
Appendix476

Organization of the Appendix Section A contains the proofs of the results of the main paper.477

Section B contains the details of the numerical illustrations presented in Section 4.3.478

A Proofs479

A.1 Proof of Proposition 1480

The function481

(t, h) 7→
m∑
i=1

θi(t)fi(h)

is locally Lipschitz-continuous with respect to its first variable and globally Lipschitz-continuous482

with respect to its second variable. Therefore the existence and uniqueness of the solution of the483

initial value problem (5) for t > 0 comes as a consequence of the Picard-Lindelöf theorem (see, e.g.,484

Luk, 2017 for a self-contained presentation and Arnold, 1992 for a textbook).485

A.2 Proof of Proposition 2486

For x ∈ X , let H be the solution of the initial value problem (5) with parameter θ and with the initial487

condition H0 = x. Let us first upper-bound ‖fi(Ht)‖ for all i ∈ {1, . . . ,m} and t > 0. To this aim,488

for t > 0, we have489

‖Ht −H0‖ =
∥∥∥ ∫ t

0

m∑
i=1

θi(s)fi(Hs)ds
∥∥∥

6
∫ t

0

m∑
i=1

|θi(s)|‖fi(H0)‖ds+

∫ t

0

m∑
i=1

|θi(s)|‖fi(Hs)− fi(H0)‖ds

6M

∫ t

0

m∑
i=1

|θi(s)|ds+Kf

∫ t

0

(
‖Hs −H0‖

m∑
i=1

|θi(s)|
)
ds

6 tMRΘ +KfRΘ

∫ t

0

‖Hs −H0‖ds.

Next, Grönwall’s inequality yields, for t ∈ [0, 1],490

‖Ht −H0‖ 6 tMRΘ exp(tKfRΘ) 6MRΘ exp(KfRΘ).

Hence491

‖Ht‖ 6 ‖H0‖+ ‖Ht −H0‖ 6 RX +MRΘ exp(KfRΘ),

yielding the first result of the proposition. Furthermore, for any i ∈ {1, . . . ,m},492

‖fi(Ht)‖ 6 ‖fi(Ht)− fi(H0)‖+ ‖fi(H0)‖ 6M
(
KfRΘ exp(KfRΘ) + 1

)
=: C.

Now, let H̃ be the solution of the initial value problem (5) with another parameter θ̃ and with the493

same initial condition H̃0 = x. Then, for any t > 0,494

Ht − H̃t =

∫ t

0

m∑
i=1

θi(s)fi(Hs)ds−
∫ t

0

m∑
i=1

θ̃i(s)fi(H̃s)ds.
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Hence495

‖Ht − H̃t‖ =
∥∥∥∫ t

0

m∑
i=1

(θi(s)− θ̃i(s))fi(Hs)ds+

∫ t

0

m∑
i=1

θ̃i(s)(fi(Hs)− fi(H̃s))ds
∥∥∥

6
∫ t

0

m∑
i=1

|θi(s)− θ̃i(s)|‖fi(Hs)‖ds+

∫ t

0

m∑
i=1

|θ̃i(s)|‖fi(Hs)− fi(H̃s)‖ds

6
∫ t

0

m∑
i=1

|θi(s)− θ̃i(s)|‖fi(Hs)‖ds+Kf

∫ t

0

(
‖Hs − H̃s‖

m∑
i=1

|θ̃i(s)|
)
ds

6 tC‖θ − θ̃‖1,∞ +KfRΘ

∫ t

0

‖Hs − H̃s‖ds.

Then Grönwall’s inequality implies that, for t ∈ [0, 1],496

‖Ht − H̃t‖ 6 tC‖θ − θ̃‖1,∞ exp(tKfRΘ)

6M(KfRΘ exp(KfRΘ) + 1) exp(KfRΘ)‖θ − θ̃‖1,∞
6 2MKfRΘ exp(2KfRΘ)‖θ − θ̃‖1,∞

since 1 6 KfRΘ exp(KfRΘ) because Kf > 1, RΘ > 1.497

A.3 Proof of Proposition 3498

We first prove the result for m = 1. Let Gx be an ε/2KΘ-grid of [0, 1] and Gy an ε/2-grid of499

[−RΘ, RΘ]. Formally, we can take500

Gx =
{ kε

2KΘ
, 0 6 k 6

⌈2KΘ

ε

⌉}
and Gy =

{
−RΘ +

kε

2
, 1 6 k 6

⌊4RΘ

ε

⌋}
Our cover consists of all functions that start at a point of Gy, are piecewise linear with kinks in Gx,501

where each piece has slope +KΘ or −KΘ. Hence our cover is of size502

N1(ε) = |Gy|2|Gx| 6
4RΘ

ε
2

2KΘ
ε +2 =

16RΘ

ε
4

KΘ
ε .

Now take a function f : [0, 1] → R that is uniformly bounded by RΘ and KΘ-Lipschitz. We503

construct a cover member at distance ε from f as follows. Choose a point y0 in Gy at distance at504

most ε/2 from f(0). Since f(0) ∈ [−RΘ, RΘ], this is clearly possible, except perhaps at the end of505

the interval. To verify that it is possible at the end of the interval, note that RΘ is at a distance less506

than ε/2 of the last element of the grid, since507

RΘ−
(
−RΘ+

⌊4RΘ

ε

⌋ε
2

)
= 2RΘ−

⌊4RΘ

ε

⌋ε
2
∈
[
2RΘ−

4RΘ

ε

ε

2
, 2RΘ−

(4RΘ

ε
−1
)ε

2

]
=
[
0,
ε

2

]
.

Then, among the cover members that start at y0, choose the one which is closest to f at each point508

of Gx (in case of equality, pick any one). Let us denote this cover member as f̃ . Let us show509

recursively that f is at `∞-distance at most ε from f̃ . More precisely, let us first show by induction510

on k that for all k ∈ {0, . . . , d 2KΘ

ε e},511 ∣∣f( kε

2KΘ

)
− f̃

( kε

2KΘ

)∣∣ 6 ε

2
. (15)

First, |f(0) − f̃(0)| 6 ε
2 . Then, assume that (15) holds for some k. Then we have the following512

inequalities:513

f̃
( kε

2KΘ

)
− ε 6 f

( kε

2KΘ

)
− ε

2
(by induction)

6 f
( (k + 1)ε

2KΘ

)
(f is KΘ-Lipschitz)

6 f
( kε

2KΘ

)
+
ε

2
(f is KΘ-Lipschitz)

6 f̃
( kε

2KΘ

)
+ ε (by induction).
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Moreover, by definition, f̃
( (k+1)ε

KΘ

)
is the closest point to f

( (k+1)ε
KΘ

)
among514 {

f̃
( kε
KΘ

)
− ε

2
, f̃
( kε
KΘ

)
+
ε

2

}
.

The bounds above show that, among those two points, at least one is at distance no more than ε/2515

from f
( (k+1)ε

KΘ

)
. This shows (15) at rank k + 1.516

To conclude, take now x ∈ [0, 1]. There exists k ∈ {0, . . . , d 2KΘ

ε e} such that x is at distance at most517

ε/4KΘ from kε
2KΘ

. Again, this is clear except perhaps at the end of the interval, where it is also true518

since519

1−
⌈2KΘ

ε

⌉ ε

2KΘ
6 1− 2KΘ

ε

ε

2KΘ
= 0,

meaning that 1 is located between two elements of the grid Gx, showing that it is at distance at520

most ε/4KΘ from one element of the grid. Then, we have521

|f(x)− f̃(x)| 6
∣∣∣f(x)− f

( kε

2KΘ

)∣∣∣+
∣∣∣f( kε

2KΘ

)
− f̃

( kε

2KΘ

)∣∣∣+
∣∣∣f̃( kε

2KΘ

)
− f̃(x)

∣∣∣
6
ε

4
+
ε

2
+
ε

4
,

where the first and third terms are upper-bounded because f and f̃ are KΘ-Lip, while the second522

term is upper bounded by (15). Hence ‖f − f̃‖∞ 6 ε, proving the result for m = 1.523

Finally, to prove the result for a general m, note that the Cartesian product of ε/m-covers for each524

coordinate of θ gives a ε-cover for θ. Indeed, consider such covers and take θ ∈ Θ. Since each525

coordinate of θ is uniformly bounded by RΘ and KΘ-Lipschitz, the proof above shows the existence526

of a cover member θ̃ such that, for all i ∈ {1, . . . ,m}, ‖θi − θ̃i‖∞ 6 ε/m. Then527

‖θ − θ̃‖1,∞ = sup
06t61

m∑
i=1

|θi(t)− θ̃i(t)| 6 sup
06t61

m∑
i=1

‖θi − θ̃i‖∞ 6 ε.

As a consequence, we conclude that528

N (ε) 6
(
N1

( ε
m

))m
=
(16mRΘ

ε

)m
4

m2KΘ
ε .

Taking the logarithm yields the result.529

A.4 Proof of Theorem 1530

First note that, for any θ ∈ Θ, x ∈ X and y ∈ Y ,531

|`(Fθ(x), y)| 6 |`(Fθ(x), y)− `(y, y)|+ |`(y, y)| 6 K`‖Fθ(x)− y‖.
since, by assumption, ` is K`-Lipschitz with respect to its first variable and `(y, y) = 0. Thus532

|`(Fθ(x), y)| 6 K`(‖Fθ(x)‖+ ‖y‖) 6 K`

(
RX +MRΘ exp(KfRΘ) +RY

)
=: M.

by Proposition 2.533

Now, taking δ > 0, a classical computation involving McDiarmid’s inequality (see, e.g., Wainwright,534

2019, proof of thm 4.10) yields that, with probability at least 1− δ,535

R(θ̂n) 6 R̂n(θ̂n) + E
[

sup
θ∈Θ
|R(θ)− R̂n(θ)|

]
+
M
√

2√
n

√
log

1

δ
.

Denote C = 2MKfRΘ exp(2KfRΘ). Then we show that R and R̂n are CK`-Lipschitz with536

respect to (θ, ‖ · ‖1,∞): for θ, θ̃ ∈ Θ,537

|R(θ)−R(θ̃)| 6 E
[
|`(Fθ(x), y)− `(Fθ̃(x), y)|

]
6 K`E

[
‖Fθ(x)− Fθ̃(x)‖

]
6 CK`‖θ − θ̃‖1,∞,
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according to Proposition 2. The proof for the empirical risk is very similar.538

Let now ε > 0 and N (ε) be the covering number of Θ endowed with the (1,∞)-norm. By Proposi-539

tion 3,540

logN (ε) 6 m log
(16mRΘ

ε

)
+
m2KΘ log(4)

ε
.

Take θ(1), . . . , θ(N (ε)) the associated cover elements. Then, for any θ ∈ Θ, denoting θ(i) the cover541

element at distance at most ε from θ,542

|R(θ)− R̂n(θ)| 6 |R(θ)−R(θ(i))|+ |R(θ(i))− R̂n(θ(i))|+ |R̂n(θ(i))− R̂n(θ)|

6 2CK`ε+ sup
i∈{1,...,N (ε)}

|R(θ(i))− R̂n(θ(i))|.

Hence543

E
[

sup
θ∈Θ
|R(θ)− R̂n(θ)|

]
6 2CK`ε+ E

[
sup

i∈{1,...,N (ε)}
|R(θ(i))− R̂n(θ(i))|

]
.

Since R̂n(θ) is the average of n independent random variables, which are each almost surely bounded544

by M , it is M/
√
n sub-Gaussian, hence we have the classical inequality on the expectation of the545

maximum of sub-Gaussian random variables (see, e.g., Rigollet and Hütter, 2017, Theorem 1.14)546

E
[

sup
i∈{1,...,N (ε)}

|R(θ(i))− R̂n(θ(i))|
]
6M

√
2 log(2N (ε))

n
.

The remainder of the proof consists in computations to put the result in the required format. More547

precisely, we have548

E
[

sup
θ∈Θ
|R(θ)− R̂n(θ)|

]
6 2CK`ε+M

√
2 log(2N (ε))

n

6 2CK`ε+M

√
2 log(2) + 2m log

(
16mRΘ

ε

)
+ 2m2KΘ

ε log(4)

n

6 2CK`ε+M

√
2(m+ 1) log

(
16mRΘ

ε

)
+ 2m2KΘ

ε log(4)

n
.

The third step is valid if 16mRΘ

ε > 2. We will shortly take ε to be equal to 1√
n

, thus this condition549

holds true under the assumption from the Theorem that mRΘ
√
n > 3. Hence we obtain550

R(θ̂n) 6 R̂n(θ̂n) + 2CK`ε+M

√
2(m+ 1) log

(
16mRΘ

ε

)
+ 2m2KΘ

ε log(4)

n
+
M
√

2√
n

√
log

1

δ
.

(16)
Now denote B̃ = 2MKf exp(KfRΘ). Then CK` 6 B̃ and 2M 6 B̃. Taking ε = 1√

n
, we obtain551

R(θ̂n) 6 R̂n(θ̂n) +
2B̃√
n

+
B̃

2

√
2(m+ 1) log(16mRΘ

√
n)

n
+

2m2KΘ log(4)√
n

+
B̃√
n

√
log

1

δ

6 R̂n(θ̂n) +
2B̃√
n

+
B̃

2

√
2(m+ 1) log(16mRΘ

√
n)

n
+
B̃

2

m
√

2KΘ log(4)

n1/4
+

B̃√
n

√
log

1

δ

6 R̂n(θ̂n) +
3B̃

2

√
2(m+ 1) log(16mRΘ

√
n)

n
+ B̃

m
√
KΘ

n1/4
+

B̃√
n

√
log

1

δ
,

since 2 6 2
√

log(2) 6
√

2(m+ 1) log(16mRΘ
√
n) since 16mRΘ

√
n > 2 by the Theorem’s552

assumptions, and
√

2 log(4) 6 2. We finally obtain that553

R(θ̂n) 6 R̂n(θ̂n) + 3B̃

√
(m+ 1) log(mRΘn)

n
+ B̃

m
√
KΘ

n1/4
+

B̃√
n

√
log

1

δ
,

by noting that n > 9 max(m−2R−2
Θ , 1) implies that554

log(16mRΘ

√
n) 6 2 log(mRΘn).

The result unfolds since the constant B in the Theorem is equal to 3B̃.555
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A.5 Proof of Corollary 1556

The corollary is an immediate consequence of Theorem 1. To obtain the result, note that m = d2,557

thus in particular
√
m+ 1 =

√
d2 + 1 6 d + 1, and besides log(RWd

2n) 6 2 log(RWdn) since558

RWn 6 R2
Wn

2 by assumption on n.559

A.6 Proof of Proposition 4560

For x ∈ X , let (Hk)06k6L be the values of the layers defined by the recurrence (10) with the561

weights W and the input H0 = x. We denote by ‖ · ‖ the `2-norm for vectors and the spectral norm562

for matrices. Then, for k ∈ {0, . . . , L− 1}, we have563

‖Hk+1‖ 6 ‖Hk‖+
1

L
‖Wkσ(Hk)‖ 6 ‖Hk‖+

1

L
‖Wk‖ ‖σ(Hk)‖ 6

(
1 +

KσRW
L

)
‖Hk‖,

where the last inequality uses that the spectral norm of a matrix is upper-bounded by its (1, 1)-norm564

and that σ(0) = 0. As a consequence, for any k ∈ {0, . . . , L},565

‖Hk‖ 6
(

1 +
KσRW
L

)k
‖H0‖ 6 exp(KσRW)RX =: C,

yielding the first claim of the Proposition.566

Now, let H̃ be the values of the layers (10) with another parameter W̃ and with the same input567

H̃0 = x. Then, for any k ∈ {0, . . . , L− 1},568

Hk+1 − H̃k+1 = Hk − H̃k +
1

L
(Wkσ(Hk)− W̃kσ(H̃k)).

Hence, using again that the spectral norm of a matrix is upper-bounded by its (1, 1)-norm and that569

σ(0) = 0,570

‖Hk+1 − H̃k+1‖ 6 ‖Hk − H̃k‖+
1

L
‖Wk(σ(Hk)− σ(H̃k))‖+

1

L
‖(Wk − W̃k)σ(H̃k)‖

6
(

1 +Kσ
RW
L

)
‖Hk − H̃k‖+

Kσ

L
‖Wk − W̃k‖ ‖H̃k‖

6
(

1 +Kσ
RW
L

)
‖Hk − H̃k‖+

CKσ

L
‖Wk − W̃k‖.

Then, dividing by (1 +Kσ
RW
L )k+1 and using the method of differences, we obtain that571

‖Hk − H̃k‖
(1 +Kσ

RW
L )k

6 ‖H0 − H̃0‖+
CKσ

L

k−1∑
j=0

‖Wj − W̃j‖
(1 +Kσ

RW
L )j+1

6
CKσ

L
‖W − W̃‖1,1,∞

k−1∑
j=0

1

(1 +Kσ
RW
L )j+1

.

Finally note that572

k−1∑
j=0

(1 +Kσ
RW
L )k

(1 +Kσ
RW
L )j+1

=

k−1∑
j=0

(1 +Kσ
RW
L

)j

=
L

KσRW

(
(1 +Kσ

RW
L

)k − 1
)

6
L

KσRW
(exp(KσRW)− 1).

We conclude that573

‖Hk − H̃k‖ 6
C

RW
(exp(KσRW)− 1)‖W − W̃‖1,1,∞ 6

RX
RW

exp(2KσRW)‖W − W̃‖1,1,∞.
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A.7 Proof of Proposition 5574

For two integers a and b, denote respectively a//b and a%b the quotient and the remainder of the575

Euclidian division of a by b. Then, for W ∈ RL×d×d, let φ(W) : [0, 1]→ Rd2

the piecewise-affine576

function defined as follows: φ(W) is affine on every interval
[
k
L ,

k+1
L

]
for k ∈ {0, . . . , L− 1}; for577

k ∈ {1, . . . , L} and i ∈ {1, . . . , d2},578

φ(W)i

( k
L

)
= W k

L ,(i//d)+1,(i%d)+1 ,

and φ(W)i(0) = φ(W)i(1/L). Then φ(W) satisfies two properties. First, it is a linear function579

of W. Second, for W ∈ RL×d×d,580

‖φ(W)‖1,∞ = ‖W‖1,1,∞,

because, for x ∈ [0, 1], φ(W)(x) is a convex combination of two vectors that are bounded in `1-581

norm by ‖W‖1,1,∞, so it is itself bounded in `1-norm by ‖W‖1,1,∞, implying that ‖φ(W)‖1,∞ 6582

‖W‖1,1,∞. Reciprocally,583

‖φ(W)‖1,∞ = sup
06t61

‖φ(W)(x)‖1 > sup
16k6L

∥∥∥φ(W)
( k
L

)∥∥∥
1

= ‖W‖1,1,∞.

Now, take W ∈ W . The second property of φ implies that ‖φ(W)‖1,∞ 6 RW . Moreover, each584

coordinate of φ(W) is KW -Lipschitz, since the slope of each piece of φ(W)i is at most KW . As a585

consequence, φ(W) belongs to586

ΘW = {θ : [0, 1]→ Rd
2

, ‖θ‖1,∞ 6 RW and θi is KW -Lipschitz for i ∈ {1, . . . , d2}}.

Therefore φ(W) is a subset of ΘW , thus its covering number is less than the one of ΘW . Moreover,587

φ is clearly injective, thus we can define φ−1 on its image. Consider an ε-cover (θ1, . . . , θN ) of588

(φ(W), ‖ · ‖1,∞). Let us show that (φ−1(θ1), . . . , φ−1(θN )) is an an ε-cover of (W, ‖ · ‖1,1,∞): take589

W ∈ W and consider θi a cover member at distance less than ε from φ(W). Then590

‖W − φ−1(θi)‖1,1,∞ = ‖φ(W − φ−1(θi))‖1,∞ = ‖φ(W)− θi‖1,∞ 6 ε,

where the second equality holds by linearity of φ. Therefore, the covering number of (W, ‖ · ‖1,1,∞)591

is upper bounded by the one of (φ(W), ‖ · ‖1,∞), which itself is upper bounded by the one of592

(ΘW , ‖ · ‖1,∞), yielding the result by Proposition 3.593

A.8 Proof of Theorem 2594

The proof structure is the same as the one of Theorem 1, but some constants change. Similarly595

to (16), we obtain that, if 16d2RW
ε > 2 (which holds true for ε = 1/

√
n and under the assumption of596

the Theorem),597

R(Ŵn) 6 R̂n(Ŵn)+2CK`ε+M

√
2(d2 + 1) log

(
16d2RW

ε

)
+ 2d4KW

ε log(4)

n
+
M
√

2√
n

√
log

1

δ
,

with598

M = K`(RX exp(KσRW) +RY)

and599

C =
RX
RW

exp(2KσRW).

Finally denote600

B̃ = 2M max
(exp(KσRW)

RW
, 1
)
.

Then CK` 6 B̃ and 2M 6 B̃. Taking ε = 1√
n

, we obtain as in the proof of Theorem 1 that601

R(Ŵn) 6 R̂n(Ŵn) + 3B̃

√
(d2 + 1) log(d2RWn)

n
+ B̃

d2
√
KW

n1/4
+

B̃√
n

√
log

1

δ
.
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for n > 9R−1
W max(d−4R−1

W , 1). Thus602

R(Ŵn) 6 R̂n(Ŵn) + 3
√

2B̃(d+ 1)

√
log(dRWn)

n
+ B̃

d2
√
KW

n1/4
+

B̃√
n

√
log

1

δ
,

since
√
d2 + 1 6 d + 1 and RWn 6 R2

Wn
2 by assumption on n. The result unfolds since the603

constant B in the Theorem is equal to 3
√

2B̃.604

A.9 Proof of Corollary 2605

Let606

A(W) =

( L∏
k=1

∥∥∥I +
1

L
Wk

∥∥∥)( L∑
k=1

‖WT
k ‖

2/3
2,1

L2/3‖I + 1
LWk‖2/3

)3/2

,

where ‖ · ‖2,1 denotes the (2, 1)-norm defined as the `1-norm of the `2-norms of the columns, and I607

is the identity matrix (and we recall that ‖ · ‖ denotes the spectral norm). We apply Theorem 1.1 from608

Bartlett et al. (2017) by taking as reference matrices the identity matrix. The theorem shows that,609

under the assumptions of the corollary,610

P
(

arg max
16j6d

FW(x)j 6= y
)
6 R̂n(W) + C

RXA(W) log(d)

γ
√
n

+
C√
n

√
log

1

δ
,

where, as in the corollary, R̂n(W) 6 n−1
∑n
i=1 1FW(xi)yi6γ+maxj 6=yi

f(xi)j and C is a universal611

constant. Let us upper bound A(W) to conclude. On the one hand, we have612

L∏
k=1

∥∥∥I +
1

L
Wk

∥∥∥ 6
L∏
k=1

(
‖I‖+

1

L
‖Wk‖

)
6

L∏
k=1

(
1 +

1

L
‖Wk‖1,1

)
6

L∏
k=1

(
1 +

1

L
RW

)
6 exp(RW)

On the other hand, for any k ∈ {1, . . . , L},613

‖WT
k ‖2,1 6 ‖WT

k ‖1,1 6 RW ,

while614

‖I +
1

L
Wk‖ > 1− 1

L
‖Wk‖ > 1− RW

L
>

1

2
,

under the assumption that L > RW . All in all, we obtain that615

A(W) 6 exp(RW)
(
22/3L1/3R

2/3
W
)3/2

= 2RW exp(RW)
√
L,

which yields the result.616

B Experimental details617

Our code is available at [XXX].618

We use the following model, corresponding to model (10) with additional projections at the beginning619

and at the end:620

H0 = Ax

Hk+1 = Hk +
1

L
Wk+1σ(Hk), 0 6 k 6 L− 1

FW(x) = BHL,
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Name Value
d 30
L 1000
σ ReLU

Table 1: Values of the model hyper-parameters.

where x ∈ R768 is a vectorized MNIST image, A ∈ Rd×768, and B ∈ R10×d. Table 1 gives the621

value of the hyper-parameters.622

We use the initialization scheme outlined in Section 4.1: we initialize, for k ∈ {1, . . . , L} and623

i, j ∈ {1, . . . , d},624

Wk,i,j =
1√
d
fi,j

( k
L

)
,

where fi,j are independent Gaussian processes with a RBF kernel (with bandwidth equal to 0.1).625

We refer to Marion et al. (2022) and Sander et al. (2022) for further discussion on this initialization626

scheme. However, A and B are initialized with a more usual scheme, namely with i.i.d. N (0, 1/c)627

random variables, where c denotes the number of columns of A (resp. B).628

In Figure 1a, we repeat training 10 times independently. Each time, we perform 30 epochs, and629

compute after each epoch both the Lipschitz constant of the weights and the generalization gap. This630

gives 300 pairs (Lipschitz constant, generalization gap), which each corresponds to one dot in the631

figure. Furthermore, we report results for two setups: when A and B are trained or when they are632

fixed random matrices.633

In Figure 1b, A and B are not trained. The reason is to assess the effect of the penalization on W634

for a fixed scale of A and B. If we allow A and B to vary, then it is possible that the effect of the635

penalization might be neutralized by a scale increase of A and B during training.636

For all experiments, we use the standard MNIST datasplit (60k training samples and 10k testing637

samples). We train using the cross entropy loss, mini-batches of size 128, and the optimizer Adam638

(Kingma and Ba, 2015) with default parameters and a learning rate of 0.02.639

We use PyTorch (Paszke et al., 2019) and PyTorch Lightning for our experiments.640

The code takes about 60 hours to run on a standard laptop (no GPU).641
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