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Abstract

Semi-implicit variational inference (SIVI) has been introduced to expand the an-1

alytical variational families by defining expressive semi-implicit distributions in2

a hierarchical manner. However, the single-layer architecture commonly used in3

current SIVI methods can be insufficient when the target posterior has complicated4

structures. In this paper, we propose hierarchical semi-implicit variational infer-5

ence, called HSIVI, which generalizes SIVI to allow more expressive multi-layer6

construction of semi-implicit distributions. By introducing auxiliary distributions7

that interpolate between a simple base distribution and the target distribution, the8

conditional layers can be trained by progressively matching these auxiliary dis-9

tributions one layer after another. Moreover, given pre-trained score networks,10

HSIVI can be used to accelerate the sampling process of diffusion models with11

the score matching objective. We show that HSIVI significantly enhances the12

expressiveness of SIVI on several Bayesian inference problems with complicated13

target distributions. When used for diffusion model acceleration, we show that14

HSIVI can produce high quality samples comparable to or better than the existing15

fast diffusion model based samplers with a small number of function evaluations16

on various datasets.17

1 Introduction18

Variational inference (VI) is an approximate Bayesian inference method that is gaining in popularity,19

where one tries to find an approximation to the target posterior distribution using an optimization20

approach (Jordan et al., 1999; Wainwright & Jordan, 2008; Blei et al., 2016). To do that, it first posits21

a family of variational distributions and then seeks the closest member from this family that minimizes22

some statistical distance to the target posterior, usually the Kullback-Leibler (KL) divergence. As the23

posterior is not analytically available, an equivalent formulation is often adopted in practice where24

one maximizes the evidence lower bound (ELBO) instead (Jordan et al., 1999).25

One classical VI method is mean-field VI, which assumes a factorizable structure of the variational26

distributions over the parameters or latent variables (Bishop & Tipping, 2000). This often leads27

to closed-form coordinate-ascent update rules when certain conditional conjugacy conditions are28

satisfied. In practice, the conditional conjugacy may not hold and the true posterior could be much29

more complicated than what a factorized variational distribution can accurately approximate. In30

recent years, several attempts have been made in VI that alleviate these constraints by designing more31

flexible variational families (Jaakkola & Jordan, 1998; Saul & Jordan, 1996; Giordano et al., 2015;32

Tran et al., 2015; Rezende & Mohamed, 2015; Dinh et al., 2017; Kingma et al., 2016; Papamakarios33

et al., 2019), together with generic training algorithms via Monte Carlo gradient estimators (Nott34

et al., 2012; Paisley et al., 2012; Ranganath et al., 2014; Rezende et al., 2014; Kingma & Welling,35

2014). While successful, these approaches all assume tractable densities of variational distributions.36
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To further expand the capacity of variational families, one approach is to incorporate the implicit37

models that have intractable densities but are easy to sample from (Huszár, 2017; Tran et al., 2017;38

Mescheder et al., 2017; Shi et al., 2018a,b; Song et al., 2019). However, as the densities are intractable39

for implicit models, one often resorts to density ratio estimation for ELBO evaluation during training,40

which is known to be difficult in high dimensional settings (Sugiyama et al., 2012). To avoid density41

ratio estimation, semi-implicit variational inference (SIVI) has been proposed where the variational42

distributions are formed through a semi-implicit hierarchical construction, and various training criteria43

have been employed (Yin & Zhou, 2018; Moens et al., 2021; Titsias & Ruiz, 2019; Yu & Zhang,44

2023).45

While striking a good balance between approximation flexibility and training efficiency, current SIVI46

methods often use a single conditional layer which can be insufficient when the target posterior47

possesses complicated structures (e.g., multimodality, see an example in Section 5.1). To enhance48

the expressiveness of single-layer models, an intuitive but effective approach is to extend them to49

multi-layer hierarchical models (Vahdat & Kautz, 2020; Ranganath et al., 2016; Sobolev & Vetrov,50

2019). In this paper, we propose hierarchical semi-implicit variational inference (HSIVI), which is a51

generalization of SIVI that allows multiple conditional layers. Instead of training the hierarchical52

semi-implicit model end to end, we introduce auxiliary distributions that interpolate between a simple53

base distribution and the target distribution to guide the intermediate semi-implicit distributions54

toward the target distribution. The conditional layers are then trained sequentially to match these55

auxiliary bridging distributions given the fitted semi-implicit distributions from the previous layers56

(Figure 1), using different criteria from before. This way, HSIVI allows progressive learning of the57

target distribution that significantly reduces the burden of each conditional layer. Moreover, HSIVI58

with the score matching objective can also be used to accelerate the sampling process of diffusion59

models where the pre-trained score networks corresponding to different noise levels provide a natural60

sequence of bridging distributions. In experiments, we demonstrate the effectiveness of HSIVI on61

both Bayesian inference tasks with complicated target distributions and diffusion model acceleration.62

2 Background on semi-implicit variational inference63

The semi-implicit variational family (Yin & Zhou, 2018; Titsias & Ruiz, 2019) is defined as64

qϕ(x) =

∫
qϕ(x|z)q(z)dz, (1)

where ϕ are the variational parameters, qϕ(x|z) is called the conditional layer, and q(z) is called65

the mixing layer. This variational family is said to be semi-implicit as qϕ(x|z) is required to be66

explicit and q(z) is often implicit. The semi-implicit variational family is capable of capturing more67

complicated dependencies between variables (Yin & Zhou, 2018; Titsias & Ruiz, 2019; Yu & Zhang,68

2023) than explicit variational families without the hierarchical structure. Given the observed data D,69

the classical VI methods often use the evidence lower bound (ELBO) for training, which is defined70

as ELBO := Eqϕ(x) [log p(D,x)− log qϕ(x)]. However, as qϕ(x) is no longer tractable in SIVI,71

alternative training objectives have been introduced.72

ELBO related objectives Yin & Zhou (2018) considered a sequence of lower bounds of the ELBO73

LSIVI-LB(p(x|D)∥qϕ(x)) := Ez∼q(z),x∼qϕ(x,z)E{z(i)}Ki=1
i.i.d.∼ q(z)

log
p(D,x)

1
K+1

(
qϕ(x|z) +

∑K
k=1 qϕ(x|z(k))

) .
(2)

It is an asymptotically exact surrogate in the sense that limK→∞ LSIVI-LB = ELBO. Titsias & Ruiz74

(2019) proposed unbiased implicit variational inference (UIVI) which uses samples from the inverse75

conditional distribution qϕ(z|x) (from an MCMC run, e.g. Hamiltonian Monte Carlo (Neal, 2011)) to76

provide an unbiased gradient estimator of the exact ELBO. See more details of UIVI in Appendix B.77

Score matching objective Besides the ELBO, score based distance measures have also been used78

for variational inference where the score function S(x) := ∇x log p(x|D) = ∇x log p(D,x) is79

assumed to be tractable (Liu et al., 2016; Zhang et al., 2018; Hu et al., 2018). Yu & Zhang (2023)80

considered the following Fisher divergence between the target distribution and the semi-implicit81

variational distribution82

DFisher(p(x|D)∥qϕ(x)) := Ex∼qϕ(x)∥S(x)−∇x log qϕ(x)∥22. (3)
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Figure 1: An example for 4-layer HSIVI. The target distribution p0(x) is a Gaussian mixture and
the auxiliary distributions {pi(x)}3i=0 are constructed using the diffusion bridge. The auxiliary
distributions are plotted in the squares, where the blue heatmap describes the probability density and
the arrows represent the score functions of the auxiliary distributions.

By reformulating DFisher as the maximum of the following optimization problem83

DFisher(p(x|D)∥qϕ(x)) = max
f(x)

[
2f(x)T (S(x)−∇x log qϕ(x))− ∥f(x)∥22

]
,

and using a similar trick as in denoising score matching (Vincent, 2011; Song & Ermon, 2019), one84

can transform the minimization of DFisher into the following minimax problem which is tractable85

min
ϕ

max
ψ
LSIVI-SM(p(x|D)∥qϕ(x)) := Ez∼q(z),x∼qϕ(x|z)

[
2fψ(x)

T [S(x)−∇x log qϕ(x|z)]− ∥fψ(x)∥22
]
.

(4)
In practice, fψ(x) is parametrized using neural networks. The above minimax optimization problem86

can be efficiently solved by optimizing ψ and ϕ alternately.87

3 Hierarchical semi-implicit variational inference88

The semi-implicit variational family qϕ(x) in equation (1) is indeed a single-layer model in the sense89

that it contains only one conditional layer. Our main idea is to expand this single-layer semi-implicit90

variational family into its multi-layer variants and introduce a sequence of auxiliary distributions to91

guide the semi-implicit distributions toward the target distribution. This leads to a new SIVI method92

which we call hierarchical semi-implicit variational inference (HSIVI). We start with the following93

definition which is motivated by equation (1).94

Definition 1 (Hierarchical Semi-Implicit Distribution). Let xT ∼ qT (xT ) for some T ∈ N∗,95

where qT (xT ) is called the variational prior. Let qt(xt|xt+1;ϕt) be the t-th conditional layer for96

0 ≤ t ≤ T − 1. Denote {ϕk}T−1
k=t by ϕ≥t. The t-th layer hierarchical semi-implicit distribution97

qt(xt;ϕ≥t) is defined recursively from T − 1 to 0 by98

qt(xt;ϕ≥t) =

∫
qt(xt|xt+1;ϕt)qt+1(xt+1;ϕ≥t+1)dxt+1, 0 ≤ t ≤ T − 1, (5)

where qT (xT ;ϕ≥T ) := qT (xT ). Here, the t-th conditional layer qt(xt|xt+1;ϕt) is required to be99

explicit and reparametrizable with a tractable score function ∇xt
log qt(xt|xt+1;ϕt).100

Compared to the single-layer semi-implicit variational family (1), the family of hierarchical semi-101

implicit distributions provides a principled way to construct more expressive mixing layers using multi-102

layer architectures. Also, unlike the hierarchical variational models (Ranganath et al., 2016) which103

require an extra reverse model and explicit variational prior, hierarchical semi-implicit distributions104

inherit the advantage of SIVI that allows qt(xt;ϕ≥t) to be implicit, and as shown next, they do not105

require a reverse model and can be progressively trained using the simple algorithms of SIVI for each106

conditional layer, from t = T − 1 to t = 0.107

3.1 Progressive approximation with the auxiliary bridge108

In this section, we introduce a bridging technique for progressively approximating the target dis-109

tribution p(x) using hierarchical semi-implicit distributions. Rather than approximating p(x) with110

q0(x;ϕ≥0) directly, we construct a sequence of intermediate auxiliary distributions {pt(x)}T−1
t=0111

as a bridge between the target distribution p0(x) := p(x) and an easy-to-approximate distribution112

pT−1(x), to amortize the difficulty of one-pass fitting. A typical example of an auxiliary bridge is113

the geometric interpolation as described below.114
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Algorithm 1 Hierarchical semi-implicit variational inference (sequential training)

Input: Auxiliary bridge {pt(x)}T−1
t=0 ; initial value of parameters ϕ(0) = {ϕ(0)

i }
T−1
t=0 .

Output: The optimal parameters ϕ∗.
Initialization: ϕ← ϕ(0).
for t = T − 1 to 0 do

while not converge do
Sample a minibatch {x(k)

T }
K
k=1 from the variational prior qT (xT ).

if t < T − 1 then
Sequentially sample {x(k)

t+1}Kk=1 through q(xi|xi+1;ϕi) from i = T − 1 to i = t+ 1.
Detach the computation graphs from {x(k)

t+1}Kk=1.
end if
Update ϕt by optimizing the LSIVI-f (pt(xt)∥qt(xt;ϕ≥t)) based on the minibatch {x(k)

t+1}Kk=1.
end while
ϕ∗
t ← ϕt.

end for
ϕ∗ ← {ϕ∗

t }T−1
t=0 .

Example 1 (Geometric Interpolation). Let S(x) := ∇ log p(x) be the score function of target115

distribution p(x) and Sbase(x) := ∇ log pbase(x) be the score function of a base distribution pbase(x).116

In geometric interpolation (Neal, 2001; Bernton et al., 2019), each auxiliary distribution pt(x) for117

0 ≤ t ≤ T − 1 has the following probability density function (pdf) and score function118

pt(x) ∝ pbase(x)
1−λtp(x)λt , St(x) := ∇x log pt(x) = (1− λt)Sbase(x) + λtS(x), (6)

where {λt}T−1
t=0 is a non-negative decreasing sequence satisfying λ0 = 1.119

Intuitively, we expect the distance between two neighboring distributions pt(x) and pt+1(x) to120

be not too large so that it would be easy to construct a conditional distribution qt(xt|xt+1) such121

that pt(xt) ≈
∫
qt(xt|xt+1)pt+1(xt+1)dxt+1. Note that the auxiliary bridge {pt(x)}T−1

t=0 does not122

necessarily need to have analytical pdfs (up to a constant). In fact, it suffices if they have tractable123

score functions {St(x)}T−1
t=0 which lead to another type of auxiliary bridge (Example 2 in Section 4).124

3.2 Sequential training of HSIVI125

Given the auxiliary distributions {pt(xt)}T−1
t=0 , a natural approach is to progressively train the126

hierarchical semi-implicit distribution qt(xt;ϕ≥t) to match pt(xt) from t = T − 1 to t = 0. Let127

the parameters ϕt in the t-th conditional layer be independent across different ts. We first train128

qT−1(xT−1;ϕT−1) to match pT−1(xT−1) by optimizing ϕT−1 w.r.t. the single-layer SIVI objective129

LSIVI-f (pT−1(xT−1)∥qT−1(xT−1;ϕT−1)). For t = T − 2, . . . , 0, given the trained semi-implicit130

distribution qt+1(xt+1;ϕ≥t+1), we can fix it as the mixing layer and train the t-th conditional layer131

qt(xt|xt+1;ϕt) by optimizing ϕt w.r.t. the single-layer SIVI objective LSIVI-f (pt(xt)∥qt(xt;ϕ≥t))132

as well. Note this is fine as the mixing layer can be implicit in SIVI. Here, f is some distance criterion,133

e.g. LSIVI-LB in equation (2) or LSIVI-SM in equation (4). In this article, we mainly focus on LSIVI-LB134

and LSIVI-SM, while other distance criteria can also be applied. We summarize this sequential training135

procedure in Algorithm 1.136

Score based training In addition to the common assumption that pt(x) is known up to a constant,137

it is worth noting that LSIVI-LB is also applicable when only the score functions {St(x)}T−1
t=0 are138

available which is important for the diffusion bridge construction of auxiliary distributions in Example139

2. Concretely, assume qt(xt|xt+1;ϕt) is induced by a parametrized transform xt = ht(xt+1, ϵ;ϕt)140

where ϵ ∼ pϵ(ϵ) is a random noise. The only term in LSIVI-LB (pt(xt)∥qt(xt;ϕ≥t)) containing141

pt(xt) is Eqt(xt;ϕ≥t) log pt(xt) (see equation (2)) whose gradient takes the form142

∇ϕt
Eqt(xt;ϕ≥t) log pt(xt) = Eqt+1(xt+1;ϕ≥t+1)pϵ(ϵ)St (ht(xt+1, ϵ;ϕt))∇ϕt

ht(xt+1, ϵ;ϕt). (7)

In the training of HSIVI-SM, each term LSIVI-SM (pt(xt)∥qt(xt;ϕ≥t)) involves a nested optimization143

of ft(xt;ψt). When the score functions are computationally expensive, we find that an alternative144

parametrization ft(xt;ψt) := St(xt)− gt(xt;ψt) is useful to avoid the time-consuming evaluation145

of St(xt) when optimizing ψt in equation (4). The reason for this lies in Proposition 1. See146

Appendix C.2 for the proof of Proposition 1.147
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Proposition 1. Let qt(xt,xt+1;ϕ≥t) = qt(xt|xt+1;ϕt)qt+1(xt+1;ϕ≥t+1). The minimax optimiza-148

tion of LSIVI-SM (pt(xt)∥qt(xt;ϕ≥t)) is equivalent to149

min
ϕt

Eqt(xt,xt+1;ϕ≥t) [St(xt)− gt(xt;ψt)]
T
[St(xt) + gt(xt;ψt)− 2∇xt

log qt(xt|xt+1;ϕt)] ,

min
ψt

Eqt(xt,xt+1;ϕ≥t)∥gt(xt;ψt)−∇xt log qt(xt|xt+1;ϕt)∥22.

Marginal approximation v.s. joint approximation Previous works (Bernton et al., 2019; Bao150

et al., 2022) often construct a joint distribution p(x0:T ) and minimize KL(p(x0:T−1)∥q(x0:T−1))151

where q(x0:T−1) is a variational distribution. In HSIVI, we directly approximate pt(xt) using the152

semi-implicit variational distributions. When p(x0:T−1) is complex and T is small, the variational153

distribution q(x0:T−1) may be insufficient to fully capture the joint distribution p(x0:T−1). For154

example, the optimal fit of the joint distribution for diffusion models established by Analytic-155

DPM (Bao et al., 2022) does not guarantee that the marginal distributions would be approximated156

well (see Table 2 for comparison).157

4 Application to diffusion model acceleration158

4.1 Review of diffusion models159

Recently, diffusion models have shown great success on many generative modeling benchmarks,160

including image generation (Ho et al., 2020; Song et al., 2020a,b), graph generation (Niu et al., 2020),161

and text generation (Austin et al., 2021). Diffusion models work by adding noise to the training162

data in the forward process and then removing the noise to recover the data in the backward process,163

which can be integrated into a general stochastic differential equation (SDE) framework. The forward164

process {us}s∈[0,L] is usually described by165

dus = f(us, s)ds+ g(s)dws, u0 ∼ p0(·), (8)

where p0(·) is the data distribution, ws is a standard Brownian motion, and f(us, s) and g(s) are the166

drift and diffusion coefficients respectively. To generate samples from the data distribution, one can167

run the following backward process168

dus = [f(us, s)− g2(s)∇us
log ps(us)]ds+ g(s)dw̄s, uL ∼ pL(·), (9)

where ps(·) is the pdf of us and w̄s is a standard Brownian motion when time flows from L to169

0. As the score function ∇us
log ps(us) is intractable, we need to estimate it by denoising score170

matching (Vincent, 2011; Song et al., 2020b). See more details of diffusion models and the training171

objectives in Appendix A.172

4.2 Diffusion model acceleration via HSIVI173

While diffusion models prove effective for generative modeling, it often takes a large number of174

discretization steps in the backward process (9) to produce high quality samples, which caps their175

potential for real time applications. Note that the forward process (8) naturally provides another type176

of auxiliary bridge, which combined with HSIVI, can be used to accelerate the sampling process of177

diffusion models.178

Example 2 (Diffusion Bridge). Consider the forward process {us}s∈[0,L] with L > 0 (defined in179

equation (8)) in diffusion models. We choose T discrete time steps 0 ≈ s0 < · · · < sT−1 ≤ L and180

let xt := ust with probability density function pt(·). Assume each auxiliary distributions pt(·) for181

0 ≤ t ≤ T − 1 admits a score function as182

St(x) := ∇x log pt(x) ≈ S∗(x, st), 0 ≤ t ≤ T − 1,

where S∗(x, s) is a pre-trained score model with the denoising score matching loss (equation (13)183

in Appendix A). Let us denote S∗(x, st) by S∗
t (x) for short. With sufficient samples from the data184

distribution p0(x) and model capacity, the approximation S∗
t (x) can be reasonably accurate for185

almost all x and t (Song et al., 2020b).186

As the pre-trained score model provides a diffusion bridge from the simple distribution pT−1 (e.g.,187

standard Gaussian) to the data distribution, we can train the hierarchical semi-implicit distributions to188
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approximate the diffusion bridge within the HSIVI framework. Given the expressiveness of hierar-189

chical semi-implicit distributions, we may expect an accurate approximation of the data distribution190

with a small number T and hence acceleration can be achieved.191

However, the memory usage during the sequential training process for HSIVI might be large because192

of the necessity for independent parameters. Therefore, we may employ a parameter sharing scheme193

which is commonly assumed in diffusion models (Song & Ermon, 2019; Ho et al., 2020) such that194

different conditional layers share the same parameters ϕ. Note that sequential training is not suitable195

in this setting. Therefore, we propose a joint training procedure that minimizes a weighted sum of the196

SIVI objectives197

LHSIVI-f (ϕ) =

T−1∑
t=0

β(t)LSIVI-f (pt(xt)∥qt(xt;ϕ)) , (10)

where β(t) : {0, . . . , T − 1} → R+ is a positive weighting function and f is some distance criterion.198

See Algorithm 2 in Appendix C.3 for more details of joint training.199

More specifically, in this work, we mainly focus on building the diffusion bridge with variance200

preserving SDE (VP-SDE) (Song et al., 2020b) such that us|u0 ∼ N (
√
α(s)u0, (1− α(s))I) with201

a decreasing function α(s) of s. We use LHSIVI-SM in equation (10) for training and set the weighting202

function β(t) = 1− α(st) as recommended in Song et al. (2020b), which tends to train layers that203

are far from t = 0 first during the training, resembling the sequential training. Another popular204

formulation of diffusion models is to fit a noise model ϵ∗(x, s) that predicts the noise added to a205

noisy sample x at time s (Ho et al., 2020). HSIVI-SM also generalizes to the case where a pre-trained206

noise model is available. The pre-trained noise model forms a (generalized) diffusion bridge by207

letting ϵ∗t (x) = ϵ∗(x, st), and we call the corresponding training method “ϵ-training”. We provide a208

reparametrized objective function L̃HSIVI-SM for ϵ-training in Appendix C.4.209

Several efforts have been made to accelerate the sampling process of diffusion models, including210

faster numerical ordinary differential equation (ODE) solvers (Song et al., 2020a; Zhang & Chen,211

2022; Lu et al., 2022) and distillation techniques (Luhman & Luhman, 2021; Salimans & Ho, 2022;212

Zheng et al., 2022). Our approach is different from these previous efforts in that we accelerate the213

stochastic diffusion model directly (hence would provide more diverse samples (Figure 6)) and do214

not require sampling datasets from the diffusion models prior to distillation which is computationally215

expensive. From a Bayesian perspective, HSIVI is related to Song & Ermon (2019), where the216

authors used the annealed Langevin dynamics guided by a pre-trained score model to sample from217

the data distribution. By solving this problem using a variational inference approach, HSIVI enjoys218

faster sampling speed and scales better to high-dimensional data.219

5 Experiments220

In this section, we first compare HSIVI to its single-layer counterpart, SIVI, on two inference tasks.221

We use the sequential training method where each conditional layer in the hierarchical semi-implicit222

variational distributions has independent parameters. We then apply HSIVI-SM to diffusion model223

acceleration on various datasets. As the memory consumption for generative models is large, we use224

the joint training method where the conditional layers in hierarchical semi-implicit distributions have225

shared parameters across different ts. For all experiments, each conditional layer is modeled as a226

Gaussian distribution with parametrized mean and variance. More details of the model architectures227

and hyper-parameters are included in Appendix E.228

5.1 Target distribution approximation229

Gaussian mixture model We first evaluate HSIVI and SIVI on a two-dimensional Gaussian230

mixture model. The target distribution p(x) takes the form p(x) =
∑8
i=1 1/8 · N (x;µi, σ

2I) where231

µi = [10 cos( iπ4 ), 10 sin(
iπ
4 )]

T , σ = 1. For HSIVI, we construct an auxiliary bridge of T = 5 with232

geometric interpolation in Example 1, where pbase(x) = N (x;0, I) and λt = 1− t/5. The results233

are presented in Figure 2. Note that the modes in this Gaussian mixture model are far apart from each234

other, and both SIVI-LB and SIVI-SM are trapped in local modes. In contrast, both HSIVI-LB and235

HSIVI-SM discover all modes and provide an accurate approximation of the target distribution with236

HSIVI-SM being better for recovering the right scale of variance.237
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Figure 2: Comparison of 10,000 generated samples from SIVI and 5-layer HSIVI on a two-
dimensional Gaussian mixture model (blue).
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Figure 3: The posterior estimates obtained by different methods. For each method, we collect 100,000
samples to calculate the sample mean and confidence interval.

High-dimensional conditioned diffusion The second example is a high-dimensional Bayesian238

inference problem arising from the following Langevin SDE239

dxs = 10xs(1− x2s)ds+ dws, (11)

where x0 = 0 and ws is a one-dimensional standard Brownian motion. This system describes the240

motion of a particle with negligible mass trapped in an energy potential with thermal fluctuations241

represented by the Brownian forcing (Cui et al., 2016). Using an Euler-Maruyama scheme with step242

size ∆s = 0.01 on a time interval [0, 3], we discretize the SDE (11) into x = (xd1 , . . . , xd300) where243

di = 0.01i, which gives the prior distribution pprior(x) of the 300-dimensional variable x. The noisy244

observations y is obtained by y = x+ ξ, where ξ ∼ N (0, σ2I) with σ = 0.1. Our goal is to infer245

the posterior distribution of the latent states p(x|y) ∝ pprior(x)p(y|x). The ground truth is formed246

by running 100,000 independent stochastic gradient Langevin dynamics (SGLD) chains with a step247

size of 0.0001 and collecting the results after 10,000 iterations.248

For HSIVI, we form the auxiliary bridge using geometric interpolation with pbase(x) = N (x;y, σ2I)249

and λt = 1 − t/(T − 1) for t = 0, . . . , T − 1. Figure 3 shows the estimated posteriors obtained250

by different methods. We see that SIVI-SM severely underestimates the variance. With T = 5251

layers, HSIVI-SM fits the variance better and hence provides more accurate posterior estimates.252

For both HSIVI-SM and HSIVI-LB, the estimated covariance matrix becomes more accurate as T253

increases (Table 3 in Appendix D.2), demonstrating the effectiveness of hierarchical models for fitting254

complicated distributions.255

5.2 Diffusion model acceleration256

2D toy examples In this toy model example, we test four synthetic 2D datasets: Checkerboard,257

Circles, Moons, and Swissroll (Pedregosa et al., 2011). We first pre-train the score model S∗(x, s)258

for s ∈ [0, 1] with quadratic noise schedule 1− α(s) = s2. For constructing the T -layer diffusion259

bridge, we select {st}T−1
t=0 so that 1 − α(st) = [0.01 + (

√
0.8 − 0.01)t/T ]2. Figure 4 shows the260

sample trajectories (x9, x7, x5 and x0) progressively generated from 10-layer HSIVI-SM. We see261

clearly how the semi-implicit distributions are guided towards the target distribution and all modes are262

discovered. We also report the Jensen-Shannon (JS) divergence between the target distributions and263

the estimated distributions in Table 1. We see that HSIVI-SM significantly improves upon DDIM and264
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Figure 4: Sample trajectories generated from 10-layer HSIVI-SM on four 2D toy examples. The
arrows represent the estimated score function in HSIVI-SM. The sample size is 10,000.

Table 1: JS divergences between the target distribution and the variational approximation on the four
toy datasets. The results of HSIVI-SM are averaged by 5 independent runs with standard deviation in
the subscripts. JS divergences are calculated by the ITE package (Szabó, 2014) with 10,000 samples.

Name T = 5 T = 10 T = 1000

DDPM DDIM HSIVI-SM DDPM DDIM HSIVI-SM DDPM

Checkerboard 0.891 0.591 0.068±0.006 0.521 0.373 0.030±0.005 0.058
Swissroll 1.037 0.332 0.126±0.006 0.334 0.164 0.082±0.003 0.042
Circles 0.907 0.397 0.083±0.015 0.364 0.201 0.073±0.005 0.032
Moons 0.961 0.355 0.096±0.013 0.352 0.137 0.059±0.007 0.036

DDPM in both cases with 5 and 10 steps. Also, 10-layer HSIVI-SM is comparable to DDPM with265

1000 full steps. See Figure 9 in Appendix D.3 for visualization of samples from different methods.266

MNIST On MNIST, we use the noise model ϵ∗(x, s) instead of the score model and use ϵ-training267

to train HSIVI-SM. The structure of ϵ∗(x, s) follows the UNet in Ho et al. (2020) by reducing the268

number of input and output channels to one. With the same noise schedule employed in Song et al.269

(2020a), we first pre-train the noise model ϵ∗(x, s) with 1000 discretization steps and then form270

the T -layer diffusion bridge for HSIVI-SM by selecting T discrete time steps. Figure 5 shows the271

samples from DDPM, DDIM, and HSIVI-SM with T = 5 steps. We see that the samples produced272

by HSIVI-SM are much cleaner and more recognizable than those produced by DDPM and DDIM.273

CIFAR-10 & CelebA On both CIFAR-10 and CelebA, the structure of our pre-trained noise model274

ϵ∗(x, s) follows the UNet structure1(Ronneberger et al., 2015) employed by Ho et al. (2020), instead275

of the huge VP deep continuous-time model (Song et al., 2020b) that has more channels and layers.276

Since this generative modeling has been formulated as a score-based VI problem, we do not have to277

use any training data for training HSIVI-SM. Following the noise schedule employed in Song et al.278

(2020a), we first pre-train the noise model ϵ∗(x, s) with 1000 discretization steps and then form the279

T -layer diffusion bridge for HSIVI-SM by selecting T discrete time steps as before. For HSIVI-280

SM with ϵ-training, the conditional layer qt(·|xt+1;ϕ) is modeled as a Gaussian distribution with281

mean µt(xt+1;ϕ
µ) and diagonal variance matrix Σt(ϕ

σ) where {ϕµ, ϕσ} = ϕ are the variational282

parameters. In our implementations, both µt(xt+1;ϕ
µ) and ft(xt;ψ) use the same architecture as283

ϵ∗(x, s). The number of layers, which is also the number of function evaluations (NFE), is set to be284

T = 5, 10, 15 in our experiments. We train HSIVI-SM with the same setting for T = 10, 15. The285

5-layer HSIVI-SM is trained by further fine-tuning the well-trained 15-layer HSIVI-SM and we find286

this strategy leads to better results. During each nested training loop of ft(xt;ψ), we update ψ 20287

times before each update of ϕ, since we find ft(xt;ψ) needs more training empirically to provide288

reliable guidance.289

1In our implementations, we reduce one downsampling block and one upsampling block in the UNet for
CelebA so that the UNets used for the two datasets have the same structure. Therefore, the number of parameters
for HSIVI-SM is 0.49× less than other methods on CelebA in Table 2. See Figure 12 and Table 4 in Appendix
D.5 for the sampling time and the number of parameters comparison.
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DDPM (T=5) DDIM (T=5) HSIVI-SM (T=5)

Figure 5: Comparison of the quality of uncurated samples generated by DDPM, DDIM, and HSIVI-
SM with 5 discrete time steps on MNIST.

Table 2: Sample quality measured by FID (↓) on CIFAR-10 and CelebA, with a varying number of
function evaluations (NFE). Results of baselines are calculated by running their official codes, where
the architectures of score model (or noise model) are the UNet employed in Ho et al. (2020).

Dataset CIFAR-10 (32×32) CelebA (64×64)

NFE 5 10 15 5 10 15

DDPM (Ho et al., 2020) 320.16 278.65 198.00 366.10 309.95 206.92
DDIM (Song et al., 2020a) 41.53 13.73 8.78 27.38 10.89 7.78
FastDPM (Kong & Ping, 2021) 67.64 9.85 6.16 27.63 15.44 12.05
Analytic-DDPM (Bao et al., 2022) 93.16 34.54 20.03 50.92 28.93 21.84
Analytic-DDIM (Bao et al., 2022) 51.86 14.08 8.65 29.40 15.74 12.25
DPM-Solver-fast (Lu et al., 2022) 329.13 10.89 4.67 355.96 6.76 2.98
HSIVI-SM (ours) 6.27 4.31 4.17 8.29 4.95 4.66

x 9

seed 1 seed 2 seed 3 seed 4 seed 5

x 6
x 3

x 0

Figure 6: Sample trajectories of 10-layer HSIVI-
SM with the same starting point x10 on CelebA.

For each method, we draw 50,000 samples and290

use the Fréchet inception distance (FID) score291

(Karras et al., 2022) to evaluate the sample qual-292

ity (Table 2). We find that HSIVI-SM performs293

on par or better than the other baselines on both294

CIFAR-10 and CelebA, and the advantage is295

evident when the NFE is small. The sampling296

trajectories of 10-layer HSIVI-SM on CelebA297

with the same starting point but different ran-298

dom seeds are shown in Figure 6. We see that299

HSIVI-SM is capable of producing more diverse300

samples due to its stochastic nature, which is dif-301

ferent from existing ODE based fast diffusion302

model samplers.303

6 Conclusions304

We introduced HSIVI, a hierarchical semi-implicit variational inference method that enables more305

expressive multi-layer construction of semi-implicit distributions. Given appropriate auxiliary distri-306

butions that interpolate between a simple base distribution and the target distribution, the conditional307

layers in hierarchical semi-implicit distributions can be progressively trained one layer after another.308

In experiments, we showed that HSIVI outperforms previous single-layer SIVI methods on several309

Bayesian inference tasks with complicated posteriors. HSIVI can also be used to accelerate the310

sampling process of diffusion models, where pre-trained score networks serve as a natural sequence311

of bridging distributions, which allows for direct acceleration of the stochastic diffusion model and312

does not require expensive sampling from the diffusion models during training. We showed that313

HSIVI can produce high quality samples comparable to or better than existing fast diffusion model314

samplers with few function evaluations on various datasets. Limitations are discussed in Appendix F.315
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A Details of diffusion models451

Diffusion models work by adding noise to the training data in the forward process and then removing452

the noise to recover the data in the backward process, which can be integrated into a general stochastic453

differential equation (SDE) framework (Song et al., 2020b). The forward process {us}s∈[0,L] is454

usually described by the SDE455

dus = f(us, s)ds+ g(s)dws, u0 ∼ p0(·),

where p0(·) is the data distribution, ws is a standard Brownian motion, f(us, s) and g(s) are the456

drift and diffusion coefficient respectively. To generate samples from the data distribution, one can457

run the following reversed SDE458

dus = [f(us, s)− g2(s)∇us log ps(us)]ds+ g(s)dw̄s, uL ∼ pL(·),

where ps(·) is the probability density function (pdf) of us and w̄s is a standard Brownian motion459

when time flows from L to 0. There exists deterministic process shares the same marginal probability460

densities {ps(·)}s∈[0,L] described by the following ordinary differential equation (ODE)461

dus = [f(us, s)−
1

2
g2(s)∇us log ps(us)]ds, uL ∼ pL(·),

called probability flow (PF) ODE.462

In practice, Song et al. (2020b) and Kingma et al. (2021) designed several examples of the forward463

process such that it diffuses the data distribution p0(·) to a fixed unstructured distribution pL(·).464

Here we mainly consider the Variance Preserving SDE (VP-SDE) used in DDPM (Ho et al., 2020;465

Song et al., 2020b). Let the drift coefficient f(us, s) =
d logα(s)

2ds us and the diffusion coefficient466

g2(s) = −d logα(s)
ds , where α(s) ∈ R+ is a decreasing smooth function with α(0) = 1, α(L) ≈ 0.467

Then the distribution of us conditioned on u0 is explicit as468

us|u0 ∼ N
(√

α(s)x̄0, (1− α(s))I
)
, i.e. us =

√
α(s)u0 +

√
1− α(s)ϵ, (12)

where ϵ is a standard Gaussian noise. In practice, diffusion models use a neural network Sθ(us, s)469

to approximate the score function Sθ(us, s) by optimizing the denoising score matching objective470

(Vincent, 2011)471

Ldsm(θ, ω(s)) :=
1

2

∫ L

0

ω(s)Eu0∼p0(u0),ϵ∼N (0,I)

∥∥∥Sθ(us, s) + ϵ/
√

1− α(s)
∥∥∥2
2
ds, (13)

where ω(s) is a positive weighting function. Instead of modeling the score function, Ho et al. (2020)472

proposed to predict the conditional noise ϵ based on ut. This leads to the following DDPM loss473

Lddpm(θ, ω̄(s)) :=
1

2

∫ L

0

ω̄(s)Eu0∼p0(u0),ϵ∼N (0,I)∥ϵθ(us, s)− ϵ∥22ds, (14)

where ω̄(s) is a positive weighting function. In fact, we have the relationship474

Sθ(us, s) = −ϵθ(us, s)/
√
1− α(s). (15)

We call Ldsm “score-prediction” training and Lddpm “ϵ-prediction” training.475

With the pre-trained score model Sθ(us, s) or noise model ϵθ(us, s), Song et al. (2020b) shows that476

the samples of p0(·) can be generated by simulating the backward SDE, e.g. the sampling scheme477

of DDPM (Ho et al., 2020). Moreover, Bao et al. (2022) proposed Analytic-DPM, the optimal478

discretization form responding to the KL divergence of the joint distribution on the discrete time479

steps. Also, several high-order ODE solvers (Song et al., 2020a; Zhang & Chen, 2022; Lu et al.,480

2022) were proposed to achieve faster sampling.481

B More details of UIVI482

Unlike optimizing the surrogate ELBO, Titsias & Ruiz (2019) proposed unbiased implicit variational483

inference (UIVI) which is based on an unbiased gradient estimator of the exact ELBO. More484
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specifically, consider a reparametrizable conditional qϕ(x|z) such that x = Tϕ(z, ϵ), ϵ ∼ qϵ(ϵ) ⇔485

x ∼ qϕ(x|z), then486

∇ϕELBO = ∇ϕEϵ∼qϵ(ϵ),z∼q(z)

[
log p(D,x)− log qϕ(x)|x=Tϕ(z,ϵ)

]
= Eϵ∼qϵ(ϵ),z∼q(z)

[
gmod
ϕ (z, ϵ) + gent

ϕ (z, ϵ)
]
,

where487

gmod
ϕ (z, ϵ) := ∇x log p(D,x)|x=Tϕ(z,ϵ)

∇ϕTϕ(z, ϵ),

gent
ϕ (z, ϵ) := − Eqϕ(z′|x)∇x log qϕ(x|z′)

∣∣
x=Tϕ(z,ϵ)

∇ϕTϕ(z, ϵ). (16)

The gradient term in equation (16) involves an expectation w.r.t. the reverse conditional qϕ(z|x)488

which is be estimated using an MCMC sampler (e.g., Hamiltonian Monte Carlo (Neal, 2011)) in489

UIVI. However, the inner-loop MCMC runs may require long iterations for convergence.490

C More details of HSIVI491

C.1 Score-based training of HSIVI-LB492

In the sequential training of HSIVI-LB, although the objective LSIVI-LB (pt(xt)∥qt(xt;ϕ≥t)) is493

calculated based on pt(x), the gradient of it w.r.t. ϕt has a closed form containing only the score494

function St(x) without knowing the corresponding pdfs. This derivation is important in the tasks495

where score functions of the auxiliary distributions are tractable while pdfs (up to a constant) of496

them are unavailable (for example, the diffusion bridge in Example 2). Concretely, assume the497

t-th conditional layer qt(xt|xt+1;ϕt) is induced by a parametrized transform xt = ht(xt+1, ϵ;ϕt)498

where ϵ ∼ pϵ(ϵ) is a random noise, since qt(xt|xt+1;ϕt) is reparametrizable according to Definition499

1. The only term in LSIVI-LB (pt(xt)∥qt(xt;ϕ≥t)) containing pt(xt) is Eqt(xt;ϕ≥t) log pt(xt) (see500

equation (2)) whose gradient takes the form501

∇ϕt
Eqt(xt;ϕ≥t) log pt(xt) = ∇ϕt

Eqt+1(xt+1;ϕ≥t+1)pϵ(ϵ) log pt(ht(xt+1, ϵ;ϕt))

= Eqt+1(xt+1;ϕ≥t+1)pϵ(ϵ)St (ht(xt+1, ϵ;ϕt))∇ϕt
ht(xt+1, ϵ;ϕt)

by the chain rule, where ∇ϕt
ht(xt+1, ϵ;ϕt) is the jacobian matrix of ht(xt+1, ϵ;ϕt).502

In our implementation of HSIVI (in both sequential training and joint training), we generally assume503

the conditional layer qt(·|xt+1;ϕt) is induced by504

ht(xt+1, ϵ;ϕt) = µt(xt+1;ϕt) +Σ
1/2
t (xt+1;ϕt)ϵ (17)

where Σt(xt+1;ϕt) is a positive definite covariance matrix and ϵ ∼ N (0, I) is a standard multivariate505

gaussian variable. In equation (17), ϕt should be replaced by ϕ in the joint training case.506

C.2 Proof of Proposition 1507

Proposition 1. Let qt(xt,xt+1;ϕ≥t) = qt(xt|xt+1;ϕt)qt+1(xt+1;ϕ≥t+1). The minimax optimiza-508

tion of LSIVI-SM (pt(xt)∥qt(xt;ϕ≥t)) is equivalent to509

min
ϕt

Eqt(xt,xt+1;ϕ≥t) [St(xt)− gt(xt;ψt)]
T
[St(xt) + gt(xt;ψt)− 2∇xt log qt(xt|xt+1;ϕt)] ,

min
ψt

Eqt(xt,xt+1;ϕ≥t)∥gt(xt;ψt)−∇xt
log qt(xt|xt+1;ϕt)∥22.

Proof of Propsition 1 The minimax optimization problem of LSIVI-SM (pt(xt)∥qt(xt;ϕ≥t)) is510

min
ϕt

max
ψt

Eqt(xt,xt;ϕ≥t)

[
2ft(xt;ψt)

T [St(xt)−∇xt
log qt(xt|xt+1;ϕt)]− ∥ft(x;ψt)∥22

]
according to equation (4). For minimization w.r.t. ϕt, this target is equivalent to511

Eqt(xt,xt+1;ϕ≥t)

[
2ft(xt;ψt)

T [St(xt)−∇xt
log qt(xt|xt+1;ϕt)]− ∥ft(x;ψt)∥22

]
=Eqt(xt,xt+1;ϕ≥t)ft(xt;ψt)

T [2St(xt)− ft(xt;ψt)− 2∇xt
log qt(xt|xt+1;ϕt)]

=Eqt(xt,xt+1;ϕ≥t)[St(xt)− gt(xt;ψt)]
T [St(xt) + gt(xt;ψt)− 2∇xt log qt(xt|xt+1;ϕt)].
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For maximization w.r.t. ψt, this target is equivalent to512

Eqt(xt,xt+1;ϕ≥t)

[
2ft(xt;ψt)

T [St(xt)−∇xt
log qt(xt|xt+1;ϕt)]− ∥ft(x;ψt)∥22

]
=− Eqt(xt,xt+1;ϕ≥t)∥ft(x;ψt)− St(xt) +∇xt

log qt(xt|xt+1;ϕt)∥22 + C

=− Eqt(xt,xt+1;ϕ≥t)∥gt(x;ψt)−∇xt
log qt(xt|xt+1;ϕt)∥22 + C,

whereC is a term that does not contain ψt. Therefore, the minimax optimization problem is equivalent513

to514

min
ϕt

Eqt(xt,xt+1;ϕ≥t) [St(xt)− gt(xt;ψt)]
T
[St(xt) + gt(xt;ψt)− 2∇xt

log qt(xt|xt+1;ϕt)] ,

min
ψt

Eqt(xt,xt+1;ϕ≥t)∥gt(xt;ψt)−∇xt
log qt(xt|xt+1;ϕt)∥22.

C.3 Joint training of HSIVI515

As mentioned in Section 4.2, when parameter sharing scheme is used in the conditional layers for516

application to diffusion model acceleration, sequential training from t = T −1 to t = 0 is not feasible.517

Therefore, we consider the following training objective518

LHSIVI-f (ϕ) =

T−1∑
t=0

β(t)LSIVI-f (pt(xt)∥qt(xt;ϕ)) .

An intuitive method is to randomly sample a batch of time steps {tk}Kk=1 and for each tk train519

LSIVI-f (ptk(xtk)∥qtk(xtk ;ϕ)) directly. However, sequentially sampling xtk through q(xi|xi+1;ϕ)520

from i = T − 1 to i = tk is still necessary in this case, making it memory-consuming to preserve the521

computation graphs of the entire sampling process.522

In order to reduce the cost of accumulating computation graphs, for each t, we treat qt+1(xt+1;ϕ) as523

a fixed mixing layer denoted by q̃t+1(xt+1) and only fit the conditional layer qt(xt|xt+1;ϕ). More524

specifically, for HSIVI-SM, we consider the following optimization problem525

min
ϕ

T−1∑
t=0

β(t)Eq̃t(xt,xt+1;ϕ) [St(xt)− gt(xt;ψ)]
T [St(xt) + gt(xt;ψ)− 2∇xt log qt(xt|xt+1;ϕ)] , (18)

min
ψ

T−1∑
t=0

β(t)Eq̃t(xt,xt+1;ϕ)∥gt(xt;ψ)−∇xt log qt(xt|xt+1;ϕ)∥22, (19)

where q̃t(xt,xt+1;ϕ) = qt(xt|xt+1;ϕ)q̃t+1(xt+1). In what follows, we demonstrate that the above526

problem also ensures an accurate approximation of the target score function.527

For equation (19), by the denoising score matching trick (Hyvärinen, 2005), the optimal point of ψ,528

denoted by ψ∗(ϕ), satisfies529

gt(xt;ψ
∗(ϕ)) = ∇xt log q̃t(xt;ϕ),

where q̃t(xt;ϕ) =
∫
q(xt|xt+1;ϕ)q̃(xt+1)dxt+1. By plugging in the optimal point ψ∗(ϕ), each530

term in equation (18) is equivalent to531

Eq̃t(xt,xt+1;ϕ) [St(xt)− gt(xt;ψ
∗(ϕ))]

T
[St(xt) + gt(xt;ψ

∗(ϕ))− 2∇xt log qt(xt|xt+1;ϕ)]

=Eq̃t(xt;ϕ)

[
S2
t (xt)− g2

t (xt;ψ
∗(ϕ))

]
− 2

∫∫
q̃(xt+1) [St(xt)− gt(xt;ψ

∗(ϕ))]
T ∇xtqt(xt|xt+1;ϕ)dxt+1dxt

=Eq̃t(xt;ϕ)[S
2
t (xt)− g2

t (xt;ψ
∗(ϕ))]− 2

∫
[St(xt)− gt(xt;ψ

∗(ϕ))]
T ∇xt q̃t(xt;ϕ)dxt

=Eq̃t(xt;ϕ)

[
S2
t (xt)− 2St(xt)

T∇xt log q̃t(xt;ϕ) + (∇xt log q̃t(xt;ϕ))
2
]

=Eq̃t(xt;ϕ)∥St(xt)−∇xt log q̃t(xt;ϕ)∥
2.

Therefore, the global optimal point ϕ∗ also ensures that the score of the variational distribution fits532

the target score function.533

Based on the training objectives (18) (19) mentioned above, we propose Algorithm 2 for joint training,534

which does not need to store the computation graphs of the sample sequences. Moreover, by assuming535

an increasing weighting function β(t), we assign larger weights β(t) for those t close to T −1, which536

tends to train the conditional layers that are close to T − 1 first during the training, resembling the537

sequential training.538
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Algorithm 2 Hierarchical semi-implicit variational inference (joint training)

Input: Auxiliary bridge {pt(x)}T−1
t=0 ; a weighting function β(t); initial value of parameters ϕ(0).

Output: The optimal parameters ϕ∗.
Initialization: ϕ← ϕ(0).
while not converge do

Uniformly sample K time steps {tk}Kk=0 with replacement from {0, . . . , T − 1}.
Sample a minibatch {x(k)

T }
K
k=1 from the base distribution qT (x).

for k = 1, . . . ,K and tk < T − 1 do
Sequentially sample x

(k)
tk+1 through q(xi|xi+1;ϕi) from i = T − 1 to i = tk + 1.

Detach the computation graphs from {x(k)tk+1}Kk=1.
end for
Update ϕ by optimizing the objective

∑K
k=1 β(tk)LSIVI-f (ptk (xtk )∥qtk (xtk ;ϕ)), where the k-th term is

computed based on a single sample x
(k)
tk+1.

end while
ϕ∗ ← ϕ.

C.4 ϵ-training of HSIVI-SM539

Another popular formulation of diffusion models is modeling the conditional noise ϵθ(us, s) by540

optimizing the DDPM loss in equation (14) where us =
√
α(s)u0 +

√
1− α(s)ϵ, introduced as541

“ϵ-prediction” in Appendix A. Now, let us assume the diffusion bridge is constructed with VP-SDE542

and we have a pre-trained model of conditional noise ϵ∗(u, s). Similarly, we construct a sequence of543

noise models {ϵ∗t (xt)}T−1
t=0 by letting xt = ust and ϵ∗t (x) = ϵ∗t (x, st) which forms a (generalized)544

T -layer diffusion bridge. We only discuss how ϵ-training can be applied to joint training and the545

derivation for sequential training is similar. In what follows, we consider the transformation of the546

joint training objective LHSIVI-SM for diffusion model acceleration.547

By letting the weighting function β(t) = 1− α(st) and considering the reparametrization form (17)548

where ϕt is replaced by ϕ, the objective of HSIVI-SM takes the form549

LHSIVI-SM(ϕ, ψ) =

T−1∑
t=0

Eq̃t(xt,xt+1;ϕ)

[
2
√
β(t)ft(xt;ψ)

T [
√
β(t)S∗

t (xt) +
√
β(t)Σ

−1/2
t (xt+1;ϕ)ϵ)]

−∥
√
β(t)ft(xt;ψ)∥22

]
.

(20)

where S∗
t (xt) is a pre-trained score model. Note that we have

√
β(t)S∗

t (xt) = −ϵ∗t (xt) by equation550

(15). Define551

f̃t(xt;ψ) =
√
β(t)ft(xt;ψ),

Σ̃t(xt+1;ϕ) = Σt(xt+1;ϕ)/β(t).

The HSIVI-SM objective (20) then takes the form552

L̃HSIVI-SM(ϕ, ψ) =

T−1∑
t=0

Eq̃t(xt,xt+1;ϕ)

[
2f̃t(xt;ψ)

T [−ϵ∗t (xt) + Σ̃
−1/2
t (xt+1;ϕ)ϵ)]− ∥f̃t(xt;ψ)∥22

]
(21)

and we call it the objective for ϵ-training. In our implementation of ϵ-training, we directly parametrize553

f̃t(xt;ψ) and Σ̃t(xt+1;ϕ) instead of ft(xt;ψ) and Σt(xt+1;ϕ). The objective (21) is more numer-554

ically stable since the magnitude of Σ̃t(xt+1;ϕ) is generally larger than Σt(xt+1;ϕ).555

D Additional results of experiments556

D.1 Gaussian mixture model557

For HSIVI on the Gaussian mixture model, the auxiliary distributions can also be constructed with558

diffusion bridge in Example 2. Concretely, the diffusion bridge is constructed by559

xt|x0 ∼ N (
√
αtx0, (1− αt)I), x0 ∼ p0(x0).
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Figure 7: Upper row: Sample trajectories progressively generated by 5-layer HSIVI-LB guided by
diffusion bridge. Bottom row: Sample trajectories progressively generated by 5-layer HSIVI-SM
guided by diffusion bridge.
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Figure 8: The posterior estimates for conditioned diffusion obtained by SIVI-LB and 5-layer HSIVI-
LB. For each method, we collect 100,000 samples to calculate the sample mean and confidence
interval.

where αt = α(st) with α(s) defined in equation (12). In this example, the score function St(xt) =560

∇xt log pt(xt) has an analytical form561

St(xt) = S0

(
xt;

√
αtµ, (αtσ

2 + 1− αt)I
)
, 0 ≤ t ≤ T − 1.

where S0(x;µ, σ
2I) is the score function of the Gaussian mixture model p(x;µ, σ2I) =

∑8
i=1 1/8 ·562

N (x;µi, σ
2I). We set the number of layers T = 5 and αt = 1 − t/5 for t = 0, . . . , 4. Figure 7563

shows the sample trajectories generated by HSIVI. We see clearly that semi-implicit distributions are564

guided toward the target distribution following the diffusion bridge.565

D.2 High-dimensional conditioned diffusion566

We also test SIVI-LB and HSIVI-LB for fitting the posterior in high-dimensional conditioned567

diffusion. The auxiliary bridge is formed using the same geometric interpolation as for HSIVI-SM,568

i.e.569

pbase = N (x;y, σ2I), λt = 1− t

T − 1
for 0 ≤ t ≤ T − 1.

From Figure 8, we see that SIVI-LB also underestimates the posterior variance and 5-layer HSIVI-LB570

fits the variance better. This phenomenon is also observed in the performances of SIVI-SM and571

HSIVI-SM in Figure 3. The quantitative comparison between different numbers of layers is reported572

in Table 3, where we see that for both HSIVI-SM and HSIVI-LB, the variational approximation gets573

more accurate with more layers. We also find that HSIVI-SM fits better than HSIVI-LB consistently.574
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(a) 5 steps

(b) 10 steps

Figure 9: Comparison of 10,000 samples generated by DDPM, DDIM, and HSIVI-SM.

Table 3: Frobenius distances between the estimated covariance matrices and that of the ground truth.
For each method, we collect 100,000 samples to estimate the covariance matrix.

T = 1 T = 2 T = 3 T = 5

HSIVI-SM 0.0886 0.0813 0.0431 0.0333
HSIVI-LB 0.0883 0.0825 0.0722 0.0433

D.3 Toy examples of diffusion model acceleration575

We compare the samples from DDPM, DDIM, and our proposed HSIVI-SM with 5 and 10 steps576

in Figure 9. We find that DDIM and DDPM fail to converge to the target distribution with a small577

number of steps, while HSIVI-SM can provide noticeably better samples. Moreover, DDPM tends to578

underestimate the variance as evidenced by the narrower region occupied by the samples.579

D.4 MNIST580

Figure 10 shows the samples from DDPM, DDIM, and HSIVI-SM with T = 10 steps. We see that581

the samples produced by HSIVI-SM is much cleaner and more recognizable than those produced by582

DDPM and DDIM.583

D.5 CIFAR-10 & CelebA584

Figure 11 shows the uncurated samples from our proposed HSIVI-SM method with different numbers585

of layers on CIFAR-10 and CelebA. We also compare the sampling time of different methods when586

NFE = 5 in Figure 12. One can observe that HSIVI-SM has almost the same running time as587

the simplest DDIM algorithm and is faster than other samplers on CelebA. Finally, we report the588

number of parameters in the score model (or noise model) used by different methods in Table 4,589

which corresponds to Table 2 and Figure 12. In our implementations of HSIVI-SM, the number of590

parameters in the noise model equals that in the conditional layer qt(xt|xt+1;ϕ). We find that our591

model with the same or less number of parameters still reaches comparable results in Table 2.592
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DDPM (T=10) DDIM (T=10) HSIVI-SM (T=10)

Figure 10: Comparison of the quality of uncurated samples generated by DDPM, DDIM, and HSIVI-
SM with 10 discrete time steps on MNIST.

T = 5 T = 10 T = 15

(a) CIFAR-10 (32×32)

T = 5 T = 10 T = 15

(b) CelebA (64×64)

Figure 11: Uncurated samples generated by HSIVI-SM with different numbers of layers on CIFAR-10
and CelebA.

E Experimental details593

E.1 Target distribution approximation594

In this part, we set the conditional layer to be qϕ(x|z) = N (x;µ(z;ϕµ),diag{exp(ϕσ)}) and the595

mixing layer to be N (0, I) for SIVI. Here, {ϕµ, ϕσ} = ϕ are the variational parameters. For T -layer596

hierarchical semi-implicit variational distribution with T ≥ 2, the variational prior qT (xT ) is set to597

be N (0, I). Each conditional layer qt(xt|xt+1;ϕt) for t = 0, . . . , T − 1 is a conditional Gaussian598

distribution599

qt(xt|xt+1;ϕt) = N (xt;µ(xt+1;ϕ
µ
t ),diag{exp(ϕσt )}).

Note that the ϕσ and {ϕσt }T−1
t=0 above are all vectors with the same dimension as x. We use sequential600

training for HSIVI in the two experiments in this part. The parameters {ϕt}T−1
t=0 are independent601
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Figure 12: Sampling time (↓) of different methods when NFE = 5 on CIFAR-10 and CelebA. Results
are averaged by 100 independent runs with a batch size of 128 on a single Nvidia 2080Ti GPU.

Table 4: Number of parameters in the score model (or noise model) used by different methods in
Table 2. ‘M’ refers to million.

CIFAR-10 CelebA

other methods 38.72M 78.66M
HSIVI-SM (ours) 38.72M 38.72M

across different t. If not otherwise specified, we use the Adam optimizer (Kingma & Ba, 2015) with602

β = (0.9, 0.99) for training.603

E.1.1 Gaussian mixture model604

For the experiment on the Gaussian mixture model, we construct 5-layer hierarchical semi-implicit605

variational distributions. The mean of each conditional layer µ(z;ϕµ) in SIVI or µ(xt+1;ϕ
µ
t ) in606

HSIVI has a residual form, i.e. µ(z;ϕµ) = z + µ̄(z;ϕµ) and µ(xt+1;ϕ
µ
t ) = xt+1 + µ̄(xt+1;ϕ

µ
t ),607

for t = 0, . . . , T − 1. µ̄(z;ϕµ) in SIVI and {µ̄(xt+1;ϕ
µ
t )}4t=0 in HSIVI all have the same structures608

of multi-layer perceptrons (MLPs) with layer widths [2, 50, 50, 2] and ReLU activation functions.609

For each t, ft(xt;ψt) in HSIVI-SM and f(x;ψ) in SIVI-SM are parameterized by MLPs with layer610

widths [2, 128, 128, 2] and ReLU activation functions.611

The noise levels in the diffusion bridge are 1 − α(st) = 1− t/5 for t ∈ {0, 1, · · · , 4}. We set the612

learning rate of variational parameters ϕt (or ϕ) to 0.001 and the learning rate of ψt (or ψ) to 0.002 in613

both SIVI and HSIVI. For HSIVI-LB and HSIVI-SM, we run 80000 variational parameter updates for614

every conditional layer; for SIVI-LB and SIVI-SM, we run 5×80000 variational parameter updates.615

For HSIVI-SM and SIVI-SM, in each nested training loop of ft(xt;ψt) (or f(x;ψ)), we update ψt616

(or ψ) one time after each update of ϕt (or ϕ). All the algorithms are trained with a batch size of 64.617

E.1.2 High-dimensional conditioned diffusion618

For the experiment on high-dimensional conditioned diffusion, we examine the performances of619

SIVI and 5-layer HSIVI. The ground truth is formed by running 100,000 independent stochastic620

gradient Langevin dynamics (SGLD) chains with a step size of 0.0001 and collecting the results621

after 10,000 iterations. For t = 0, . . . , T − 2, the mean of each conditional layer µ(xt+1;ϕ
µ
t ) in622

HSIVI has a residual form, i.e. µ(xt+1;ϕ
µ
t ) = xt+1 + µ̄(xt+1;ϕ

µ
t ). For SIVI and t = T − 1 in623

HSIVI, we assume µ(z;ϕµ) = µ̄(z;ϕµ) and µ(xt+1;ϕ
µ
t ) = µ̄(xt+1;ϕ

µ
t ). For each t, µ̄t(x;ϕ

µ
t ) in624

HSIVI and µ̄(z;ϕµ) in SIVI are MLPs with layer widths [300, 512, 512, 300] and ReLU activation625

functions. For each t, ft(xt;ψt) in HSIVI-SM and f(x;ψ) in SIVI-SM are MLPs with layer626

widths [300, 512, 512, 300] and ReLU activation functions. For both SIVI and HSIVI, we train each627

conditional layer for 100,000 iterations with a batch size of 128. For HSIVI-SM and SIVI-SM, in628

each nested training loop of ft(xt;ψt) (or f(x;ψ)), we update ψt (or ψ) one time after each update629

of ϕt (or ϕ). We set the learning rate to be 0.0001 for ϕt (or ϕ) and 0.0005 for ψt (or ψ).630
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E.2 Diffusion model acceleration631

In this part, we use the diffusion bridge to construct the auxiliary distributions and joint training as632

mentioned in Section 4.2. With a pre-trained score model or noise model, we consider the generative633

tasks as score-based variational inference problems. Therefore, we do not use any training data to634

train HSIVI-SM.635

For HSIVI-SM, the variational prior qT (xT ) is set to be N (0, I). To avoid the large memory consump-636

tion, we use the joint training method where the parameters of the conditional layers qt(xt|xt+1;ϕ)637

and ft(xt;ψ) are the same across different t. The t-th conditional layer is a conditional Gaussian638

distribution639

qt(xt|xt+1;ϕ) = N
(
xt;µt(xt+1;ϕ

µ),diag
(
σ2
t exp(ϕ

σ)
))
,

where {ϕµ, ϕσ} = ϕ are the variational parameters, ϕσ is a vector with the same dimension as x, and640

σt is a fixed scalar value. We use the generalized inference process in DDIM (Song et al., 2020a)641

with the noise level η > 0 to initialize µt(xt+1;ϕ
µ) and determine the value of σt for each t. If642

not otherwise specified, we use the Adam optimizer (Kingma & Ba, 2015) with β = (0.9, 0.99) for643

training.644

E.2.1 Toy examples of diffusion model acceleration645

For pre-training the score model S∗(x, s), we consider quadratic noise levels 1 − α(s) = s2 for646

s ∈ [0, 1]. We then train S∗(x, s) on 1000 fixed noise levels {1 − α(i/1000)}1000i=1 by optimizing647

the DDPM loss in equation (13) for 200,000 iterations with a learning rate of 0.0003 and a batch648

size of 100. For constructing the diffusion bridge, we choose T discrete time steps {st}T−1
t=0 so that649

1− α(st) = [0.01 + (
√
0.8− 0.1)t/T ]2 for t = 0, 1, . . . , T − 1.650

Model architecture The model architecture of S∗(x, s) is651

S∗(x, s) = MLPdec (MLPembx(x) +MLPembt(1− α(s))
)
,

where MLPdec is a decoder implemented as MLPs with layer widths [128, 128, 128, 2], MLPembx
652

is data embedding block implemented as MLPs with layer widths [2, 128], and MLPembt is a time653

embedding block implemented as MLPs with layer widths [256, 128, 128, 2]. We use the sinusoidal654

positional embedding (Vaswani et al., 2017) of 1 − α(s) as the input of MLPembt. All these three655

MLPs use GELU as activation functions. We use the generalized inference process with noise level656

η = 1.0 to initialize the conditional layers. The architecture of ft(xt;ψ) is the same as that of657

S∗(x, s). We initialize ft(xt;ψ) with S∗
t (xt) := S∗(xt, st).658

Training setting The learning rate is set to be 0.0002 for qt(xt|xt+1;ϕ) and 0.0005 for ft(xt;ψ)659

on Swissroll, Circles, and Moons for both T = 5, 10. On Checkerboard, the learning rate is set to be660

0.00001 (0.00002) for qt(·|xt+1;ϕ) and 0.00005 (0.0001) for ft(xt;ψ) when T = 5 (T = 10). We661

train HSIVI-SM for 25,000 iterations with a batch size of 64 in all cases. In each nested training loop662

of ft(xt;ψ), we update ψ 3 times after each update of ϕ.663

E.2.2 MNIST664

For the experiment on MNIST, we use the pre-trained noise model ϵ∗(x, s) and train HSIVI-SM with665

ϵ-training introduced in Section C.4. The following construction of noise schedule comes from Song666

et al. (2020a). Let βj = βmin+
βmax−βmin

999 j for j = 0, . . . , 999, where βmin = 0.0001, βmax = 0.02.667

We pre-train the noise model on the 1000 fixed noise levels 1− α(s) :=
∏s
j=0 βj for s = 0, . . . , 999668

by equation (14). The noise model is trained for 100,000 iterations with a learning rate of 0.0001 and669

a batch size of 64. We then choose T discrete time steps st = ⌊800 · t
2

T 2 ⌋ for t = 0, . . . , T − 1 to670

construct the T -layer diffusion bridge.671

Model architecture The pre-trained noise model ϵ∗(x, s) follows the UNet structure employed672

by Ho et al. (2020) where the number of input channels and output channels is reduced to one.673

Additionally, we pad the image size to 32 × 32 to fit ϵ∗(x, s). We use the generalized inference674

process with noise level η = 0.2 to initialize the conditional layers. The architecture of ft(xt;ψ) is675

the same as that of ϵ∗(x, s). We initialize ft(xt;ψ) with −ϵ∗(xt, st)/
√
1− α(st).676
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Training setting For both T = 5, 10, the learning rate is set to be 1.6× 10−5 for ϕ and 6.4× 10−5677

for ψ. We train HSIVI-SM for 10,000 iterations with a batch size of 64 in all cases. In each nested678

training loop of ft(xt;ψ), we update ψ 20 times after each update of ϕ.679

E.2.3 CIFAR-10 & CelebA680

For experiments on CIFAR-10 and CelebA, we use the pre-trained noise model ϵ∗(x, s) and681

train HSIVI-SM with ϵ-training introduced in Section C.4. We use the same noise schedule682

as in the experiment on MNIST. Let βj = βmin + βmax−βmin

999 j for j = 0, . . . , 999, where683

βmin = 0.0001, βmax = 0.02. We pre-train the noise model on the 1000 fixed noise levels684

1 − α(s) :=
∏s
j=0 βj for s = 0, . . . , 999 by optimizing equation (14). On CIFAR-10, the noise685

model is trained for 2160 epochs, with a learning rate of 0.0002 and batch size of 128; on CelebA, the686

noise model is trained for 600 epochs, with a learning rate of 0.00002 and batch size of 128. We then687

choose T discrete time steps st = ⌊800 · t
2

T 2 ⌋ for t = 0, . . . , T − 1 to construct the T -layer diffusion688

bridge.689

Model architecture On CIFAR-10, the structure of ϵ∗(x, s) is exactly the UNet2 employed in690

Ho et al. (2020) without modification; on CelebA, the structure of ϵ∗(x, s) follows the UNet in Ho691

et al. (2020) but is reduced by one downsampling block and one upsampling block. Therefore, the692

structures of ϵ∗(x, s) are the same on CIFAR-10 and CelebA. We use the generalized inference693

process with noise level η = 0.2 to initialize the conditional layers. The architecture of ft(xt;ψ) is694

the same as that of ϵ∗(x, s). We initialize ft(xt;ψ) with −ϵ∗(xt, st)/
√
1− α(st).695

Training setting The number of layers, which is also the number of function evaluations (NFE),696

is set to be T = 5, 10, 15 in our test cases. On CIFAR-10, the learning rate is set to be 1.6× 10−5697

for qt(·|xt+1;ϕ) and 8 × 10−5 for ft(xt;ψ); on CelebA, the learning rate is set to be 1.2 × 10−6698

for qt(·|xt+1;ϕ) and 6 × 10−6 for ft(xt;ψ). We trained HSIVI-SM for 10,000 iterations with a699

batch size of 128. During each nested training loop of ft(xt;ψ), we update ψ 20 times after each700

update of ϕ, since we find ft(xt;ψ) needs more training empirically to provide reliable guidance.701

For T = 10, 15, we use the above training settings; for T = 5, we find that further fine-tuning on the702

well-trained 15-layer HSIVI-SM for 1,000 iterations yields better results, and we utilize this strategy703

to optimize the 5-layer HSIVI-SM with a 0.1× smaller learning rate. Experiments need about 2.5704

days on CIFAR-10 and need about 5 days on CelebA using 8 Nvidia 2080 Ti GPUs. During the705

training, we find that HSIVI-SM converges in the first 30% iterations on CIFAR-10 and converges in706

the first 50% iterations on CelebA.707

F Limitations708

For the application of accelerating the sampling process of diffusion models, our HSIVI-SM training709

involves three models: the score model (or noise model), the conditional layers qt(xt|xt+1;ϕ), and710

ft(xt;ψ). As a result, HSIVI-SM requires higher memory consumption due to the involvement of711

multiple models. Additionally, since our HSIVI algorithm approximates the target distribution using712

the score function, it necessitates a pre-trained score model (or noise model) with high accuracy713

and additional training steps. Finally, we recognize that the alternative method HSIVI-LB remains714

unexplored for accelerating the diffusion model, and we defer this aspect to future research.715

2We use the Pytorch implementation of UNet structure in https://github.com/tqch/ddpm-torch.
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