Supplementary

A Overview

In this supplementary material, we provide more quantitative results, technical details and additional
qualitative test examples. Section [B] presents more implementation and training details of SOUL, in
Section [C]the efficacy of the GVD algorithm is discussed, while Section [D|conducts ablation studies
to investigate the impact of different loss functions on the model’s performance. At last, Section[E]
demonstrates the performance improvement achieved by employing multiple-scale computation of
geometric features compared to a single-scale approach. A video showcasing the performance of
SOUL is available at this link: here.

B Additional Implementation Details
As a supplement to Sections 3.4 and 4.4, we provide additional details here.

LiDAR scanner. Table 3] presents a summary of the distinguishing laser characteristics between
ULS and TLS. The acquisition of LiDAR data is profoundly impacted by atmospheric characteristics,
the LiDAR extinction coefficients exhibit a low impact to atmospheric humidity at both 905 nm
and 1550 nm wavelengths (Wojtanowski et al. [47]]). ULS uses 905 nm as wavelength, at which
the scanning device hast the minimum energy consumption (Brede et al. [3]). Meanwhile, the
TLS system operates at a wavelength of 1550 nm, which is more susceptible to the fog impact
(Wojtanowski et al. [47]). This poses the issue that the spectral reflectance of leaf and wood is less
contrasted (Brede et al. [3]) at the 905 nm wavelength, thereby leading us to employ only point
coordinates as input for avoiding the use of intensity information.

Table 3: Laser sensor characteristics

TLS ULS
RIEGL Scanner VZ400 miniVux-1UAV
Laser Wavelength (nm) 1550 905
Beam divergence (mrad) <0.25 <1.6%0.5
Footprint diameter (cm@100m) 3.5 16x5
Pulse duration (ns) 3 6
Range resolution (m) 0.45 0.9

Training details. In addition to the content already illustrated in the main paper, we provide further
details regarding the training parameters. First and foremost, sufficient training time is required
for the model to achieve desirable performance. Our observation indicates that models trained less
than 2,000 epochs are inadequately trained to achieve desirable performance. During the training
process, three metrics, AUROC, MCC and Specificity, are considered more informative and insightful.
Especially, the metric of specificity is crucial as it measures the ability to accurately discriminate
wooden points, which is the primary requirement of our method. Another thing to note is that,
contrary to the mentioned practice in the main text of increasing the batch size by a factor of two
every 1,000 epochs, we did not strictly follow this restriction during the actual training process. Often,
the increase in batch size occurred around 800-900 or 1100-1200 epochs for better using the GPU
resources. However, theoretically, this offset should not affect the final performance.

Architecture of DL model. We have made several modifications to the architecture of PointNet++
(MSGQG) [8]]. Firstly, we observed that Adam (Kingma & Ba [48]]) outperformed Nesterov SGD (Liu
& Belkin [49])) in this task, and ELU (Clevert et al. [50]) activation function was better than ReLLU
(Nair & Hinton [51]). The fraction of the input units to drop for dropout layer was changed from 0.5
to 0.3, that means the probability of an element to be zeroed is 30% (Paszke et al. [52]). We also
decreased the number of hidden neurons and added two more fully connected layers at the end.

Test with error bar. We have calculated a confidence interval at 95% confidence level to indicate
the uncertainty of our method. In the main body of the paper, it was mentioned that we obtained

15

https://youtu.be/tgH9BQ8O_Os

data from four flights, and each data collection from these flights allowed us to obtain a labeled ULS
data set through label transfer from TLS data. The test data set is composed by 40 trees from the
same positions across these four labeled ULS data sets, resulting in a total of 160 trees. We divided
further these 160 trees based on their unique treelD to 16 smaller test sets. However, trees with the
same treelD are not placed together in the same test set. The calculation of confidence intervals was
derived from these 16 test sets. The result is summarized in Table 4 and Table[3l It is clear that SOUL
outperforms all other methods on ULS data and achieves state-of-the-art performance on metrics
such as Specificity, Balanced Accuracy and G-mean.

Table 4: Comparison of different methods

Methods Specificity G-mean BA!
FSCT [9] 0.13 0.356 0.554
FSCT + retrain 0.01 0.1 0.505
LeWos [4] 0.069 0.259 0.520
LeWos (SoD?) [22] 0.069 0.260 0.523
SOUL (focal loss [13]) 0.395 0.615 0.677

SOUL (rebalanced loss) 0.576 £ 0.063 0.651 £+ 0.030 0.720 + 0.027

' BA (Balanced Accuracy) BA = 1 (Recall 4+ Speci ficity).
2 SoD (Significance of Difference).

Table 5: Comparison of different methods

Methods Accuracy Recall Precision
FSCT [9] 0.974 0.977 0.997
FSCT + retrain 0.977 1.0 0.977
LeWos [4] 0.947 0.97 0.975
LeWos (SoD) [22] 0.953 0.977 0.975
SOUL (focal loss [13]) 0.942 0.958 0.982

SOUL (rebalanced loss) 0.857 +0.014 0.865 + 0.015 0.988 + 0.002

Output contains redundant points. To proceed with further data analysis and usage, it is necessary
to remove duplicate points present in the output.

C Assessing the efficacy of GVD

The ULS data often covers several hectares, or even hundreds of hectares. The situation in tropical
forests is also highly complex, with various types and sizes of trees densely packed together. The
significant memory demand makes it nearly impossible to process all the data at once, leading us to
adopt a spatial split scheme approach as a necessary compromise.

We can select data randomly from the whole scene, but selecting data randomly can result in a sparse
and information-poor sample. An alternative is to employ a divide and conquer strategy to handle the
chaotic, big volume, and complex ULS data. That is why we propose GVD, a method that involves
breaking down the data into more manageable subsets (see Figure [§), allowing us to handle the
intricacies and extract meaningful insights in a more systematic manner. This approach enables us to
retain the information-rich aspects of the data while overcoming computational challenges associated
with the sheer volume of data.

Prior to employing the GVD method, we initially adopted a more intuitive approach. The data was
partitioned in unit of voxel, serving as component for batch preparation through down-sampling.
However, this approach gave rise to border effects, particularly impeding SOUL’s focus on the
meticulous segmentation of intricate branch and leaf within tree canopy (see Figure P(c)). The
segmentation of cubes led to the emergence of noise point clusters along the voxel edges. ULS have
more points on tree canopy, so the presence of noise point clusters on voxel edges is more severe on
tree canopy, which imposes bigger obstacles to our leaf/wood segmentation task.

16

[

(a) Comp N°1148 (b) Comp N°575 (c) Comp N°1137 (d) Comp N°552
(e) Comp N°1148 (f) Comp N°575 (g) Comp N°1137 (h) Comp N°552

Figure 8: The figure depict distinct samples subjected to GVD processing and presents qualitative
results within each sample. The upper row illustrates the ground truth for each sample (where brown
represents leaves and white represents wood), whereas the lower row exhibits the predictive results
generated by SOUL (where blue represents leaves and red represents wood incorporating gradient
colors for transitional probability).

(a) Top view (b) Middle layer (c) Thin layer (d) Back view

Figure 9: Downgrade version’s output with sliding window. The use of GVD eliminates observed
edge effects in this context.

We experimented with cuboids, a choice aimed at preserving greater semantic information within
each component sample and expanding the spatial range for batch selection. Similar to a "sliding
window", we can systematically traverse the entire forest with overlapping coverage in this way.
But border effects persisted (see Figure), prompting the introduction of the GVD method, which
led to a substantial improvement. Modifying parameters 7 and v adjusts the coverage scope of
each component in GVD segmentation. Additionally, tweaking the minimum accepted number of
voxels and points, two GVD’s configurable thresholds, within each component effectively manages
component size. This process aids in the elimination of low-information content outlier point clusters
to a certain extent.

A comparison between the result of the downgraded version using sliding window as spatial split
schema and the individual-component point performance of full version SOUL is illustrated in Figure
[8] Notably, in component N°552, SOUL effectively discriminates trunk points from leaf points that
were previously entirely intertwined, surpassing our initial expectations.

17

(a) Cross entropy loss (b) Focal loss

Figure 10: The predictions of SOUL model on raw ULS data training with cross entropy loss function
and focal loss function. Blue represents wood points with high probability, while red represents leaf
points with high probability. Despite utilizing the focal loss, the model remains overwhelmed by leaf
points.

D Ablation study of rebalanced loss

In this section, we mainly discuss the significant benefits introduced by the rebalanced loss. The
network is biased towards leaf points when using cross-entropy loss function and the use of focal
loss function (Lin et al. [13]]) does not yield substantial improvements to the task, as its performance
remains unsatisfactory when tested on the raw data set (see Figure [I0(a) and Figure [[0(b)).

Through a comparison of the specificity curves (see focal loss specificity in Figure [T1] versus
rebalanced loss specificity in Figure [I2) and the training/validation loss curves of focal loss and
rebalanced loss (see loss curve of the focal loss in Figure [I3] versus loss curve of the rebalanced
loss in Figure[T4), we observed that focal loss failed to address the issue of class imbalance in our
task. Plus, it is important to note that in the loss curve of rebalanced loss, the validation loss curve
showed significant fluctuations in Figure[T4] As foreseen, this variation occurred because the training
process employed the rebalanced loss for model training, while the validation process utilized the
cross-entropy loss function. Consequently, the loss value used for backpropagation is derived from
the rebalanced loss function, which inherently does not consider the majority of leaf points. So once
using cross entropy to calculate the loss, all points within a batch are taken into account, which can
lead to fluctuations in the validation loss curve. However, it was expected that the validation loss
curve would eventually converge on the validation set to demonstrate that using rebalanced loss for
backward propagation effectively balances the representation of leaf and wood points. In fact, the
final results surpassed focal loss by a significant margin, as evidenced by the convergence of the
validation loss curve for rebalanced loss (see Figure[I4). For the loss curve of focal loss in Figure T3]
both the training and validation processes employ the focal loss function.

0 50 100 150 200 250 300 350 400 450

Figure 11: Specificity - focal loss (single-scale feature calculation). In the figure, the cyan curve
represents the specificity curve of the training data set, while the gray curve represents the specificity
curve of the validation data set.

18

500 1k 1.5k 2% 25k ES 35k 4 45k sk 5.5k 6k

Figure 12: Specificity - rebalanced loss (single-scale feature calculation), cyan curve - training data
set, gray curve - validation data set.

0 50 100 150 200 250 300 350 400 450 500 550 600

Figure 13: Loss - focal loss (single-scale feature calculation). The blue curve represents the loss
curve of the training data set, while the red curve represents the loss curve of the validation data set.

e I " | | ba |
]ll (1 1V i
‘ [[IW ' "v‘wmrvrww“ I

NIV [LG T Ly sehne Ty g

1k 1.5k 2 25k 3 3.5k a 45k sk 5.5k

Figure 14: Loss - rebalanced loss (single-scale feature calculation), blue curve - training data set, red
curve - validation data set.

In Figure [I2] Figure [I4] Figure[T3] Figure[T6and Figure[T7} we can clearly observe the presence
of "sharp fluctuations", which are a result of the operation mentioned on main paper and Section
[Bl where we increased the batch size by a factor of two approximately every 1,000 epochs. We
followed this practice proposed by Smith et al. [36], which involves increasing the batch size instead
of decaying the learning rate.

E Single-scale vs Multiple-scale

In this section, we mainly showcase multiple-scale geometric features calculation outperform single-
scale at our task. After applying the rebalanced loss as the loss function, we observed that computing
geometric features at multiple scales ultimately improved the performance of SOUL. When comparing
the evolution of specificity with the number of epochs between single-scale and multiple-scale (see
Figure [T6] and Figure [T7), multiple-scales not only exhibit higher values but also converge more
effectively over time, same for loss convergence (see Figure [I4]and Figure T3).

The Matthews Correlation Coefficient (MCC) (see Yao & Shepperd [37]]) and AUROC are both
effective metrics to evaluate the model performance under class imbalance. Therefore, besides the
specificity, we provide the MCC and AUROC values for both single-scale and multiple-scale cases

19

| "““'\‘ "ll I
o Mot A L
04 ” ' w 'ﬂ’r' i “r1‘""'”""”T"!l""l"" TR A e S

0 1k % ES 2 sk 6k 7 ES

Figure 15: Loss - rebalanced loss (multiple-scale feature calculation), blue curve - training data set,
red curve - validation data set.

0 500 1k 1.5k 2% 25k E 35k a 4.5k 5k 5.5k 6k

Figure 16: Specificity - Single-scale geometric features calculation, cyan curve - training data set,
gray curve - validation data set.

08
07
06

0 1k 2% 3 ax 5k 6k 7k 8k

Figure 17: Specificity - Multiple-scale geometric features calculation, cyan curve - training data set,
gray curve - validation data set.

during the training process. Upon analyzing the comparative results of MCC in Figure [I8] and
Figure[I9] and AUROC in Figure[20]and Figure[21] we consistently observe that the multiple-scale
computation of geometric features output higher values compared to the single-scale. This strongly
supports the superior performance of multiple-scale feature computation over single-scale.

0 500 1k 1.5k % 25k E 35k ak a5k sk 5.5k 6k

Figure 18: During the training process, the MCC (single-scale) values change with the number of
epochs.

20

06
055
05
045
04 I M
0 | fi

| \ | ‘ ‘
03 i
025 I ‘ ! l

| |
02
|

ors aiut l

01 I
005

0 1k % ES 2 sk 6k 7k £

Figure 19: MCC (multiple-scale) values change with the number of epochs.

0 500 1k 1.5k 2% 25k ES 35k 2 45k sk 5.5k 6k

0 1k 2% ES 4k sk 6k 7k £

Figure 21: AUROC (single-scale) values change with the number of epochs.

MCC and AUROC provide valuable insights for selecting the final model state (checkpoint). For
example, up to now, the best-performing model state is the one obtained at the 3161st epoch with
the multiple-scale geometric features computation, as mentioned in the main paper. The model
achieves an MCC value of 0.605 and an AUROC value of 0.888, these results generally outperform all
single-scale metrics. As MCC is a discrete case of Pearson correlation coefficient, we can conclude
that there exists a strong positive relationship exists between the model’s predictions and the ground
truth by using the interpretation of Pearson correlation coefficient.

21

