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Abstract

Proteins play a critical role in carrying out biological functions, and their 3D
structures are essential in determining their functions. Accurately predicting the
conformation of protein side-chains given their backbones is important for ap-
plications in protein structure prediction, design and protein-protein interactions.
Traditional methods are computationally intensive and have limited accuracy, while
existing machine learning methods treat the problem as a regression task and over-
look the restrictions imposed by the constant covalent bond lengths and angles. In
this work, we present DiffPack, a torsional diffusion model that learns the joint dis-
tribution of side-chain torsional angles, the only degrees of freedom in side-chain
packing, by diffusing and denoising on the torsional space. To avoid issues arising
from simultaneous perturbation of all four torsional angles, we propose autoregres-
sively generating the four torsional angles from χ1 to χ4 and training diffusion
models for each torsional angle. We evaluate the method on several benchmarks
for protein side-chain packing and show that our method achieves improvements of
11.9% and 13.5% in angle accuracy on CASP13 and CASP14, respectively, with a
significantly smaller model size (60× fewer parameters). Additionally, we show the
effectiveness of our method in enhancing side-chain predictions in the AlphaFold2
model. Code is available at https://github.com/DeepGraphLearning/DiffPack.

1 Introduction

Proteins are crucial for performing a diverse range of biological functions, such as catalysis, signaling,
and structural support. Their three-dimensional structures, determined by amino acid arrangement, are
crucial for their function. Specifically, amino acid side-chains play a critical role in the stability and
specificity of protein structures by forming hydrogen bonds, hydrophobic interactions, and other non-
covalent interactions with other side-chains or the protein backbone. Therefore, accurately predicting
protein side-chain conformation is an essential problem in protein structure prediction [16, 15, 11],
design [48, 54, 14, 65] and protein-protein interactions [64, 24].

Despite recent advancements in deep learning models inspired by AlphaFold2 for predicting the
positions of protein backbone atoms [32, 4], predicting the conformation of protein side-chains
remains a challenging problem due to the complex interactions between side chains. In this work, we
focus on the problem of predicting side-chain conformation with fixed backbone structure, a.k.a.,
protein side-chain packing. Traditional methods for side-chain prediction rely on techniques such as
rotamer libraries, energy functions, and Monte Carlo sampling [27, 73, 37, 3, 1, 35, 71, 7]. However,
these methods are computationally intensive and struggle to accurately capture the complex energy
landscape of protein side chains due to their reliance on search heuristics and discrete sampling.
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Several machine learning methods have been proposed for side-chain prediction, including DL-
Packer [46], AttnPacker [45], and others [47, 69, 70, 73, 39, 71]. DLPacker, the first deep learning-
based model, employs a 3D convolution network to learn the density map of side-chain atoms, but it
lacks the ability to capture rotation equivariance due to its 3D-CNN structure. In contrast, AttnPacker,
the current state-of-the-art model, directly predicts side-chain atom coordinates using Tensor Field
Network and SE(3)-Transformer, ensuring rotation equivariance in side chain packing. However, it
does not consider the restrictions imposed by covalent bond lengths and angles, leading to inefficient
training and unnatural bond lengths during generation. Furthermore, previous methods that treat
side-chain packing as a regression problem assume a single ground-truth side-chain structure and
overlook the fact that proteins can fold into diverse structures under different environmental factors,
resulting in a distribution of side-chain conformations.

In this study, we depart from the standard practice of focusing on atom-level coordinates in Cartesian
space as in prior research [45, 46]. Instead, we introduce DiffPack, a torsional diffusion model that
models the exact degree of freedom in side-chain packing, the joint distribution of four torsional
angles. By perturbing and denoising in the torsional space, we use an SE(3)-invariant network to
learn the gradient field for the joint distribution of torsional angles. This result in a much smaller
conformation space of side-chain, thereby capturing the intricate energy landscape of protein side
chains. Despite its effectiveness, a direct joint diffusion process on the four torsion angles could result
in steric clashes and accumulative coordinate displacement, which complicates the denoising process.
To address this, we propose an autoregressive diffusion process and train separate diffusion models to
generate the four torsion angles from χ1 to χ4 in an autoregressive manner. During training, each
diffusion model only requires perturbation on its corresponding torsional angle using a teacher-forcing
strategy, preserving the protein structure and avoiding the aforementioned issues. To improve the
capacity of our model, we further introduce three schemes in sampling for consistently improving the
inference results: multi-round sampling, annealed temperature sampling, and confidence models.

We evaluate our method on several benchmarks for protein side-chain packing and compare it with
existing state-of-the-art methods. Our results demonstrate that DiffPack outperforms existing state-
of-the-art approaches, achieving remarkable improvements of 11.9% and 13.5% in angle accuracy
on CASP13 and CASP14, respectively. Remarkably, these performance gains are achieved with a
significantly smaller model size, approximately 60 times fewer parameters, highlighting the potential
of autoregressive diffusion models in protein structure prediction. Furthermore, we showcase the
effectiveness of our method in enhancing the accuracy of side-chain predictions in the AlphaFold2
model, indicating its complementary nature to existing approaches.

2 Background

Protein. Proteins are composed of a sequence of residues (amino acids), each containing an alpha
carbon (Cα) atom bounded to an amino group (-NH2), a carboxyl group (-COOH) and a side-chain
(-R) that identifies the residue type. Peptide bonds link consecutive residues through a dehydration
synthesis process. The backbone of a protein consists of the Cα atom and the connected nitrogen,
carbon, and oxygen atoms. We use S = [s1, s2, ..., sn] to denote the sequence of a protein with n
residues, where si ∈ {0, ..., 19} denotes the type of the i-th residue.

Protein Conformation. Physical interactions between residues make a protein fold into its native
3D structure, a.k.a., conformation, which determines its biologically functional activity. We use
X = [x1, x2, ..., xn] to denote the structure of a protein, where xi denotes the set of atom coordinates
belonging to the i-th residue. The backbone structure x

(bb)
i of the i-th residue is a subset consisting

of backbone atoms, i.e., Cα, N, C, O, while the side-chain consists of the remaining atoms x(sc)
i =

xi \ x(bb)
i . The backbone conformation X (bb) and side-chain conformation X (sc) of the protein are

defined as the set of backbones and side-chains of all residues, respectively.

Protein Side-Chain Packing. Protein side-chain packing (PSCP) problem aims to predict the 3D
coordinates X (sc) of side-chain atoms given backbone conformations X (bb) and protein sequence S .
That is, we aim to model the conditional distribution p(X (sc)|X (bb),S).
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Figure 1: Overview of DiffPack. Given a protein sequence and backbone structure, we aim to model
the conditional distribution of side-chain conformation. (A) Distribution of side-chain conformation
is modeled through diffusion process in torsion space Tm. An SE(3)-invariant network is used to
learn the torus force field (torsion score). (B) Four torsion angles are generated autoregressively
across all residues.

3 Methods

In this paper, we introduce an autoregressive diffusion model DiffPack to predict the side-chain
conformation distribution in torsion space. We address the issue of overparameterization by in-
troducing a torsion-based formulation of side-chain conformation in Section 3.1. Then we give a
formulation of the torsional diffusion model in Section 3.2. However, directly applying the diffusion
model encounters challenges in learning the joint distribution, which we address by introducing
an autoregressive-style model in Section 3.3. We then provide details of the model architecture in
Section 3.4, followed by an explanation of the inference procedure in Section 3.5.

3.1 Modeling Side-Chain Conformations with Torsional Angles

Figure 2: Illustra-
tion of four tor-
sional angles.

Previous methods [45, 46] model the side chain conformation as a series of
three-dimensional coordinates in the Cartesian space. However, this approach
does not take into account the restrictions imposed by constant covalent bond
lengths and angles on the side chain’s degree of freedom, resulting in inefficient
training and unnatural bond lengths during generation.

To overcome this overparameterization issue, we propose modeling side chain
conformation in torsion space. As illustrated in Figure 2, torsional angles directly
dictate protein side-chain conformation by determining the twist between two
neighboring planes. Table 6 lists the atom groups to define corresponding the
neighboring plane for each residue type. The number of torsional angles varies
across different residues, with a maximum of four (χ1, χ2, χ3, χ4). Modeling
side chains in torsion space reduces the number of variables by approximately
one third and restricts degrees of freedom [6]. Formally, we transform the
problem of side-chain packing to modeling the distribution of torsional angles:

p(X (sc)|X (bb),S) ⇔ p
(
χ1,χ2,χ3,χ4

∣∣X (bb),S
)
, (1)
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where χi ∈ [0, 2π)mi is a vector of the i-th torsional angles of all residues in the protein and we
use mi to denote the number of residues with χi. The space of possible side chain conformation is,
therefore, reduced to an m-dimension sub-manifold M ⊂ R3n with m = m1 +m2 +m3 +m4.

3.2 Diffusion Models on Torsional Space

Denoising diffusion probabilistic models are generative models that learn the data distribution via a
forward diffusion process and a reverse generation process [23]. We follow [30] to define diffusion
models on the torsional space with the continuous score-based framework in [57]. For simplicity, we
omit the condition and aggregate torsional angles on all residues as a torsional vector χ ∈ [0, 2π)m.
Starting with the data distribution as p0(χ), the forward diffusion process is modeled by a stochastic
differential equation (SDE):

dχ = f(χ, t) dt+ g(t) dw, (2)
where w is the Wiener process on the torsion space and f(χ, t), g(t) are the drift coefficient and
diffusion coefficient, respectively. Here we adopt Variance-Exploding SDE where f(χ, t) = 0 and
g(t) is exponentially decayed with t. With sufficiently large T , the distribution pT (χ) approaches a
uniform distribution over the torsion space. The reverse generation process samples from the prior
and generates samples from the data distribution p0(χ) via approximately solving the reverse SDE:

dχ =
[
f(χt, t)− g2(t)∇χ log pt(χt)

]
dt+ g(t) dw, (3)

where a neural network is learned to fit the score ∇χ log pt(χt) of the diffused data [23, 57]. Inspired
by [30], we convert the torsional angles into 3D atom coordinates and define the score network on
Euclidean space, enabling it to explicitly learn the interatomic interactions.

The training process involves sampling from the perturbation kernel of the forward diffusion
and computing its score to train the score network. Given the equivalence (χ1, ..., χm) ∼
(χ1 + 2π, ..., χm)... ∼ (χ1, ..., χm + 2π) in torsion space, the perturbation kernel is a wrapped
Gaussian distribution on Rm. This means that any χ,χ′ ∈ [0, 2π)m, the perturbation kernel is
proportional to the sum of exponential terms, which depends on the distance between χ and χ′:

pt|0(χ
′|χ) ∝

∑
d∈Zm exp

(
−∥χ−χ′+2πd∥2

2σ2(t)

)
, (4)

In order to sample from the perturbation kernel, we sample from the corresponding unwrapped
isotropic normal and take element-wise mod 2π. The kernel’s scores are pre-computed using a
numerical approximation. During training, we uniformly sampled a time step t and the denoising
score matching loss is minimized:

JDSM(θ) = Et

[
λ(t)Eχ0∼p0,χt∼pt|0(·|χ0)

[
∥s(χt, t)−∇t log pt|0(χt|χ0)∥2

]]
, (5)

where the weight factors λ(t) = 1/Eχ∼pt|0(·|0)
[
∥∇χ log pt|0(χ|0)∥2

]
are also pre-computed.

3.3 Autoregressive Diffusion Models

The direct approach to torsional diffusion models introduces noise on all torsional angles simultane-
ously and poses two significant challenges:
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Figure 3: Effects
of rotating χ1.

1. Cumulative coordinate displacement: Adding noises to torsional angles
is equivalent with rotating side-chain atoms in and beyond the corresponding
atom groups. For instance, if χ1 is rotated, it affects the coordinates of atoms
in the χ2, χ3, and χ4 groups. This cumulative effect complicates the denoising
process of the latter three angles. Similar issues arise after rotating χ2 and χ3.
The effect of rotating χ1 is illustrated in Figure 3.

2. Excessive steric clash: Adding noises to all torsional angles may damage
protein structures and complicate the denoising process in our score network.
In Appendix C, Figure 8 compares the number of atom clashes observed when
using noise schemes in vanilla diffusion models and autoregressive-style ones to
show the straightforward application of diffusion models results in significantly
more steric clashes.

To address the aforementioned issues, we propose an autoregressive diffusion model over the torsion
space. We factorize the joint distribution of the four torsional angles into separate conditional
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distributions. Specifically, we have
p(χ1,χ2,χ3,χ4) = p(χ1) · p(χ2|χ1) · p(χ3|χ1,2) · p(χ4|χ1,2,3). (6)

This allows us to model the side-chain packing problem as a step-by-step generation of torsional
angles: first, we predict the first torsional angles χ1 for all residues given the protein backbone
structure; next, based on the backbone and the generated χ1, we predict the second torsional angles
χ2; and so on for χ3 and χ4.

We train a separate score network for each distribution on the right-hand side using the torsional
diffusion model from Section 3.2. To train the autoregressive model, we use a teacher-forcing strategy.
Specifically, when modeling p(χi|χ1,...,i−1), we assume that χ1,...,i−1 are ground truth and keep
these angles fixed. We then rotate χi by sampling noises from the perturbation kernel in (4) and
discard all atoms belonging to the χi+1,...,4 groups to remove the dependency on following torsional
angles. This approach eliminates the cumulative effects of diffusion process on χi and preserves the
overall structure of the molecule, thus overcoming the aforementioned challenges. The generation
process is illustrated in Figure 1 and the training procedure is described in Algorithm 1.

3.4 Model Architecture

To model p(χi|χ1,...,i−1), we utilize a score network constructed using the 3D coordinates s(Xt, t)
of backbone atoms and atoms in the χ1,...,i−1 groups. The score network’s output represents the noise
on torsional angles, which should be SE(3)-invariant w.r.t. the conformation Xt. Unlike previous
methods [45] operating in Cartesian coordinates that require an SE(3)-equivariant score network,
our method only requires SE(3)-invariance, providing greater flexibility in designing the model
architecture. To ensure this invariance, we employ GearNet-Edge [75], a state-of-the-art protein
structure encoder. This involves constructing a multi-relational graph with atoms as nodes, where
node features consist of one-hot encoding for atom types, corresponding residue types, and time
step embeddings. Edges are added based on chemical bond and 3D spatial information, determining
their type. To learn representations for each node, we perform relational message passing between
them [50]. We denote the edge between nodes i and j with type r as (i, j, r) and set of relations as R.
We use h

(l)
i to denote the hidden representation of node i at layer l. Then, message passing can be

written as:

h
(l)
i = h

(l−1)
i + σ

(
BatchNorm

(∑
r∈R Wr

∑
j∈Nr(i)

(
h
(l−1)
j + Linear

(
m

(l)
(i,j,r)

))))
, (7)

where Wr is the learnable weight matrix for relation type r, Nr(j) is the neighbor set of j with
relation type r, and σ(·) is the activation function. Edge representations m(l)(i, j, r) are obtained
through edge message passing. We use e as the abbreviation of the edge (i, j, r). Two edges e1 and
e2 are connected if they share a common end node, with the connection type determined by the
discretized angle between them. The edge message passing layer can be written as:

m(l)
e1 = σ

(
BatchNorm

(∑
r∈R′ W ′

r

∑
e2∈N ′

r(e1)
m

(l−1)
e2

))
, (8)

where R′ is the set of relation types between edges and N ′
r(e1) is the neighbor set of e1 with relation

type r. After obtaining the hidden representations of all atoms at layer L, we compute the residue
representations by taking the mean of the representations of its constituent atoms. The residue
representations are then fed into an MLP for score prediction. The details of architectural components
are summarized in Appendix D.

3.5 Inference

After completing the training, we adopt the common practice of autoregressive and diffusion models
for inference, as described in Algorithm 2. We generate four torsional angles step by step as described
in Section 3.3. When sampling χi based on the predicted torsional angles χ1,...,i−1, we begin by
sampling a random angle from the uniform prior and then discretize and solve the reverse diffusion.
At each time step, we generate atoms in the χ1,...,i group and use our learned score network for
denoising. We also discover several simple techniques that significantly improve our performance,
including multi-round sampling, annealed temperature sampling and confidence models.

Predictor-corrector sampling. After discretizing the reverse diffusion SDE, we perform multiple
Langevin steps subsequent to each denoising step. This hybrid method, which mixes the denoising
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process with Langevin dynamics, is called predictor-corrector sampling, as suggested by [57]. This
approach can be seen as introducing an equilibration process to stabilize pt, and it is demonstrated to
be effective in diffusion process.

Annealed temperature sampling. When designing a generative model, two critical aspects to
consider are quality and diversity. The diffusion model often suffers from overdispersion, which
prioritizes diversity over sampling quality. However, in the context of side chain packing, quality
is more important than diversity. Directly using the standard reverse sampling process may lead
to undesirable structures. Following [28], we utilize an annealed temperature sampling scheme to
mitigate this issue. Specifically, We modify the reverse SDE by adding an annealed weight λt to the
score function (details in Appendix E):

dχ = −λt
dσ2(t)

dt
∇χ log pt(χt) dt+

√
dσ2(t)

dt
dw, where λt =

σ2
max

Tσ2
max − (T − 1)σ2(t)

. (9)

The above modification results in a reverse process approximating the low temperature sampling
process, where ideally decreasing tempeture T lead to a sampling process biased towards quality.

Confidence model. As per common practice in protein structure prediction [32], we train a confidence
model to select the best prediction among multiple conformations sampled from our model. The
model architecture we use is the same as that used in diffusion models, which takes the entire protein
conformation as input and outputs representations for each residue. We train the model on the same
dataset, using the residue representations to predict the negative residue-level RMSD of our sampled
conformations. When testing, we rank all conformations based on our confidence model.

3.6 Handling Symmetric Issues

Figure 4: Distribution of π-
rotation-symmetry torsional an-
gles (Blue) and 2π-rotation-
symmetry (Red).

Torsional angles generally exhibit a periodicity of 2π. However,
certain rigid side-chain structures possess a π-rotation-symmetry,
meaning that rotating the torsional angle by π does not yield
distinct physical structures, as demonstrated in Figure 4. For
instance, in the case of a tyrosine residue, the phenolic portion of
its side chain ensures that a π rotation of its χ2 torsion angles only
alters the internal atom name without affecting the actual structure.

Previous research by Jumper et al. [32] addressed this concern by
offering an alternative angle prediction, χ+π, and minimizing the
minimum distance between the ground-truth and both predictions.
In our diffusion-based framework, we employ a distinct method.
Specifically, the π-rotation-symmetry results in the equivalence
(χi) ∼ (χi + kπ) in torsion space, differing from the normal
equivalence relationship in torsion space by a factor of 2k. Con-
sequently, we can still define the forwarding diffusion process in
torsion space, albeit with a modification to Equation 4:

pt|0(χ
′|χ) ∝

∑
d∈Zm exp

(
−∥χ−χ′+cπd∥2

2σ2(t)

)
, c ∈ {1, 2}m (10)

where ci = 1 for π-rotation-symmetric rigid groups, and ci = 2 otherwise.

4 Related Work

Protein side-chain packing. Conventional approaches for protein side-chain packing (PSCP) involve
minimizing the energy function over a pre-defined rotamer library [27, 73, 37, 3, 1, 35, 71, 7]. The
choice of rotamer library, energy function, and energy minimization procedure varies among these
methods. These methods rely on search heuristics and discrete sampling, limiting their accuracy.
Currently, efficient methods like OSCAR-star [37], FASPR [27], SCWRL4 [35] do not incorporate
deep learning and depend on rotamer libraries.

Several ML methods exist for side-chain prediction [47, 46, 69, 70, 73, 39, 71], including SIDE-
Pro [47], which trains 156 feedforward networks to learn an additive energy function over pairwise
atomic distances; DLPacker [46], which uses a deep U-net-style neural network to predict atom
positions and selects the closest matching rotamer; OPUS-Rota4 [70], which employs multiple deep
networks and utilizes MSA as input to predict side-chain coordinates and obtain a final structure;
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and AttnPacker [45], which builds transformer layers and triangle updates based on components
in Tensor Field Network [59] and SE(3)-Transformer [17] and achieves the state-of-the-art perfor-
mance. In contrast, our method focuses solely on torsion space degrees of freedom and leverages an
autoregressive diffusion model to accurately and efficiently model rotamer energy.

Diffusion models on molecules and proteins. The Diffusion Probabilistic Model (DPM), which
was introduced in [55], has recently gained attention for its exceptional performance in generating
images and waveforms [23, 10]. DPMs have been employed in a variety of problems in chemistry
and biology, including molecule generation [72, 26, 68, 30], molecular representation learning [40],
protein structure prediction [67], protein-ligand binding [12], protein design [2, 44, 28, 66, 38, 74],
motif-scaffolding [60], and protein representation learning [76]. In this work, we investigate diffusion
models in a new setting, protein side-chain packing, and propose a novel autoregressive diffusion
model. Note that our definition of autoregressive diffusion model differs from existing works [25].

5 Experiments

5.1 Experimental Setup

Dataset. We use BC40 for training and validation, which BC40 is a subset of PDB database selected
by 40% sequence identity [63]. Following the dataset split in [45], there are 37266 protein chains for
training and 1500 protein chains for validation. We evaluate our models on CASP13 and CASP14.
Training set is curated so that no structure share sequence similarity with test set by ≥ 40%.

Baselines. We compare DiffPack with deep learning methods, like AttnPacker [45], DLPacker [46]
and traditional methods including SCWRL4 [35], FASPR [27] and RosettaPacker [8]. Details can be
found in Appendix H.1

Metrics. We evaluate the quality of generated side-chain conformations using three metrics: (1)
Angle MAE measures the mean absolute error of predicted torsional angles. (2) Angle Accuracy
measures the proportion of correct predictions, considering a torsional angle correct if the deviation
is within 20◦. (3) Atom RMSD measures the average RMSD of side-chain atoms for each residue.

Since predicting surface side-chain conformations is considered more challenging, some results are
divided into "Core" and "Surface" categories. Core residues are defined as those with at least 20 Cβ

atoms within a 10Å radius, while surface residues have at most 15 Cβ atoms in the same region.

5.2 Side-Chain Packing

Table 1 summarizes the experimental result in CASP13, our model outperforms all other methods in
predicting torsional angles, achieving the lowest mean absolute errors across all four Angle MAE
categories (χ1, χ2, χ3, and χ4). Additionally, DiffPack shows the highest Angle Accuracy for all
residues (69.5%), core residues (82.7%), and surface residues (57.3%), where for surface residue the
accuracy is increased by 20.4% compared with previous state-of-the-art model AttnPacker. These
results demonstrate that our model is better at capturing the distribution of the side chain torsion angles
in both protein surfaces and cores. As for the atom-level side chain conformation prediction, DiffPack
clearly outperforms other models in Atom RMSD. Moreover, the intrinsic design of DiffPack ensures
that the generated structures have legal bond lengths and bond angles, while previous models in
atom-coordinate space (e.g. AttnPacker) can easily generate side chains with illegal bond constraints
without post-processing (as illustrated in Figure 6A).

Similarly, DiffPack outperforms other methods in all Angle MAE categories on the CASP14 dataset
(Table 2). It achieves the highest Angle Accuracy for all residues (57.5%), core residues (77.8%),
and surface residues (43.5%). Furthermore, DiffPack reports the best Atom RMSD for all residues
(0.793 Å), core residues (0.356 Å), and surface residues (0.956 Å).

Despite its superior performance on both test sets, our model, DiffPack, has a significantly smaller
number of total parameters (3,043,363) compared to the previous state-of-the-art model, AttnPacker
(208,098,163), which relies on multiple layers of complex triangle attention. This substantial reduction
(68.4×) in model size highlights the efficiency of diffusion-based approaches like DiffPack, making
them more computationally feasible and scalable solutions for predicting side-chain conformations.
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ANGLE MAE ◦ ↓ ANGLE ACCURACY % ↑ ATOM RMSD Å ↓
Method χ1 χ2 χ3 χ4 All Core Surface All Core Surface

SCWRL 27.64 28.97 49.75 61.54 56.2% 71.3% 43.4% 0.934 0.495 1.027
FASPR 27.04 28.41 50.30 60.89 56.4% 70.3% 43.6% 0.910 0.502 1.002
RosettaPacker 25.88 28.25 48.13 59.82 58.6% 75.3% 35.7% 0.872 0.422 1.001
DLPacker 22.18 27.00 51.22 70.04 58.8% 73.9% 45.4% 0.772 0.402 0.876
AttnPacker 18.92 23.17 44.89 58.98 62.1% 73.7% 47.6% 0.669 0.366 0.775

DiffPack 15.35 19.19 37.30 50.19 69.5% 82.7% 57.3% 0.579 0.298 0.696

Table 1: Comparative evaluation of DiffPack and prior methods on CASP13.

ANGLE MAE ◦ ↓ ANGLE ACCURACY % ↑ ATOM RMSD Å ↓
Method χ1 χ2 χ3 χ4 All Core Surface All Core Surface

SCWRL 33.50 33.05 51.61 55.28 45.4% 62.5% 33.2% 1.062 0.567 1.216
FASPR 33.04 32.49 50.15 54.82 46.3% 62.4% 34.0% 1.048 0.594 1.205
RosettaPacker 31.79 28.25 50.54 56.16 47.5% 67.2% 33.5% 1.006 0.501 1.183
DLPacker 29.01 33.00 53.98 72.88 48.0% 66.9% 33.9% 0.929 0.476 1.107
AttnPacker 25.34 28.19 48.77 51.92 50.9% 66.2% 36.3% 0.823 0.438 1.001

DiffPack 21.91 25.54 44.27 55.03 57.5% 77.8% 43.5% 0.770 0.356 0.956

Table 2: Comparative evaluation of DiffPack and prior methods on CASP14.

5.3 Side-Chain Packing on Non-Native Backbone

In addition to native backbones, another interesting and challenging problem is whether the side
chain packing algorithm can be applied to non-native backbone (e.g., backbones generated by protein
folding algorithms). In this regard, we extend DiffPack to accommodate non-native backbones
generated from AlphaFold2 [32]. Table 3 gives the quantitative result of different algorithms
including AlphaFold2’s side-chain prediction on the CASP13-FM test set. All metrics are calculated
after aligning the non-native backbone of each residue to the native backbone. As observed, DiffPack
achieves state-of-the-art on most metrics. Notably, DiffPack is the only model that consistently
outperforms AlphaFold2 in all metrics, showcasing its potential to refine AlphaFold2’s predictions.

5.4 Ablation Study

To analyze the contribution of different parts in our proposed method, we perform ablation studies on
CASP13 and CASP14 benchmarks. The results are shown in Table 4.
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Figure 5: Training loss curves
for different diffusion models.

Autoregressive diffusion modeling. We evaluate our autoregressive
diffusion modeling approach against two baselines: joint diffusion
(χ1,2,3,4) and random diffusion (χi). Joint diffusion models the
joint distribution of the four torsional angles of each residue and
performed diffusion and denoising on all angles simultaneously,
while random diffusion perturbs one random torsional angle per
residue and generates all angles simultaneously during inference.
Our approach outperforms both baselines (Table 4). Training loss
curves (Figure 5) show that random diffusion has an easier time
optimizing its loss than joint diffusion, but struggles with denoising
all angles at once due to a mismatch between training and inference
objectives. Our autoregressive scheme strikes a balance between ease
of training and quality of generation, achieving good performance.
We plot the training curves of the conditional distributions for the four torsional angles in DiffPack,
finding that χ1 and χ2 are easier to optimize and perform better than random diffusion, likely due
to discarding atoms from subsequent angles to overcome cumulative perturbation effects. However,
training on the smaller set of valid residues with χ3 and χ4 is inefficient. Future work should
address the challenge of training these angles more efficiently and mitigating cumulative errors in
autoregressive models.

Inference. Three techniques are proposed in Section 3.5 to improve the inference of DiffPack. To
evaluate the effectiveness of these techniques, we compare them with three baselines that do not
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ANGLE MAE ◦ ↓ ANGLE ACCURACY % ↑ ATOM RMSD Å ↓
Method χ1 χ2 χ3 χ4 All Core Surface All Core Surface

AlphaFold2* 35.20 31.10 51.38 56.95 51.3% 71.5% 38.7% 1.058 0.521 1.118

SCWRL 34.94 30.84 50.45 56.75 51.3% 69.5% 39.0% 1.079 0.550 1.148
FASPR 34.83 30.85 50.60 56.74 50.8% 67.9% 39.8% 1.073 0.573 1.114
RosettaPacker 35.43 31.63 51.33 56.18 50.9% 70.6% 38.5% 1.070 0.526 1.139
DLPacker 34.38 31.57 55.84 67.02 49.9% 69.1% 37.0% 1.032 0.543 1.090
AttnPacker 33.23 31.97 50.53 58.20 51.0% 68.4% 39.1% 0.981 0.512 1.027
DiffPack 31.25 30.17 48.32 56.82 55.5% 74.3% 41.9% 0.978 0.490 1.056

Table 3: Comparative evaluation on CASP13-FM non-native backbones generated by AlphaFold2.

CASP13 ANGLE MAE ◦ ↓ CASP14 ANGLE MAE ◦ ↓
Method χ1 χ2 χ3 χ4 χ1 χ2 χ3 χ4

DiffPack 15.35 19.19 37.30 50.19 21.91 25.54 44.27 55.03

- w/ joint diffusion (χ1,2,3,4) 17.14 23.72 35.96 45.30 26.80 34.51 52.77 63.41
- w/ random diffusion (χi) 17.11 27.27 44.75 56.42 23.26 32.69 49.21 51.92
- w/o multi-round sampling 16.26 23.13 40.60 52.67 23.86 30.71 47.54 55.80
- w/o annealed temperature 15.55 22.56 39.32 51.37 22.82 29.61 45.86 55.22
- w/o confidence models 16.12 22.92 39.92 50.63 22.86 29.30 45.80 54.08

Table 4: Ablation study on CASP13 and CASP14.

use these techniques. For the baselines without multi-round sampling and annealed temperature,
we simply resume the sampling procedure in the vanilla diffusion models. For the baseline without
confidence models, we only draw one sample from our model instead of using confidence models to
ensemble multiple samples. As shown in Table 4, the mean absolute error of the four torsional angles
increases for the three baselines, demonstrating the effectiveness of our proposed techniques.

5.5 Case Study

DiffPack accurately predict the side-chain conformation with chemical validity. As shown in
Figure 6A and Figure 6B. DiffPack accurately predict the side-chain conformation with a substantially
lower RMSD (0.196Å and 0.241Å) compared with other deep learning methods. Furthermore,
DiffPack consistently ensures the validity of generated structures, while AttnPacker without post-
processing sometimes violates the chemical validity due to its operation on atom coordinates.

DiffPack correctly identifies the π stacking interaction. Accurate reconstruction of π stacking
interaction between side-chain has traditionally been challenging. Traditional method usually requires
a specific energy term for modeling this interaction. Interestingly, DiffPack has shown the ability to
implicitly model this interaction without the need of additional prior knowledge (Figure 6C).

RMSD from ground truth (Å)
• DiffPack: 0.196
• DLPacker: 2.186
• AttnPacker: 2.383
• AttnPacker-NoPP: 2.844

(A) CASP ID: T0951

RMSD from ground truth (Å)
• DiffPack: 0.241
• DLPacker: 2.726
• AttnPacker: 2.100
• AttnPacker-NoPP: 2.083

(B) CASP ID: T0971

RMSD from ground truth (Å)
• DiffPack: 1.434
• RosettaPacker: 3.520

(C) CASP ID: T0949

Figure 6: Case studies on DiffPack. Predictions from different methods are distinguished by color.
(A) DiffPack accurately predicts the side-chain conformation. AttnPacker-NoPP produces an invalid
glutamic acid structure since Oδ1is too close to Oδ2. (B) DiffPack accurately predicts the χ1 of
leucine. (C) DiffPack correctly identifies π-π stacking interactions, indicated by dashed lines.
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6 Conclusions

In this paper, we present DiffPack, a novel approach that models protein side-chain packing using a
diffusion process in torsion space. Unlike vanilla joint diffusion processes, DiffPack incorporates an
autoregressive diffusion process, addressing certain limitations. Our empirical results demonstrate
the superiority of our proposed method in predicting protein side-chain conformations compared
to existing approaches. Future directions include exploring diffusion processes for sequence and
side-chain conformation co-generation, optimizing computational efficiency in side-chain packing,
and considering backbone flexibility in the diffusion process.
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A More Related Work

Geometric deep learning on biomolecules. Learning protein representations based on 3D geo-
metric information is crucial for various protein tasks. Recent advancements have led researchers
to develop architectures that preserve properties such as invariance and equivariance for essential
transformations like rotation and translation. These approaches have utilized various techniques such
as node/atom message passing[19, 51, 52, 49], edge/bond message passing [31, 9], and directional
information [33, 41, 34] to encode molecular graphs in 2D or 3D. Notably, recent models have
been generalized to protein 3D structures [20, 5, 29, 22, 21] and protein surfaces [18, 58, 13, 56],
demonstrating remarkable performance on diverse tasks. In this work, we utilize a state-of-the-art
protein structure encoder, GearNet-Edge [75] to obtain SE(3)-invariant representations for denoising
in the torsion space.

A.1 Broader Impact

The impact of our work extends well beyond the realm of protein structure prediction, with implica-
tions across various fields of biological science and medical research. The ability to accurately predict
protein side-chain conformations is of vital importance in understanding the intricate functioning of
proteins and their interactions with other molecules, including substrates, inhibitors, and drugs.

Drug Design and Discovery: Accurate prediction of side-chain conformations could considerably
advance the field of drug discovery and design, where the interaction between proteins and small
molecule drugs or inhibitors is often determined by the precise conformation of side chains. Improved
accuracy in side-chain packing can facilitate more precise predictions of protein-ligand binding sites
and affinities, thereby expediting the development of new therapeutics.

Protein Engineering: Effective application of our method could also revolutionize protein engi-
neering, where side-chain packing plays a pivotal role in protein stability, function, and interaction.
Enhancing our understanding of side-chain packing will help engineer proteins with desired properties,
including altered substrate specificity, increased stability, or novel functionality.

Disease Understanding: Many diseases, such as Alzheimer’s, Parkinson’s, and various cancers, are
tied to misfolded proteins or mutations that affect protein structure. Accurate side-chain prediction
can thus provide key insights into the structural consequences of such mutations, supporting the
development of targeted treatments.

Bioinformatics and Computational Biology: On a technical note, our work provides a novel
perspective for side-chain packing problem by formulating it as a diffusion process in the torsional
space, which could inspire further innovations in bioinformatics and computational biology. Moreover,
given the efficiency of our approach, it is anticipated to facilitate the rapid and scalable analysis of
large-scale protein datasets, aiding in the exploration of the proteome.

A.2 Limitation

In this study, we focus exclusively on protein side-chain prediction under the assumption of a fixed
and highly accurate backbone. Nevertheless, in real-world scenarios, protein backbones may be
generated using existing structure prediction methods, which may not provide sufficient accuracy.
It is essential to address how our methods can be adapted to accommodate such settings, and this
aspect remains an important future direction for our research. Additionally, we intend to explore the
application of our methods in various downstream tasks, such as protein-protein interactions and
protein engineering tasks, as part of our future research directions.

B Additional Experiment Results

B.1 Steric Clash

In order to quantify whether the generated structure has severe steric clash, we add an additional metric
Steric Clash Count measures the mean number of clash pairs appearing in generated structures.
Following previous work [45, 36], the distance threshold between different types of atoms is initially
defined by van der Waals radii and further adjusted to account for factors such as H-bond and disulfide
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bridges. A protein atom pair is identified to have a steric clash if the inter-atomic distance is within
X% of the threshold. Here, X is chosen as 100%, 90%, and 80%, representing varying levels of
stringency and providing a more comprehensive assessment of steric clashes.

CASP13 CLASH COUNT ↓ CASP14 CLASH COUNT ↓
Method 100% 90% 80% 100% 90% 80%

SCWRL 115.3 20.6 4.6 124.0 24.6 6.5
FASPR 112.8 23.3 5.6 130.5 29.5 8.7
RosettaPacker 73.8 7.9 2.6 100.6 10.1 3.4
DLPacker 64.3 7.3 2.0 74.1 10.5 3.0
AttnPacker-noPP 40.1 5.7 1.5 49.5 10.2 3.5

DiffPack 37.5 4.6 0.9 46.5 6.0 1.1

Table 5: Mean Clash Pair Number of Generation Result

From Table 5, it is clear that the DiffPack method outperforms the other techniques across all levels
of stringency for both CASP13 and CASP14 datasets. This superiority suggests that the DiffPack
method produces protein structures with fewer steric clashes, indicating a more realistic and physically
plausible model of protein side chain packing.

At the 100% distance threshold, DiffPack generates 67.5% fewer clashes than SCWRL, 66.7% fewer
than FASPR, 49.1% fewer than RosettaPacker, and 41.7% fewer than DLPacker for the CASP13
dataset. Similarly, for the CASP14 dataset, it generates 62.5% fewer clashes than SCWRL, 64.3%
fewer than FASPR, 53.8% fewer than RosettaPacker, and 37.2% fewer than DLPacker.

At the 90% and 80% distance thresholds, the comparative reduction in clashes by DiffPack is also
evident. This trend suggests that DiffPack consistently generates structures with fewer steric clashes,
which is crucial for generating biologically feasible protein structures.

Interestingly, the AttnPacker-noPP method also shows a considerable reduction in clashes compared
to other methods, especially SCWRL and FASPR, but it is still surpassed by the performance of
DiffPack. This suggests that the autoregressive diffusion model used in DiffPack is more capable
of managing steric clashes in protein structure generation, demonstrating the effectiveness of this
approach.

B.2 Visualization of Sampling Results

RMSD from ground truth (Å)
• DiffPack: 0.465

RMSD from ground truth (Å)
• AttnPacker: 2.720

RMSD from ground truth (Å)
• DLPacker: 2.919

RMSD from ground truth (Å)
• RosettaPacker: 3.012

RMSD from ground truth (Å)
• DiffPack: 0.428

RMSD from ground truth (Å)
• AttnPacker: 3.700

RMSD from ground truth (Å)
• DLPacker: 0.966

RMSD from ground truth (Å)
• RosettaPacker: 3.445

RMSD from ground truth (Å)
• DiffPack: 0.360

RMSD from ground truth (Å)
• AttnPacker: 2.421

RMSD from ground truth (Å)
• DLPacker: 0.865

RMSD from ground truth (Å)
• RosettaPacker: 0.632

Figure 7: Visualization of sampling results. DiffPack (green), AttnPacker (purple), DLPacker (red),
RosettaPacker (orange) are evaluated on T1000 (top), T0954 (middle), T1020 (bottom) cases.
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C Details of Autoregressive Diffusion Models

C.1 Atom groups for each residue type

For completeness, we provide the definition of torsional angles and corresponding atom groups for
each residue in Table 6. These definitions align with those presented in the AlphaFold2 paper [32].

Residue Type χ1 χ2 χ3 χ4

ALA - - - -
ARG N, Cα, Cβ , Cγ Cα, Cβ , Cγ , Cδ Cβ , Cγ , Cδ , Nϵ Cγ , Cδ , Nϵ, Cζ

ASN N, Cα, Cβ , Cγ Cα, Cβ , Cγ , Oδ1 - -
ASP N, Cα, Cβ , Cγ Cα, Cβ , Cγ , Oδ1 - -
CYS N, Cα, Cβ , Sγ - - -
GLN N, Cα, Cβ , Cγ Cα, Cβ , Cγ , Cδ Cβ , Cγ , Cδ , Oϵ1 -
GLU N, Cα, Cβ , Cγ Cα, Cβ , Cγ , Cδ Cβ , Cγ , Cδ , Oϵ1 -
GLY - - - -
HIS N, Cα, Cβ , Cγ Cα, Cβ , Cγ , Nδ1 - -
ILE N, Cα, Cβ , Cγ1 Cα, Cβ , Cγ1, Cδ1 - -
LEU N, Cα, Cβ , Cγ Cα, Cβ , Cγ , Cδ1 - -
LYS N, Cα, Cβ , Cγ Cα, Cβ , Cγ , Cδ Cβ , Cγ , Cδ , Cϵ Cγ , Cδ , Cϵ, Nζ

MET N, Cα, Cβ , Cγ Cα, Cβ , Cγ , Sδ Cβ , Cγ , Sδ , Cϵ -
PHE N, Cα, Cβ , Cγ Cα, Cβ , Cγ , Cδ1 - -
PRO N, Cα, Cβ , Cγ Cα, Cβ , Cγ , Cδ - -
SER N, Cα, Cβ , Oγ - - -
THR N, Cα, Cβ , Oγ1 - - -
TRP N, Cα, Cβ , Cγ Cα, Cβ , Cγ , Cδ1 - -
TYR N, Cα, Cβ , Cγ Cα, Cβ , Cγ , Cδ1 - -
VAL N, Cα, Cβ , Cγ1 - - -

Table 6: Specification of atom groups defining the torsion angles (χ1, χ2, χ3, χ4) for each residue
type. Torsion angle exhibiting π-rotation-symmetry is colored as purple. Other side-chain torsion
angles exhibit 2π-periodicity.

C.2 Comparison between numbers of atom clashes of joint and autoregressive diffusion

In Figure 8, we provide a comparative illustration of atom clashes in protein structures using different
noise schemes in autoregressive diffusion and joint diffusion process.

Figure 8: Comparative illustration of atom clashes in protein structures using noise schemes from
autoregressive diffusion process (left) and vanilla joint diffusion process (right). Vanila joint diffusion
process add noise to all torsion angles simultaneously, resulting in much more steric clash.
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C.3 Algorithm illustration of DiffPack

Algorithm 1 Training Procedure
Input: training dataset D with protein sequence and structure pairs (S,X ), learning rate α

Output: trained score networks s(1)
θ1

, s
(2)
θ2

, s
(3)
θ3

, s
(4)
θ4

for torsional angles χ1,χ2,χ3,χ4

1: for epoch← 1 to epochmax do
2: for (S,X ) in D do
3: calculate torsional angles χ1,χ2,χ3,χ4 from structure X ;
4: for i← 1 to 4 do ▷ Train each model separately
5: sample t ∈ [0, 1];
6: sample ∆χi from wrapped normal pt|0(·|0) with σ = σ1−t

minσ
t
max;

7: set χ̃i = χi +∆χi;
8: generate perturbed structure X̃ with χ1..i−1 and χ̃i and discard atoms in χi+1..4 groups;
9: predict δχi = s

(i)
θi
(X̃ , t);

10: update θi ← θi − α∇θi∥δχi −∇∆χipt|0(∆χi|0)∥;
11: end for
12: end for
13: end for

Algorithm 2 Inference Procedure

Input: protein sequence S and backbone conformation X (bb), number steps N , number rounds R
Output: protein conformation X
1: for i← 1 to 4 do
2: sample χi ∼ U [0, 2π]mi ; ▷ Initialize with uniform prior
3: generate structure X̃ with χ1..i and discard atoms in χi+1..4 groups;
4: for n← N to 1 do
5: let t = n/N, g(t) = σ1−t

minσ
t
max

√
2 ln(σmax/σmin);

6: for r ← 1 to R do ▷ Multi-round sampling
7: predict δχi = s

(i)
θi
(X̃ , t);

8: draw z from wrapped normal with σ2 = 1/N ;
9: set ∆χi = λt(g(t)

2/N)δχi + g(t)z;
10: update χi ← χi +∆χi; ▷ Update torsional angles
11: generate structure X̃ with χ1...i and discard atoms in χi+1..4 groups;
12: end for
13: end for
14: end for
15: return structure X generated with χ1,χ2,χ3,χ4

D Score Network Architecture

Atom graph construction. We represent protein structure as an atom-level relational graph, where
atoms serve as nodes and are connected by edges based on three conditions: (1) if they are linked by
a chemical bond, (2) if one is among the 10-nearest neighbors of the other, and (3) if their Euclidean
distance is within 4.5Å and their sequential distance is above 2. Each type of edge is treated as a
different relation, while the node feature is created by concatenating the one-hot features of atom and
residue types. Following [75], edge features are created by concatenating one-hot features of residue
types, relation types, and sequential and Euclidean distances. This graph construction considers both
geometric and sequential properties of proteins, providing a comprehensive featurization of proteins.

Embedding layer. In the embedding layer, we fuse node features with embeddings for encoding
time steps. We use sinusoidal embeddings [61] of time t as input for a linear layer. Node features are
passed through a Multi-Layer Perceptron (MLP) and added with time embeddings to obtain the new
node features for the model.

Message passing layer. To learn representations for each node, we perform relational message
passing between them [50]. We denote the edge between nodes i and j with type r as (i, j, r) and set
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of relations as R. We use h(l)
i to denote the hidden representation of node i at layer l. Then, message

passing can be written as:

h
(l)
i = h

(l−1)
i + σ

(
BN

(∑
r∈R

Wr

∑
j∈Nr(i)

(
h
(l−1)
j + Linear

(
m

(l)
(i,j,r)

))))
, (11)

where Wr is the learnable weight matrix for relation type r, Nr(j) is the neighbor set of j with relation
type r, BN(·) denotes batch normalization, and σ(·) is the ReLU function. We use m(l)(i, j, r) to
denote the representation of edge (i, j, r), computed through edge message passing. We use e as the
abbreviation of the edge (i, j, r). Two edges e1 and e2 are connected if they share a common end
node. The type of their connection is determined by the angle between them, which is discretized
into 8 bins. The edge message passing layer can be written as:

m(l)
e1 = σ

(
BN

(∑
r∈R′

W ′
r

∑
e2∈N ′

r(e1)
m(l−1)

e2

))
, (12)

where R′ is the set of relation types between edges and N ′
r(e1) is the neighbor set of e1 with relation

type r. After obtaining the hidden representations of all atoms at layer L, we compute the residue
representations by taking the mean of the representations of its constituent atoms. Finally, we apply
an MLP to the residue representations to predict the score.

E Annealed Sampling

As discussed in Section 3.5, vanilla diffusion sampling scheme suffers from over-dispersion problem,
which have negative influence in side-chain packing. A promising way to tackle this issue is low-
temperature sampling, which involves perturbing the initial distribution p(x) with a temperature
factor T . This results in a re-normalized distribution pT (x) =

1
Z p(x)

1
T . Lowering the temperature

value shifts the model’s focus towards sampling quality, while increasing it emphasizes diversity.
However, strict low temperature sampling is an expensive iterative process. Merely up-scaling the
score function or down-scaling the noise term in the reverse SDE does not resolve this challenge.

Inspired from [28], we proposed a modified reverse SDE to approximate the low-temperature
sampling. Specifically, the modified reverse SDE is first derived by considering a simplified Gaussian
data distribution N

(
x0;µdata , σ

2
data

)
. In this simplified case, we show that the modified reverse SDE

with the annealed weight λt converges to a low-temperature sampling process that prioritizes quality
while maintaining diversity.

Considering the simplified data distribution N
(
x0;µdata , σ

2
data

)
, the time-dependent marginal density

of noise-perturbed distribution by applying VE-SDE forwarding process dx =
√

dσ2(t)
dt dw is

pt(x) = N
(
x;µdata , σ

2
data + σ2 (t)

)
(13)

The corresponding score function of this noise-perturbed distribution then becomes:

st ≜ ∇x log pt(x) =
µdata − x

σ2
data + σ2(t)

(14)

Now we consider a low-temperature sampling scheme, where the original data distribution is trans-
formed to p′t(x) =

1
Z p0(x)

1
T through a temperature factor T . This results in the variance re-scaled

by T , i.e.

p′t(x) = N
(
x;µdata , Tσ

2
data + σ2 (t)

)
(15)

s′t =
µdata − x

Tσ2
data + σ2(t)

(16)

= λtst , where λt =
σ2

data + σ2(t)

Tσ2
data + σ2(t)

(17)

Strictly solving the re-weight coefficient λt is meaningless and would only apply to the simplified
Gaussian distribution. Following [28], we assume the perturbed distribution’s variance is approx-
imately the maximum variance in the VE-SDE σ2

data + σ2(t) ≈ σ2
max. Finally we got a re-weight

coefficient:

λt =
σ2
max

Tσ2
max − (T − 1)σ2(t)
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F Confidence Selection

As we formulate the sidechain packing problem in the view of generative modeling, we can sample
multiple conformation from the learned conformation distribution. Here we train an additional
confidence module to select the most likely sample. The idea of self-predicting sampling quality is
also adopted by AlphaFold [32], where pLDDT estimate the quality of protein structure.

Specifically, we utilize a model bearing the same architecture as that used in score prediction.
Following the computation of the residue-level representation, we augment the model with an
additional MLP head, thereby generating a scalar confidence score for each residue. This confidence
score is then trained to correspond with the negative residue-level RMSD. During the inference stage,
we sample four conformations for each protein and select the one boasting the highest confidence.

To show how confidence selection improves performance, we randomly select 10 proteins from
the test set (each having more than 150 residues) and plot the angle accuracy in accordance with
an increasing number of samples (Figure 9). Further, we have measured the correlation between
the predicted confidence score and the negative RMSD, yielding Pearson coefficient 0.664 and
Spearman coefficient 0.798, respectively. These statistics demonstrate that the predicted confidence
score serves as an effective indicator of sample quality, thereby justifying its application in our model.
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Figure 9: Percentage of accurate angles as number of samples increasing. "Oraca Selection"
denotes selecting the conformation with lowest RMSD. "Confidence Selection" denotes selecting by
trained confidence module.

G Inference Time

G.1 Comparative results of inference time

In this section, we evaluate the inference speed of various methods, categorizing them as GPU-based
or CPU-based. All GPU-based methods1 were evaluated on an NVIDIA RTX A100 40GB GPU,
while CPU-based methods were assessed on an AMD EPYC 7513 32-Core Processor @ 2.60 GHz.
For algorithms that facilitate batch processing, the batch size was meticulously chosen and fine-tuned
to an optimal value, taking into account specific computational requirements.

It’s essential to recognize that the inference time for DiffPack is highly influenced by the number
of samples in confidence selection and the number of rounds in multi-round sampling. We denote
DiffPack-vanilla as the model that samples one conformation without confidence selection. As
illustrated in Table 7, DiffPack-vanilla outperforms other GPU-based methods in terms of both speed
and performance. Although the CPU-based method FASPR achieves superior speed through judicious

1The symbol † is used to denote methods that utilize GPU processing.
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Figure 10: Comparision of speed and accuracy between different methods. Inference speed is
shown in log-scale

optimization within its tree search algorithm, its restricted angle accuracy limits its applicability in
contexts where precision takes precedence over speed especially in sidechain packing.

DiffPack’s flexibility allows for integration with various supplementary techniques as shown in
Section 3.5, trading off some speed for enhanced performance. For a detailed comparative analysis,
we provide a plot (shown in Figure 10) that elucidates the interplay between DiffPack’s speed and
corresponding performance. Among the variations of DiffPack, we refer to the model amalgamated
with confidence selection as DiffPack-confidence, and the one further augmented with multi-round
sampling as DiffPack-multiround.

G.2 Further acceleration on DiffPack

It is noteworthy that DiffPack’s speed is primarily constrained by the multi-step nature of the denoising
process. Recently, significant research efforts [42, 43] have been directed towards accelerating this
process. Pursuing integration with these speed-enhancing methods constitutes an exciting avenue for
future research and potential further optimization.

Beyond the algorithm itself, DiffPack’s performance is intricately tied to the specific architectural
design of GearNet-Edge, which is utilized to learn the score function within the torsion space. This
architecture leverages multi-relational message passing within the protein’s edge-graph (i.e. line-
graph). We have invested some efforts in optimizing the inference speed of GearNet-Edge, based on
DGL [62]. Our preliminary findings have yielded promising results, reducing the inference time from
1.29s/protein to 0.67s/protein on a single A100 GPU, and to 3.9s/protein on a single SPR CPU.

INFERENCE TIME(S) ↓ ANGLE ACCURACY ↑
SCWRL 2.71 56.2%
FASPR 0.10 56.4%
RosettaPacker 217.80 58.6%
DLPacker† 28.50 58.8%
AttnPacker† 6.33 62.1%

DiffPack-vanila† 1.29 67.0%

Table 7: Average Inference Time of Different Methods

H Experimental Setup

H.1 Details of Baselines

SCWRL4. SCWRL4 [35] is a widely used and well-established method for protein side-chain
conformation prediction. It employs a graph-based approach, where side chains are represented as
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nodes in a graph, and edges connect pairs of nodes that have potential steric clashes. The algorithm
performs a combinatorial search to find the most probable side-chain conformation with minimal
steric clashes and optimal energy, using a backbone-dependent rotamer library and a statistical
potential energy function derived from known protein structures.

FASPR. FASPR (Fast and Accurate Side-chain Prediction using Rotamer libraries) [27] is a prediction
method that leverages backbone-dependent rotamer libraries [53] and a custom-built energy function
to efficiently predict side-chain conformations. The method involves using Dead-End Elimination
(DEE) and tree decomposition to find the set of rotamers that allows the protein to adopt the
Global Minimum Energy Conformation (GMEC). FASPR is designed to achieve a balance between
computational speed and accuracy, making it suitable for large-scale protein modeling applications.

RosettaPacker. RosettaPacker [8] is a component of the Rosetta molecular modeling suite, which
is widely recognized for its versatility and accuracy in various applications, including protein
structure prediction, protein-protein docking, and protein design. The RosettaPacker algorithm
utilizes Monte Carlo simulations combined with a detailed all-atom energy function to sample side-
chain conformations and optimize packing interactions. The method is known for its ability to explore
a broad conformational space, making it particularly effective for challenging prediction tasks that
involve significant side-chain rearrangements.

DLPacker. DLPacker [46] is a deep learning-based method for side-chain conformation prediction,
which employs convolutional neural networks (CNNs) to predict the atom density map of side-chain
conformation from the amino acid sequence and backbone conformation. The method incorporates
local and non-local context information from the protein structure to make predictions, and it is trained
on a large dataset of high-resolution protein structures. By leveraging the power of deep learning,
DLPacker can capture complex sequence-structure relationships, leading to improved prediction
accuracy.

AttnPacker. AttnPacker [45] is a state-of-the-art method for side-chain conformation prediction that
utilizes the attention mechanism, a powerful technique commonly employed in deep learning architec-
tures for tasks involving sequence data. The method incorporates multiple layers of complex triangle
attention operations, which enable it to learn long-range dependencies and spatial relationships
in protein structures. AttnPacker’s architecture allows it to model complex protein conformations
with high accuracy; however, its large number of parameters makes it computationally demanding
compared to some of the other methods.

Results of baselines are directly taken from the AttnPacker paper [45].

H.2 Training Details

For torsional diffusion, we utilize the Variance-Exploding SDE (VE-SDE) framework, where

f(χ, t) = 0 and g(t) =
√

d
dtσ

2(t). The choice of σ(t) follows the exponential decay defined

in previous research [57], given by σ(t) = σ1−t
minσ

t
max with σmin = 0.01π, σmax = π, and t ∈ (0, 1).

During training, we randomly sample a time step t and embed it with sinusoidal embeddings, which
is then fused with node features. For inference, we use 10 time steps interpolated between σmin and
σmax for generation. At each time step, we perform four rounds of sampling. Subsequently, for each
target, we randomly select four different predictions from our model and employ our confidence
model to choose the best prediction. To encode the protein structure and denoise torsional angles, we
employ a 6-layer GearNet-Edge model with a hidden dimension of 128. For edge message passing,
the connections between edges are divided into 8 bins based on the angles between them.

All the models are trained using the Adam optimizer with a learning rate of 1e-4 and a batch size of
32. The training process is performed on 4 A100 GPUs for 400 epochs.

23


	Introduction
	Background
	Methods
	Modeling Side-Chain Conformations with Torsional Angles
	Diffusion Models on Torsional Space
	Autoregressive Diffusion Models
	Model Architecture
	Inference
	Handling Symmetric Issues

	Related Work
	Experiments
	Experimental Setup
	Side-Chain Packing
	Side-Chain Packing on Non-Native Backbone
	Ablation Study
	Case Study

	Conclusions
	More Related Work
	Broader Impact
	Limitation

	Additional Experiment Results
	Steric Clash
	Visualization of Sampling Results

	Details of Autoregressive Diffusion Models
	Atom groups for each residue type
	Comparison between numbers of atom clashes of joint and autoregressive diffusion
	Algorithm illustration of DiffPack

	Score Network Architecture
	Annealed Sampling
	Confidence Selection
	Inference Time
	Comparative results of inference time
	Further acceleration on DiffPack

	Experimental Setup
	Details of Baselines
	Training Details


