X) in the observational distribution and then mapping to U

I using Eq. (17) can be regarded as
learning the counterfactual posterior of P(U I

|X).

In the following, to better distinguish data from observational and interventional distributions, we
use X

?
, U

? instead of X,U to denote samples generated by Eq. (16). After encoding X
? and I

into Z and (T (I), aI) respectively, we parameterize the causal mechanisms sj’s in Eq. (16), (17) as
neural networks (e.g., multi-layer perceptrons or linear layers). We absorb the paramterizations of
sj’s into ✓ and denote

p✓,?(X
?
|Z) = p✓

�
X

?
| U

? = s
full
? (Z)

�
,

p✓,I(X
I
|Z) = p✓

�
X

I
| U

I = s
full
I (Z)

�
.

Note that in implementation, to make sure Uj only depends on its parents UpaG(j), one can train
an adjacency matrix A that is upper-triangular up to permutations and then apply any layers after
individual rows of matrix U ⌦ A

12. Since identifiability can be only up to permutations of latent
nodes, one can simply use an upper-triangular adjacency matrix A.

D Lower Bound to Paired Log-Likelihood

In this section, we consider the paired setting, in which we have access to samples from the joint
distribution P(X?

, X
I). To discuss counterfactual pairs, we must introduce structure beyond the

structure described in Section 2. In particular, in the observational setting, assume that the latent
variables U

? are generated from a structural causal model with exogenous noise terms Z. This
implies that there is a function g? such that U? = g?(Z). Similarly, under intervention I , assume
there is a function gI such that U I = gI(Z). Then, given a distribution P(Z), the joint distribution
P(X?

, X
I) is simply the induced distribution under the maps X? = f(U?) and X

I = f(U I).

Since X
? and X

I are independent conditioned on Z, we have

logP(X?
, X

I) � EP(X?,XI)

⇥
Eq�(Z|X?) log p✓,?(X

?
| Z) + Eq�(Z|X?) log p✓,I(X

I
|Z)

�DKL
�
q�(Z|X

?)kp(Z)
� ⇤ (18)

We have the following result on the loss function in Eq. (3).

Proposition 2. Let k be a Gaussian kernel with width ✏, i.e., k(x, y) = exp
⇣
�

kx�yk2
2

2✏2

⌘
. Let

p✓,I(XI
| U) be Gaussian with mean µ

I
✓(U) and a fixed variance �

2. Then, for ✏ sufficiently large,
for ↵ given in the proof, and for some constant c depending only on � and data dimension d,

EP(X?,XI)

⇥
Eq�(Z|X?) log p✓,I(X

I
|Z)
⇤
� �↵ · MMD

�
p✓,I(X

I),PI(XI)
�
+ c.

Thus, up to an additive constant, L↵,1,0
✓,� lower bounds the paired-data ELBO in Eq.(18) and by

extension the paired-data log-likelihood logP(X?
, X

I).
12Here ⌦ denotes the Kronecker product.
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Proof. By the choice of a Gaussian distribution for p✓,I(XI
| U), we have

log p✓,I(X
I
| Z) = log p✓(X

I
| U

I = s
full
I (Z)) = c�

1

2�2
kX

I
� µ

I
✓(U)k22, (19)

where c is a constant depending only on � and data dimension d. Let {(X?
(i), X

I
(i))}

m
i=1 be indepen-

dent and identically distributed according to P(X?
, X

I). Then

EP(X?,XI)

h
Eq�(Z|x(0))[log p✓,I(X

I
|Z)]

i

= EP(X?,XI)

"
Eq�(Zi|X

?
i )

"
1

m

mX

i=1

log p✓,I(X
I
i |Zi)

##

= c�
1

2�2
EP(X?,XI)

"
Eq�(Z(i)|X

?
(i)

)

"
1

m

mX

i=1

kX
I
(i) � µ

I
✓(U(i))k

2
2

##

Now, for the empirical MMD, we have

\MMD
2 ⇣

{X
I
(i)}

m
i=1, {X̂

I
(i)}

m
i=1

⌘

=
1

m(m� 1)

mX

i=1

X

j 6=i

exp

 
�

kX
I
(i) �X

I
(j)k

2
2

2✏2

!
+

1

m(m� 1)

mX

i=1

X

j 6=i

exp

 
�

kX̂
I
(i) � X̂

I
(j)k

2
2

2✏2

!

�
2

m2

mX

i=1

mX

j=1

exp

 
�

kX
I
(i) � X̂

I
(j)k

2
2

2✏2

!

� �
2

m2

mX

i=1

mX

j=1

exp

 
�

kX
I
(i) � X̂

I
(j)k

2
2

2✏2

!

� �2 +
1

2m2✏2

mX

i=1

mX

j=1

kX
I
(i) � X̂

I
(j)k

2
2

� �2 +
1

2m2✏2

mX

i=1

kX
I
(i) � X̂

I
(i)k

2
2,

where we have used the positivity of the exponential function and for the penultimate inequality
used the fact that ✏ is large enough and that e�x

 1�x/2 for x sufficiently small. Substituting into
(20) yields the theorem, with ↵ = 1

2m�2✏2 .

E Consistency of Discrepancy-based VAE

We consider Discrepancy-based VAE described in the last section. Suppose the conditions in The-
orem 2 is satisfied by the ground-truth model, i.e., it is possible to identify CD-equivalence class in
theory.

E.1 CD-Equivalence Class

Theorem 4. Let X?, XI1 , . . ., XIK be generated as in Section 2. Suppose that Assumptions 1, 2,
and 3 hold. Define

M1 = argmin✓,�L✓,�

M2 = argmin✓,�2M1
|T S(G✓)|

✓̂, �̂ 2 argmin✓,�2M2
|G✓|

for L✓,� defined in Equation 3. Further, suppose that the VAE prior p(Z) is equal to the true
distribution over Z, that p✓(X | U) and q�(Z | X) are Dirac distributions. Let hÛ , Ĝ, Î1, . . . , ÎKi

be the solution induced by ✓̂, �̂.
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Then hÛ , Ĝ, Î1, ..., ÎKi is CD-equivalent to hU,G, I1, ..., IKi.

Proof. Note that the parameterization of sj , G, and the induced distributions of U through prior
p(Z) using Eq. (16), (17) satisfy (2),(3) and (5) in Remark 2.

The first two terms in combined in Eq. (18) satisfy

EP(X?)

⇥
Eq�(Z|X?) log p✓,?(X

?
|Z)�DKL

�
q�(Z|X

?)kp(Z)
�⇤

= EP(X?)

⇥
log p✓,?(X

?)�DKL

�
q�(Z|X

?)kp✓,?(Z|X
?)
�⇤

 EP(X?) log p✓,?(X
?)

= EP(X?) logP(X?)�DKL

�
p✓,?(X

?)kP(X?)
�

 EP(X?) logP(X?),

where the equality holds if and only if q�(Z|X
?) = p✓,?(Z|X

?) and p✓,?(X?) = P(X?). On
the other hand, since MMD(·, ·) is a valid measure between distributions, we have

�MMD
⇣
P✓,�

⇣
X̂

Îk),P(XIk
⌘⌘

 0,

where the inequality is satisfied with equality if and only if X̂ Îk and X
Ik are equal in distribution.

Therefore if the learned intervention targets of I1, ..., IK cover [p̂] and the minimum loss function
is not larger that for p̂ = K, we have the solution satisfy (1)-(5) in Remark 2. Since G has the
sparsest transitive closure and G is the sparsest with this transitive closure, (6)-(7) in Remark 2 are
also satisfied. Therefore Remark 2 guarantees the smallest p̂  K satisfying the conditions recovers
the CD-equivalence class.

Note that in practice, it can be hard to ensure that the gradient-based approach returns a DAG G

that has the sparsest transitive closure and is simultaneously the sparsest DAG with this transitive
closure. We instead search for sparser DAGs G by penalizing its corresponding adjacency in Eq. (3).

E.2 Consistency for Multi-Node Interventions

Theorem 3 guarantees that in an SCM with additive noises where interventions modify the exoge-
nous noises, if the CD equivalence can be identified, we can extrapolate to unseen combinations of
interventions with different intervention targets. In fact, for certain types of interventions, extrapola-
tion to unseen combinations of any interventions is possible. We illustrate this for shift interventions
in an SCM with additive Gaussian noises, where an intervention changes the mean of the exogenous
noise variable.

For single-node intervention I , let aI denote the corresponding changes in the mean of the exoge-
nous noise variables, i.e.,

a
I
i =

⇢
E(✏Ii )� E(✏i), i 2 T (I),
0, i /2 T (I).

We encode it as Î with T (Î) containing one element and âÎ being a one-hot vector, where

â
Î
i =

(
âi, i 2 T (Î),

0, i /2 T (Î).

We extend this notation for I with potentially multiple intervention targets (i.e., sets I, Î that contain
multiple elements) where aI , âÎ can be a multi-hot vector.

In the shift intervention case, from Theorem 3, we know that the encoded âÎ1 , ..., âÎK satisfy âÎk =
M(aIk) in the limit of infinite data, where M is a linear operation with M(a)i = ⌥⌧(i),ia⌧(i).
Thus for single-node interventions It(1), ..., It(k) amongst I1, ..., IK , the multi-node intervention
I = It(1) [ ... [ It(k)

13 corresponds multi-hot vector aI that satisfies M(aI) = M(aIt(1) + ... +

13Note that we allow overlapping intervention targets among It(1), ..., It(k), where It(1) [ ...[ It(k) adds up
all the shift values for intervention target i.

32



aIt(k)) = âÎt(1) + ... + âÎt(k) . Thus if we encode I as âÎ := âÎt(1) + ... + âÎt(k) , we can also
generate X̂

Î from the ground-truth distribution of X = f(U) where U ⇠ PI

U (U) following the
encoding-decoding process of Fig. 4.

F Discrepancy-based VAE Implementation Details

We summarize our hyperparameters in Table 2. Below, we describe where they are used in more
detail. We use a linear structural equation with shift interventions. In practice, due to the nonlinear
encoding from the latent U to observed X , not much expressive power is lost. Code for our method
is at https://github.com/uhlerlab/discrepancy_vae.

Loss function
Kernel width (MMD) 200

Number of kernels (MMD) 10
� 0.1

�max 1
↵max 1

Training
tmax 100

Learning rate 0.001
Batch size 32

Table 2: Hyper-Parameters

VAE Parameterization. As is standard with VAEs, our encoder and decoder are parameterized as
neural networks, and the exogenous variables are described via the reparameterization trick. We use
a standard isotropic normal prior for p(Z). To encode interventions, the function T�(·) is parame-
terized as a fully connected neural network, where for differentiable training T�(C) is encoded as a
one-hot vector via a softmax function, i.e., T�(C)i = exp(tT 0

�(C)i)/
Pp

j=1 exp(tT 0
�(C)j) for some fully

connected T
0

� and temperature t > 0. During training, we adopt an annealing temperature for t. In
particular, t = 1 until half of the epochs elapse, and t is linearly increased to tmax over the remaining
epochs. At test time, the temperature of the softmax is set to a large value, recovering a close-to-true
one-hot encoding.

Loss Functions. We use a mixture of MMD discrepancies, each with a Gaussian kernel with widths
that are dyadically spaced [18]. This helps prevent numerical issues and vanishing gradient issues
in training. The coefficient ↵ of the discrepancy loss term L

discrep
✓,� is given the following schedule:

↵ = 0 for the first 5 epochs, then ↵ is linearly increased to ↵max until half of the epochs elapse,
at which point it remains at ↵max for the rest of training. Similarly, the coefficient � of the KL
regularization term is given the following schedule: � = 0 for the first 10 epochs, then � is linearly
increased to �max until half of the epochs elapse, at which point it remains at �max for the rest of
training.

Optimization. We train using the Adam optimizer, with the default parameters from PyTorch and a
learning rate of 0.001.

Biological Data. For the experiments described in Section 6, the encoder q� was implemented as a
2-layer fully connected network with leaky ReLU activations and 128 hidden units. The intervention
encoder T� uses 128 hidden units. To account for interventions with less samples, we use a batch
size of 32. We train for 100 epochs in total, which takes less than 45 minutes on a single GPU.

G Extended Results on Biological Dataset

In this section, we provide additional evaluations of the experiments on the Perturb-seq dataset. The
computation of RMSE are computed for individual interventional distributions. The computation
of R2 (we capped the minimum by 0 to avoid overflow) records the coefficient of determination by
regressing the mean of the generated samples on the ground-truth distribution mean.
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G.1 Single-node interventions

Figure 9 shows the same visualization as Figure 5 in the main text for the remaining 11 = 14 �

3 single target-gene interventions with more than 800 cells. Figure 10 presents this side-by-side
for the training samples. For the entire 105 single interventions, we visualize for each individual
intervention the empirical MMD between the generated populations and ground-truth populations
in Figure 11, where the bars record the MMD in different batches.

Figure 9: For single-node interventions, the distribution of generated test samples visually
mirrors the distribution of the actual samples. A UMAP visualization of 11 single target inter-
ventions shows that the generated and the actual distributions closely match.

Figure 10: For single-node interventions, the distribution of generated training samples visu-
ally mirrors the distribution of the actual samples. As with the test samples, the distributions of
the generated training samples closely match the actual distributions.
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Figure 11: For single-node interventions, the distribution of generated training samples quan-
titatively mirrors the distribution of the actual samples. The figure shows the empirical MMD,
defined in Appendix C.1, between the generated populations and ground-truth populations for 105
single target-node interventions.

G.2 Double-node interventions

We plot the generated samples for 11 random double target-gene interventions in Figure 12. In
Figure 13, we highlight two interventions for which the generated samples differ from the actual
samples. The plots for all 112 interventions are provided at https://github.com/uhlerlab/
discrepancy_vae.

Figure 12: UMAP visualization for a random sampling of double-node interventions. Compared
to single-node interventions, the generated samples of the double-node interventions match only for
certain pairs.

Figure 13: For some double-node interventions, the generated samples match the actual sam-
ples, and for some combinations they do not. The model accurately predicts the effect of the com-
binations ETS2+CEBPE and SET+IRF1, but does not accurately predict the effect of ETS2+DUSP9.

The MMD losses for all 112 interventions are summarized in Figure 14. Similar to Figure 6 in the
main text, Figure 15 shows the distribution of RMSE and R

2 of the 112 interventions.

We remark here that this task has also been studied in previous works (e.g., [39, 8, 68, 49]) with
different setups. Formally benchmarking the empirical results under a unified setting would be of
interest in future works.
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Figure 14: For some double-node interventions, the distribution of generated samples quanti-
tatively mirrors the distribution of the actual samples. The figure shows the empirical MMD,
defined in Appendix C.1, between the generated populations and ground-truth populations for 105
single target-node interventions.

Figure 15: Our model accurately predicts the effect of many double-node interventions. ‘All
genes’ indicates measurements using the entire 5000-dimensional vectors; ‘DE genes’ indicates
measurements using the 20-dimensional vectors for the top 20 most differentially expressed genes.

G.3 Structure Learning

In Figure 16, we show the learned latent structure between gene programs, along with descriptions
of each gene program.

Program 0

Program 4

Program 5 Program 6

Program 1

Program 2

Program 3

Program 0: OSR2
Program 1: SLC38A2, MAP2K3, ELMSAN1, TBX2, MAML2, MAP2K6
Program 2: TGFBR2, ZBTB1, PLK4, HNF4A, ARID1A, ATL1, IKZF3, BPGM, BCORL1, LYL1, BCL2L11, HK2, RUNX1T1, CLDN6, 
CDKN1A, NCL, CNN1, MAP4K3, TSC22D1, HOXA13, CDKN1B, KIF2C, AHR, SGK1, DUSP9, ZC3HAV1, S1PR2, TP73, CKS1B, 
C19orf26, POU3F2, ZBTB25, CNNM4, FOXA3, SAMD1, STIL, PTPN12, IGDCC3, KMT2A, MAP7D1, PRDM1, SLC6A9, 
PTPN9, ZBTB10, CDKN1C, BAK1, MEIS1, CSRNP1, RREB1, MAP4K5, PTPN13, KIF18B, IER5L, CITED1, FOXF1, FOXA1, EGR1, 
KIAA1804, ZNF318, UBASH3B, PTPN1, PRTG, UBASH3A, RHOXF2, FOXO4, ARRDC3, GLB1L2, JUN, HOXC13, CBL
Program 3: MAPK1, CEBPE, TMSB4X, CELF2, DLX2, SPI1, HES7, NIT1, ETS2, LHX1, CBFA2T3, HOXB9, MIDN, CEBPA, SNAI1, 
FOSB, COL1A1, C3orf72, FOXL2, CEBPB, ISL2
Program 4: FEV, COL2A1, IRF1
Program 5: SLC4A1, SET, TBX3
Program 6: KLF1

Figure 16: Regulatory relationships between programs learned in G and full list of genes in each
program.

H Extended Experiments

In this section, we provide additional experimental results. First, we perform ablation studies of
different components of the proposed architecture on biological data. Then, we provide a simple
simulation study to examine the performance of the framework on different tasks.

H.1 Ablation Studies

For the ablation studies of different components, we compared the performance of our final model
(depicted in Figure 4) against three alternative versions. All models are trained with the same setting
(data split, schedule, learning rate, etc). In particular, we compared against

• Models without the discrepancy loss. These models learn the distributions similar to
conditional VAE [51], where both an interventional sample and its interventional label are
fed in to learn the exogenous Z. Then inside the latent space, we use the same causal layer
as our model to generate a virtual sample. During inference, we can generate interventional
samples via two approaches. One is sampling the exogenous Z from p(Z) and decoding.
The other is sampling an observational sample, obtaining its exogenous Z using the encoder
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then decoding. These two approaches correspond to the second and third rows of Table 3
respectively.

• A model without the causal layer. This model uses a similar workflow as our final model
in Figure 4, where we do not use a causal-based decoder but a simple MLP decoder. This
corresponds to the fourth row of Table 3.

We note that the encoder, decoder, DSCM, and intervention encoder are needed to learn distributions
and the latent causal graph from this setting where observational and interventional data are present.

For the metrics, we report both MMD and R
2 in Table 3. However, MMD is more meaningful as we

are assessing the quality of generating a distribution. We observe that models without discrepancy
perform much worse due to mode collapses, whereas the sampling approach using observational
data performs slightly better. Our final model works the best in general; however on the MMD for
double-node interventions, the version without a causal layer seems to work slightly better. This is
potentially because some double-node interventions that act non-additively can be captured better
without imposing the structure.

Method MMD (single) R
2 (single) MMD (double) R

2 (double)

ours 0.324±0.007 0.986±0.001 0.432±0.006 0.978±0.001
ours w/o discrepancy 2.966±0.054 0.984±0.003 3.358±0.031 0.972±0.002
ours w/o discrepancy (obs) 2.965±0.054 0.984±0.002 3.355±0.030 0.972±0.002
ours w/o causal layer 0.348±0.009 0.982±0.002 0.427±0.006 0.978±0.002

Table 3: Ablation studies. We report testing metrics and their standard error on the biological
datasets. The results on single-node interventions are computed over 14 interventions. The results
on double-node interventions are computed over all 112 interventions.

H.2 Simulation

For the simulation study, as a proof-of-concept, we tested on a simple 5-node graph, where we
generate 2048 samples in each of the 5 interventional datasets. We map this to a 10-dimensional ob-
servation space, where we pad zeros to the additional dimensions. This ensures clear visualization
of the generated samples in Figure 17, where we compare the zero-shot learned double-node inter-
ventional samples against ground truth. In Table 4, we report the quantitative metrics. In addition
to the MMD on left-out single and double-node interventions, we also report the training MMD and
Structural Hamming Distance (SHD) of the learned graph.

Due to the combinatorial nature of learning a DAG and the small sample sizes in this setting, we
observe that the learned intervention targets can be quite sensitive to initializations. Therefore during
evaluation, we report the metrics while fixing the intervention targets to be of different transposition
distances to the true targets. For single-node generations, different transposition distances return
similar results, meaning that the model is expressive enough to learn these distributions, although
we observe that the result with zero transposition distance is marginally better. This also holds
during training, which can potentially be used as model selection to overcome the initialization
issue. For double-node extrapolation, the result with zero transposition distance shows a larger
benefit, as expected from our theory.

Transposition Distance MMD (training) MMD (single) MMD (double) SHD

0 0.030±0.007 0.047±0.008 0.041±0.004 2
1 0.057±0.028 0.058±0.030 0.181±0.048 6
10 0.042±0.007 0.041±0.009 0.119±0.023 11

Table 4: A simple simulation study. On a 5-node DAG, we test the model performance with
varying transposition distances of the identified intervention targets. For sample generations, we
report MMD and its standard error. The training metric is evaluated on all single-node interventions,
where the third and forth rows are evaluated based on held-out samples of single and double-node
interventions.
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Figure 17: An illustration of double-node intervention extrapolation in simulation. We visualize
16 samples of the double-node intervention on nodes 2, 3. The generated samples are shown on the
left, where the ground-truth samples are shown on the right.

I Extended Discussion

I.1 Limitations and Future Work

This paper opens up several direction for future theoretical and empirical work, which we now
discuss.

Theoretical Perspective. We have focused on the setting where a single-node intervention on each
latent node is available, similar to prior works on causal disentanglement [3, 53]. However, we
highlight three issues in this setup and discuss potential remedies. First, by assuming access to data
from intervening on every single latent node, we inherently possess partial knowledge of all the latent
variables, even though we are unaware of their specific values or whether multiple interventions act
on the same variable. The setups that do not assume interventions but the existence of anchored
observed variables (i.e., variables with only one latent parent) [19, 9, 64, 65] face the same issue.
This assumption can be unsatisfying in the context of causal representation learning, where the
causal variables are assumed to be entirely unknown. Second, it may be impossible to intervene
on all latent causal variables, especially in scenarios involving latent confounding. For instance, in
climate research, it might be impossible to intervene on a variable like the precipitation level in a
particular region. Finally, the assumption of single-node interventions can be overly optimistic in
many applications. For example, in the case of chemical perturbations on cells, it is known that
drugs often target multiple variables.

Nevertheless, the results obtained in the current setup can serve as a foundation and stepping stone
towards the ultimate goal of general causal representation learning. On one hand, our analysis
showed what can be learned from each intervention. This is helpful when considering cases where
only a subset of the latent causal variables can be intervened on. On the other hand, the key tech-
niques employed in our proofs can be extended to the multi-node setting. Specifically, in the latent
space, one should expect only the marginals of variables downstream of a multi-node intervention
to change.

Moreover, we have primarily focused on the infinite data regime for analyzing identifiability. Con-
sidering the expensive nature of obtaining interventional samples in practice, there is ample room
for further investigation concerning sample complexity. Aside from the feasibility of identifiability,
many applications are concerned with specific downstream tasks. Full identification of the under-
lying causal representations provides a comprehensive understanding of the system and would be
beneficial for multiple downstream tasks. However, in certain cases, full identification may be un-
necessary or inefficient for a particular task. Therefore, it is of interest to develop task-specific
identifiability criteria for causal representation learning.

Empirical Perspective. We make two remarks on the VAE framework proposed in this work.
First, as shown in our experiments in Section 6, our proposed framework can still be applied in
settings with multi-node interventions and fewer single-node interventions. For instance, one can
model multi-node interventions by reducing the temperature in the softmax layer. Second, due
to the permutation symmetry of CD-equivalence, we impose an upper-triangular structure on the
adjacency matrix in the deep SCM and learn the intervention targets. Alternatively, when there is
exactly one intervention available for each latent node, one can instead prefix the intervention targets
and learn the adjacency matrix. Specifically, we can set the intervention targets of I1, ..., Ip to be
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a random permutation of [p]. Subsequently, the adjacency matrix can be learned for example via
the nontears penalty [70] to enforce acyclicity. However, both methods inherit the combinatorial
nature of learning a DAG, and therefore their performance may require large sample sizes and can
be sensitive to initialization [27]. Consequently, endeavors to improve the optimization process and
robustness of such models would be valuable.

I.2 Discussion of Contemporaneous Works.

This work is concurrent with a number of other works in interventional causal representation learn-
ing. Unless otherwise noted, all of these works consider single-node interventions, as we do in
this paper. Most similar to our setting is [59], which studies identifiability of nonparametric latent
SCMs under linear mixing. They consider the case where exactly one intervention per latent node
is available, which is an easier setting as we discussed in Section 2. In that setting, they provide a
characterization of the learned causal variables. On the other hand, [7] studies identifiability of a
linear latent SCM under nonparametric mixing. They also consider both hard and soft interventions,
but in the form of linear SCM with additive Gaussian noises. Three concurrent works [25, 60, 35]
consider both nonparametric SCMs and nonparametric mixing functions: [60] prove identifiability
for the case of p = 2 latent variables when there is one intervention per latent variable. They provide
an extension to arbitrary p for settings where there are paired interventions on each latent variable.
Meanwhile, [25] consider arbitrary p, without paired interventions. However, they use only condi-
tional independence statements over the observed variables X to recover the latent causal graph. As
a result, their identifiability guarantees place restrictions on the latent causal graph, unlike the other
works discussed here. The third work [35] studies the Causal Component Analysis problem, where
the latent causal graph is assumed to be known. Finally, we note that other concurrent works study
causal representation learning without interventional data [40, 32] or with vector-valued contexts
instead of interventions [31].
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