
Algorithm 2 Poppy training with starting points

1: Input: problem distribution D, number of starting points per instance P , number of agents K,
batch size B, number of training steps H , a pretrained encoder hψ and decoder qϕ

2: ϕ1, ϕ2, . . . , ϕK ← CLONE(ϕ) {Clone the pre-trained decoder parameters K times.}
3: for step 1 to H do
4: ρi ← Sample(D) ∀i ∈ 1, . . . , B
5: αi,1, . . . , αi,P ← SelectStartPoints(ρi, P) ∀i ∈ 1, . . . , B
6: τki,p ← Rollout(ρi, αi,p, hψ, qϕk

) ∀i ∈ 1, . . . , B, ∀p ∈ 1, . . . , P , ∀k ∈ 1, . . . ,K

7: bki ← 1
P

∑
pR(τki,p)

8: k∗i,p ← argmaxk≤K R(τki,p) ∀i ∈ 1, . . . , B, ∀p ∈ 1, . . . , P {Select the best agent per
(instance, starting point).}

9: ∇L(hψ, qϕ1
, qϕ2

, . . . , qϕK
) ← − 1

BP

∑
i,p(R(τ

k∗i,p
i,p) − b

k∗i,p
i)∇ log pψ,ϕk∗

i,p
(τ
k∗i,p
i,p) {Propa-

gate gradients through these only.}
10: (hψ, qϕ1 , qϕ2 , . . . , qϕK

)← (hψ, qϕ1 , qϕ2 , . . . , qϕK
)− α∇L(hψ, qϕ1 , qϕ2 , . . . , qϕK

)

A Additional Details on Poppy454

A.1 Number of Parameters (TSP)455

Table 4 shows the total number of parameters of our models as a function of the population size456

when experimenting on TSP. Since the decoder represents less than 10% of the parameters, scaling457

the population size can be done efficiently. For instance, a population of 16 agents roughly doubles458

the model size. This observation transfers to CVRP and KP whose encoder-decoder architectures459

are similar to TSP. The architecture for JSSP is slightly different but the observation remains that460

the decoder represents a smaller part of the model (18%) and thus the population can be efficiently461

scaled.462

Table 4: Number of parameters for different population sizes.
Population size

Encoder Decoder 1 4 8 16 32

Parameters 1,190,016 98,816 1,288,832 1,585,280 1,980,544 2,771,072 4,352,128
Extra parameters - - 0% 23% 54% 115% 238%

A.2 Training Details463

In Section 3.2 (see “Training Procedure”), we described that Poppy consists of two phases. In a464

nutshell, the first phase consists of training our model in a single-agent setting (i.e., an encoder-465

decoder model with a single decoder head), whereas the second phase consists of keeping the encoder466

and cloning the previously trained decoder K times (where K is the number of agents) and specialize467

them using the population objective. Algorithm 2 shows the low-level implementation details of the468

training of the population (i.e., Phase 2) for environments where POMO [Kwon et al., 2020] uses469

several starting points; namely, given K agents and P starting points, P ×K trajectories are rolled470

out for each instance, among which only P are effectively used for training.471

B Mathematical Elements472

B.1 Gradient derivation473

We recall that the population objective for K is defined as:474

Jpop(θ1, θ2, . . . , θn)
.
= Eρ∼DEτ1∼πθ1

,...,τK∼πθK
max [R(τ1), . . . , R(τK)] .

Theorem (Policy gradient for the population objective). The gradient of the population objective is475

given by:476

∇Jpop(θ1, θ2, . . . , θn) = Eρ∼DEτ1∼πθ1
,...,τK∼πθK

(
R(τi∗)−R(τi∗∗)

)
∇ log pθi∗ (τi∗),

13

where:477

i∗ = argmax
[
R(τ1), . . . , R(τK)

]
, (index of the best trajectory)

i∗∗ = arg secondmax
[
R(τ1), . . . , R(τK)

]
, (index of the second best trajectory)

Proof. We first derive the gradient with respect to θ1 for convenience. As all the agents play a478

symmetrical role in the objective, the same procedure can be applied to any index.479

∇θ1Jpop(θ1, θ2, . . . , θK) = ∇θ1Eρ∼DEτ1∼πθ1
,...,τK∼πθK

max
i∈{1,2,...,K}

[
R(τi)

]
= Eρ∼DEτ1,...,τK max

i∈{1,2,...,K}

[
R(τi)

]
∇θ1 log p(τ1, . . . , τK)

= Eρ∼DEτ1,...,τK max
i∈{1,2,...,K}

[
R(τi)

]
∇θ1 log(πθ1(τ1) . . . πθK (τK))

= Eρ∼DEτ1,...,τK max
i∈{1,2,...,K}

[
R(τi)

]
∇θ1(log πθ1(τ1) + · · ·+ log πθK (τK))

= Eρ∼DEτ1,...,τK max
i∈{1,2,...,K}

[
R(τi)

]
∇θ1 log πθ1(τ1),

We also have for any problem instance ρ and any trajectories τ2, . . . , τK :480

Eτ1∼πθ1
max

i∈{2,...,K}

[
R(τi)

]
∇θ1 log πθ1(τ1) = max

i∈{2,...,K}

[
R(τi)

]
Eτ1∼πθ1

∇θ1 log πθ1(τ1)

= max
i∈{2,...,K}

[
R(τi)

]
Eτ1∼πθ1

∇θ1πθ1(τ1)
πθ1(τ1)

= max
i∈{2,...,K}

[
R(τi)

]∑
τ1

∇θ1πθ1(τ1)

= max
i∈{2,...,K}

[
R(τi)

]
∇θ1

∑
τ1

πθ1(τ1)

= max
i∈{2,...,K}

[
R(τi)

]
∇θ11 = 0

Intuitively, maxi∈{2,...,K}
[
R(τi)

]
does not depend on the first agent, so this derivation simply shows481

that maxi∈{2,...,K}
[
R(τi)

]
can be used as a baseline for training θ1.482

Subtracting this to the quantity obtained in Equation B.1, we have:483

∇θ1Jpop(θ1, θ2, . . . , θK) = Eρ∼DEτ1,...,τK max
i∈{1,2,...,K}

[
R(τi)

]
∇θ1 log πθ1(τ1),

= Eρ∼DEτ2,...,τKEτ1 max
i∈{1,2,...,K}

[
R(τi)

]
∇θ1 log πθ1(τ1),

= Eρ∼DEτ2,...,τKEτ1
(

max
i∈{1,2,...,K}

[
R(τi)

]
− max
i∈{2,...,K}

[
R(τi)

])
∇θ1 log πθ1(τ1),

= Eρ∼DEτ2,...,τKEτ11i∗=1

(
R(τ1)−R(τi∗∗)

)
∇θ1 log πθ1(τ1), (1)

= Eρ∼DEτ1,...,τK1i∗=1

(
R(τi∗)−R(τi∗∗)

)
∇θ1 log πθ1(τ1).

Equation (1) comes from the fact that
(
maxi∈{1,2,...,K}

[
R(τi)

]
−maxi∈{2,...,K}

[
R(τi)

])
is 0 if the484

best trajectory is not τ1, and R(τ1)−maxi∈{2,...,K}
[
R(τi)

]
= R(τ1)−R(τi∗∗) otherwise.485

Finally, for any j ∈ {1, . . . ,K}, the same derivation gives:486

∇θjJpop(θ1, θ2, . . . , θK) = Eρ∼DEτ1,...,τK1i∗=j
(
R(τi∗)−R(τi∗∗)

)
∇θj log πθj (τj).

14

Therefore, we have:487

∇θ =
n∑
j=1

Eρ∼DEτ1,...,τK1i∗=j
(
R(τi∗)−R(τi∗∗)

)
∇θj log πθj (τj),

∇θ = Eρ∼DEτ1,...,τK
(
R(τi∗)−R(τi∗∗)

)
∇θi∗ log πθi∗ (τi∗),

which concludes the proof.488

C Comparison to Active Search489

We implement a simple sampling strategy to give a sense of the performance of Poppy with a larger490

time budget. Given a population of K agents, we first greedily rollout each of them on every starting491

point, and evenly distribute any remaining sampling budget across the most promising K (agent,492

starting point) pairs for each instance with stochastic rollouts. This two-step process is motivated by493

the idea that is not useful to sample several times an agent on an instance where it is outperformed by494

another one. For environments without starting points like JSSP, we stick to the simplest approach of495

evenly distributing the rollouts across the population, although better performance could likely be496

obtained by selectively assigning more budget to the best agents.497

Setup For TSP, CVRP and JSSP, we use the same test instances as in Tables 1, 2 and 3b. For498

TSP and CVRP, we generate a total of 200 × 8 × N candidate solutions per instance (where 8499

corresponds to the augmentation strategy by Kwon et al. [2020] and N is the number of starting500

points), accounting for both the first and second phases. We evaluate our approach against POMO501

[Kwon et al., 2020] and EAS [Hottung et al., 2022] with the same budget, as well as against the502

supervised methods GCN-BS [Joshi et al., 2019], CVAE-Opt [Hottung et al., 2021], and DPDP [Kool503

et al., 2021]. As EAS has three different variants, we compare against EAS-Tab since it is the only504

one that does not backpropagate gradients through the network, similarly to our approach; thus, it505

should match Poppy’s compute time on the same hardware. For JSSP, we use the same setting as EAS506

[Hottung et al., 2022], and sample a total of 8,000 solutions per problem instance for each approach.507

For a proper comparison, we reimplemented EAS with the same model architecture as Poppy.508

Results Tables 5, 6 and 7 show the results for TSP, CVRP and JSSP respectively. With extra509

sampling, Poppy reaches a performance gap of 0.002% on TSP100, and establishes a state-of-the-art510

for general ML-based approaches, even when compared to supervised methods. For CVRP, adding511

sampling to Poppy makes it on par with DPDP and EAS, depending on the problem size, and it is512

only outperformed by the active search approach EAS, which gives large improvements on CVRP.513

As the two-step sampling process used for Poppy is very rudimentary compared to the active search514

method described in Hottung et al. [2022], it is likely that combining the two approaches could further515

boost performance, which we leave for future work.516

Table 5: TSP results (active search)

Inference (10k instances) 0-shot (1k instances)
n = 100 n = 125 n = 150

Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

Concorde 7.765 0.000% 82M 8.583 0.000% 12M 9.346 0.000% 17M
LKH3 7.765 0.000% 8H 8.583 0.000% 73M 9.346 0.000% 99M

SL

GCN-BS
CVAE-Opt
DPDP

7.87
-

7.765

1.39%
0.343%
0.004%

40M∗

6D∗

2H∗

-
8.646
8.589

-
0.736%
0.070%

-
21H∗

31M∗

-
9.482
9.434

-
1.45%
0.94%

-
30H∗

44M∗

R
L

POMO (200 samples)
EAS
Poppy 16 (200 samples)

7.769
7.768
7.765

0.056%
0.048%
0.002%

2H
5H∗

2H

8.594
8.591
8.584

0.13%
0.091%
0.009%

20M
49M∗

20M

9.376
9.365
9.351

0.31%
0.20%
0.05%

32M
1H∗

32M

15

Table 6: CVRP results (active search)

Inference (10k instances) 0-shot (1k instances) 0-shot (1k instances)
n = 100 n = 125 n = 150

Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

LKH3 15.65 0.000% 6D 17.50 0.000% 19H 19.22 0.000% 20H
SL

CVAE-Opt
DPDP

-
15.63

1.36%
−0.13%

11D∗

23H∗
17.87
17.51

2.08%
0.07%

36H∗

3H∗
19.84
19.31

3.24%
0.48%

46H∗

5H∗

R
L

POMO (200 samples)
EAS
Poppy 32 (200 samples)

15.67
15.62
15.62

0.18%
-0.14%
-0.14%

4H
8H∗

4H

17.56
17.49
17.49

0.33%
0.00%

-0.10%

43M
80M∗

42M

19.43
19.36
19.32

1.08%
0.72%
0.50%

1H
2H∗

1H

Table 7: JSSP
Inference (100 instances)

10× 10
Method Obj. Gap Time

OR-Tools (optimal) 807.6 0.0% 37S

L2D (Greedy) 988.6 22.3% 20S∗

L2D (Sampling) 871.7 8.0% 8H∗

EAS-L2D 860.2 6.5% 8H∗

Sampling 862.1 6.7% 3H
EAS 858.4 6.3% 3H
Poppy 16 849.7 5.2% 3H

D Problems517

We here describe the details of the four CO problems we have used to evaluate Poppy, namely518

TSP, CVRP, KP and JSSP. We use the corresponding implementations from Jumanji [Bonnet et al.,519

2023]: TSP, CVRP, Knapsack and JobShop. For each problem, we describe below the training (e.g.520

architecture, hyperparameters) and the process of instance generation. In addition, we show some521

example solutions obtained by a population of agents on TSP and CVRP. Finally, we thoroughly522

analyze the performance of the populations in TSP.523

D.1 Traveling Salesman Problem (TSP)524

Instance Generation The n cities that constitute each problem instance have their coordinates525

uniformly sampled from [0, 1]2.526

Architecture We use the same model as Kool et al. [2019] and Kwon et al. [2020] except for527

the batch-normalization layers, which are replaced by layer-normalization to ease parallel batch528

processing. We invert the mask used in the decoder computations (i.e., masking the available cities529

instead of the unavailable ones) after experimentally observing faster convergence rates. The results530

reported for POMO were obtained with the same implementation changes to keep the comparison531

fair. These results are on par with those reported in POMO [Kwon et al., 2020].532

Hyperparameters To match the setting used by Kwon et al. [2020], we use the Adam optimizer533

[Kingma and Ba, 2015] with a learning rate µ = 10−4, and an L2 penalization coefficient of 10−6.534

The encoder is composed of 6 multi-head self-attention layers with 8 heads each. The dimension535

of the keys, queries and values is 16. Each attention layer is composed of a feed-forward layer of536

size 512, and the final node embeddings have a dimension of 128. The decoders are composed of 1537

multi-head attention layer with 8 heads and 16-dimensional key, query and value.538

The number of starting points P is 50 for each instance. We determined this value after performing a539

grid-search based on the first training steps with P ∈ {20, 50, 100}.540

Example Solutions Figure 5 shows some trajectories obtained from a 16-agent population on541

TSP100. Even though they look similar, small decisions differ between agents, thus frequently542

leading to different solutions. Interestingly, some agents (especially 6 and 11) give very poor543

16

trajectories. We hypothesize that it is a consequence of specializing since agents have no incentive to544

provide a good solution if another agent is already better on this instance.545

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Agents

0

5

10

15

20

N
u

m
b

er
of

in
st

an
ce

s
(%

)

Best solved by

1 agent

1 < agents ≤ 4

4 < agents ≤ 8

8 < agents ≤ 16

2 4 6 8 10 12 14 16
Subpopulation size

0.4

0.6

0.8

1.0

1.2

O
p

ti
m

al
it

y
ga

p
(%

)

Population size

16

8

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of agents

0

10

20

30

40

N
u

m
b

er
of

in
st

an
ce

s
(%

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Agents

0.0000

0.0005

0.0010

0.0015

O
p

ti
m

al
it

y
ga

p
(%

)

Figure 4: Upper left: Proportion of instances that each agent solves best among the population
for Poppy 16 on TSP100. Colors indicate the number of agents in the population giving the same
solution for these sets of instances. Upper right: The mean performance of 1,000 randomly drawn
sub-populations for Poppy 1, 4, 8 and 16. Bottom left: Proportion of test instances where any number
of Poppy 16 agents reaches the exact same best solution. The best performance is reached by only
a single agent in 47% of the cases. Bottom Right: Optimality gap loss suffered when removing
any agent from the population using Poppy 16. Although some agents contribute more (e.g. 7, 8)
and some less (e.g. 15, 16), the distribution is relatively even, even though no explicit mechanism
enforces this behavior

Population Analysis Figure 4 shows some additional information about individual agent perfor-546

mances. In the left figure, we observe that each agent gives on average the best solution for 20%547

of the instances, and that for around 4% it gives the unique best solution across the population.548

These numbers are generally evenly distributed, which shows that every agent contributes to the549

whole population performance. Furthermore, we observe the performance is quite evenly distributed550

across the population of Poppy 16; hence, showing that the population has not collapsed to a few551

high-performing agents, and that Poppy benefits from the population size, as shown in the bottom552

figure. On the right is displayed the performance of several sub-populations of agents for Poppy553

4, 8 and 16. Unsurprisingly, fixed size sub-populations are generally better when sampled from554

smaller populations: Poppy 16 needs 4 agents to recover the performance of Poppy 4, and 8 agents to555

recover the performance of Poppy 8 for example. This highlights the fact that agents have learned556

complementary behaviors which might be sub-optimal if part of the total population is missing.557

D.2 Capacitated Vehicle Routing Problem (CVRP)558

Instance Generation The coordinates of the n customer nodes and the depot are uniformly sampled559

in [0, 1]2. The demands are uniformly sampled from the discrete set { 1
D , 2

D , . . . , 9
D} where D = 50560

for CVRP100, D = 55 for CVRP125, and D = 60 for CVRP150. The maximum vehicle capacity is561

1. The deliveries cannot be split: each customer node is visited once, and its whole demand is taken562

off the vehicle’s remaining capacity.563

17

Figure 5: Example TSP trajectories given by Poppy for a 16-agent population from one starting point
(red).

Architecture We use the same model as in TSP. However, unlike TSP, the mask is not inverted;564

besides, it does not only prevent the agent from revisiting previous customer nodes, but also from565

visiting the depot if it is the current location, and any customer node whose demand is higher than the566

current capacity.567

Hyperparameters We use the same hyperparameters as in TSP except for the number of starting568

points P per instance used during training, which we set to 100 after performing a grid-search with569

P ∈ {20, 50, 100}.570

Example Solutions Figure 6 shows some trajectories obtained by 16 agents from a 32-agent571

population on CVRP100. Unlike TSP, the agent/vehicle performs several tours starting and finishing572

in the depot.573

D.3 0-1 Knapsack (KP)574

Problem Description Given a set of items, each with a weight and a value, the goal is to determine575

which items to include in a collection so that the total weight is less than or equal to a given limit and576

the total value is as large as possible.577

18

12 routes, distance 16.04 12 routes, distance 16.16 13 routes, distance 16.23 12 routes, distance 16.20

12 routes, distance 16.05 12 routes, distance 16.63 12 routes, distance 15.86 12 routes, distance 16.16

12 routes, distance 16.24 12 routes, distance 16.56 13 routes, distance 16.17 12 routes, distance 16.24

12 routes, distance 16.02 13 routes, distance 16.16 12 routes, distance 15.93 12 routes, distance 16.08

Figure 6: Example CVRP trajectories given by Poppy for 16 agents from a 32-agent population. The
depot is displayed as a black square. The edges from/to the depot are omitted for clarity.

Instance Generation Item values and weights are both uniformly sampled in [0, 1]. The bag578

capacity is fixed at 25.579

Training For KP, and contrary to the other three environments, training an agent is lightning-fast as580

it only takes a few minutes. In this specific case, we noticed it was not necessary to train a single581

decoder first. Instead, (i) we directly train a population in parallel from scratch, and (ii) specialize the582

population exactly as done in the other environments.583

Architecture We use the same model as in TSP. However, the mask used when decoding is not584

inverted, and the items that do not fit in the bag are masked together with the items taken so far.585

Hyperparameters We use the same hyperparameters as in TSP except for the number of start-586

ing points P used during training, which we set to 100 after performing a grid-search with587

P ∈ {20, 50, 100}.588

19

D.4 Job-Shop Scheduling Problem (JSSP)589

Problem Description We consider the problem formulation described by Zhang et al. [2020] and590

also used in Bonnet et al. [2023], in the setting of an equal number of machines, jobs and operations591

per job. A job-shop scheduling problem consists in N jobs that all have N operations that have to be592

scheduled on N machines. Each operation has to run on a specific machine for a given time. The593

solution to a problem is a schedule that respects a few constraints:594

• for each job, its operations have to be processed/scheduled in order and without overlap595

between two operations of the same job,596

• a machine can only work on one operation at a time,597

• once started, an operation must run until completion.598

The goal of the problem is to determine a schedule that minimizes the time needed to process all the599

jobs. The length of the schedule is also known as its makespan.600

Instance Generation We use the same generation process as Zhang et al. [2020]. For each of the601

N jobs, we sample N operation durations uniformly in [1, 99) . Each operation is given a random602

machine to run on by sampling a random permutation of the machine IDs.603

Transition Function To leverage JAX, we use the environment dynamics implemented in Ju-604

manji [Bonnet et al., 2023] which differs from framing proposed by L2D [Zhang et al., 2020].605

However, the two formulations are equivalent, therefore our results on the former would transfer to606

the latter. Our implementation choice was purely motivated by environment speed.607

Architecture We use the actor-critic transformer architecture implemented in Jumanji which is608

composed of an attention layer on the machines’ status, an attention layer on the operation durations609

(with positional encoding) and then two attention layers on the joint sequence of jobs and machines.610

The network outputs N marginal categorical distributions for all machines, as well as a value for the611

critic. The actor and critic networks do not share any weights.612

Hyperparameters Like in Zhang et al. [2020], we evaluate our algorithm with N = 10 jobs,613

operations and machines, i.e. 10× 10 instances. We use REINFORCE with the critic as a baseline614

(state-value function). Since episodes may take a long time (for an arbitrary policy, the lowest upper615

bound on the horizon is 98×N3), we use an episode horizon of 1250 and give a reward penalty of616

two times the episode horizon when producing a makespan of more than this limit.617

E Time-performance Tradeoff618

We present in figure 7 a comparison of the time-performance Pareto front between Poppy and POMO619

as we vary respectively the population size and the amount of stochastic sampling. Poppy consistently620

provides better performance for a fixed number of trajectories. Strikingly, in almost every setting,621

matching Poppy’s performance by increasing the number of stochastic samples does not appear622

tractable.623

20

0 50 100 150 200
Number of sampled trajectories (1e2)

0.10

0.15

0.20

0.25

0.30

0.35

O
p

ti
m

al
it

y
ga

p
(%

)

Poppy 4

Poppy 8

Poppy 16

Poppy

POMO

(a) TSP100

0 50 100 150 200 250
Number of sampled trajectories (1e2)

0.2

0.3

0.4

0.5

O
p

ti
m

al
it

y
ga

p
(%

)

Poppy 4

Poppy 8

Poppy 16

Poppy

POMO

(b) TSP125

0 50 100 150 200 250 300
Number of sampled trajectories (1e2)

0.4

0.6

0.8

1.0

O
p

ti
m

al
it

y
ga

p
(%

)

Poppy 4

Poppy 8

Poppy 16

Poppy

POMO

(c) TSP150

0 50 100 150 200
Number of sampled trajectories (1e2)

0.6

0.8

1.0

1.2

1.4

O
p

ti
m

al
it

y
ga

p
(%

)

Poppy 4

Poppy 8

Poppy 32

Poppy

POMO

(d) CVRP100

0 50 100 150 200 250
Number of sampled trajectories (1e2)

0.8

1.0

1.2

1.4

1.6

O
p

ti
m

al
it

y
ga

p
(%

)

Poppy 4

Poppy 8

Poppy 32

Poppy

POMO

(e) CVRP125

0 50 100 150 200 250 300
Number of sampled trajectories (1e2)

1.50

1.75

2.00

2.25

2.50

2.75

3.00

O
p

ti
m

al
it

y
ga

p
(%

)

Poppy 4

Poppy 8

Poppy 32

Poppy

POMO

(f) CVRP150

0 5 10 15 20
Number of sampled trajectories (1e3)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

O
p

ti
m

al
it

y
ga

p
(%

)

Poppy 4

Poppy 8

Poppy 16

Poppy

POMO

(g) KP100

0 20 40 60 80
Number of sampled trajectories (1e2)

7

8

9

10

O
p

ti
m

al
it

y
ga

p
(%

)

Poppy 16

Poppy

POMO

(h) JSSP100

Figure 7: Comparison of the time-performance Pareto front of Poppy and POMO, for each problem
used in the paper. The x-axis is the number of trajectories sampled per test instance, while the y-axis
is the gap with the optimal solution for TSP, KP and JSSP, and the gap with LKH3 for CVRP.

21

	Additional Details on Poppy
	Number of Parameters (TSP)
	Training Details

	Mathematical Elements
	Gradient derivation

	Comparison to Active Search
	Problems
	Traveling Salesman Problem (TSP)
	Capacitated Vehicle Routing Problem (CVRP)
	0-1 Knapsack (KP)
	Job-Shop Scheduling Problem (JSSP)

	Time-performance Tradeoff

