Unsupervised Optical Flow Estimation with Dynamic
Timing Representation for Spike Camera
Supplementary Material

1 Fine-tune on Real Street Scenes

Most of supervised optical flow estimation methods use simulated ground truth due to the lack of
labeled training data in real-world scenes. However, these models may degrade when they are tested
on data captured in real-world scenes for the gap in data distribution between simulated data and real
data. However, our unsupervised method can overcome the limitation since it does not require the
ground truth for training. In more detail, it can fine-tune the model which is pre-trained from SPIFT
dataset on the data of real street scenes. As illustrated in Figure|l} the visual quality of optical flow
estimated by our fine-tuned model is significantly better than the supervised methods.

1.1 Fine-tune Data

We collect some real data in street scenes. Our unsupervised model which is trained from SPIFT
dataset is fine-tuned on one viewing angle of street scenes. Since the spike camera has high temporal
resolution, the data for fine-tuning is cut into 4989 clips of At = 40 setting to generate high-speed
scenes.

Other viewing angles of street scenes are used to evaluate the fine-tuned model. The test data is
also clipped on the At = 40 setting as the same as the data for fine-tuning. In addition to real street
scenes, we also collect some other scenes to evaluate the fine-tuned model.

Note that the reason we choose At = 40 is that the motions in the SPIFT dataset are generally larger
than the real scenes. If we set At too small, the amplitude of motion is not very significant and
everything could be much easier.

1.2 Fine-tune Details

We use the best unsupervised model of At = 10 which is trained on the SPIFT dataset as the
pre-trained model and fine-tune it for 6 epochs. The learning rate is set to 1le — 4 and the batch size is
1. The details of our proposed unsupervised loss are the same as the settings during the training on
SPIFT dataset.

1.3 Qualitative Results

In Figure [T we show the qualitative results of our fine-tuned model and other methods on test data.
The model is fine-tuned for 6 epochs. Compared with other methods, our method achieves impressive
results after fine-tuning.

For SCFlow, the boundary of the predicted motion region is blurry. For PWC(variant), it can not
estimate the direction of vehicles. Moreover, the static regions of the optical flow estimated by them
are not clean. The USFlow model trained in supervised can not predict significant motions. It is
worth noting that our model is trained in unsupervised, so it can be fine-tuned on real data without
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Figure 1: Qualitative results of fine-tune evaluation on real data. Note that "USFlow(pwc)’ is the
fine-tuned model. The colormap used in visualization refers to Middlebury [[1]].

ground truth to eliminate the challenges caused by the domain gap between simulated data and real
data.

Furthermore, we provide a video, named Optical Flow.mp4, to dynamically display the optical flow
of one test perspective.

2 Weights Analysis and Interval Statistics

We design two strategies to estimate the light intensity for high-speed regions and low-speed regions
from spike streams. In low-speed regions, we count spikes in a relatively large time span of the spike
stream to utilize longer-duration information. In experiments, we set two specific time windows, and
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Figure 2: The visualization of the weights in our Figure 3: Statistics on the length of a single interval
unsupervised loss. in spike data.

the half lengths of them are D; = 40 and D; = 100 respectively. The 40 and 100 mean the number
of spike frames contained in the time windows. In high-speed regions, we estimate light intensity in
multi-intervals. Specifically, we set the £ = 1 and k£ = 2 in experiments. It means that we calculate
light intensity in one and three intervals respectively. In Figure[2] we show a case that contains a few
balls spinning at high speed. Figure 2]also shows the visualization of weights which play a major
role in the shown case. The weights are learned from the estimated optical flow. They indeed have
a different emphasis on the regions with different speeds, which is in line with our design purpose.
In more detail, the wy—2 emphasizes the marginal area of the balls spinning at high speed. The w;
emphasizes the static background and the smooth surface of the balls. Note that the surface of the
balls is totally smooth in PHM dataset, so it would be regarded as static region.

As shown in Figure 3] we also count the lengths of spike intervals in spike data. It is obvious that the
length of most spike intervals is concentrated in the range of 0 to 20. When £ is set to 1 and 2, we use
1 and 3 intervals to calculate light intensity, respectively. Therefore, the corresponding lengths of
them are much shorter than the lengths of time windows used in low-speed regions.

3 Case Study on Input Representation

For the output of each dilated convolution layer, we average across the feature channel and scale each
feature map to [0,255] for visualization. Figure [ presents the visualization of the feature map of
each layer. Note that the model is unsupervised trained under A¢ = 10 setting.

As we mentioned before, the higher the level is, the larger receptive field the dilated convolution has.
As illustrated in Figure ] the feature map of level 1 is very noisy since the receptive field is small
and it is like summarizing the spike stream with a small time window. A small time window cannot
provide enough information. As the level increases, we can find out the feature map becomes more
dilated and sharp, i.e. level 3. However, as the level continues increasing, the visual quality of feature
maps degrades. The contrast level 6 is lower than level 5. This is because the large receptive field
might smooth the light intensity. It can be regarded as like summarizing the spike stream with a large
time window, which may include some redundant information.

4 SSES Dataset

Collecting real data sets in the real environment is costly, and it is impossible to simulate high-cost,
complex, and diverse application scenarios. For example, vehicle collisions, pedestrian-vehicle
accident scenarios under complex traffic situations. The cost of trial and error is immeasurable, and
moral law does not allow it. Considering the above reasons, a synthesis spike-based dataset for
the autonomous driving environment is constructed based on CARLAR [2] for different complex
scenarios. It mainly includes scenarios such as various collision scenarios, driving under bad weather,
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Figure 4: Visualization output of feature map of each layer.

and driving scenarios where road markings are difficult to identify. As shown in Figure[5] we show
some sample cases of SSES dataset.

Detailed descriptions of ten scenarios in SSES dataset are listed below. Note that the scenarios are
recorded by the Front-Facing Camera of the target car. Other information can be found in Tabel [T}

Pedestrian crossing the road: target car is driving at 15m /s on straights, and the pedestrian suddenly
runs out from behind obstacles on the side of the road and cross the sidewalk at 6m /s, and the two
collide without braking.

Multiple pedestrians crossing the road: target car is driving at 10m /s on straights, and two pedestrians
suddenly cross the sidewalk at 6m /s, and the three collide without braking. Note the vision of the
target car is partially blocked by a passing car.

Cars in T-junction: Because the other car do not obey the traffic lights, the two cars drove from
different directions to the T-junction and collided at the junction without braking. The target car
drove at 16m/s and the other car drove at 10m/s.

Bicycle in T-junction: When the car is turning at a T-junction at 12m/s, the bicycle crosses the road
at 5m /s from the blind spot of vision, and the two collide without braking.
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Figure 5: The snapshots of ten different extreme scenarios in SSES dataset.

Table 1: Settings of ten scenarios in SSES dataset. The maps are provided by the CARLA itself.

index scene weather map duration (s)
1 pedestrian crossing the road rain Town 1 0.50
2 two pedestrian crossing the road sunny Town 2 1.00
3 cars in T-junction rain Town 1 1.20
4 cars in T-junction sunny Town 1 1.20
5 bicycle in T-junction rain Town 1 0.75
6 bicycle in T-junction sunny Town 1 0.75
7 cars in crossroad sunny Town 4 0.80
8 cars in crossroad sunny Town 4 0.80
9 pedestrian in crossroad sunny Town 5 0.66
10 pedestrian crossing the highway sunny Town 4 0.50

Cars in crossroad: The target car goes straight at 13m /s, however, there is another car turning toward
the target car at 10m/s because it does not obey the traffic lights. Two cars collide at the crossroad
without braking.

Pedestrian in crossroad: When the target car turns at the crossroad at 15m/s, pedestrians cross the
road at 6.2m/s from a blind spot of view, and the two collide without braking.

Pedestrian crossing the highway: The target car is driving on the highway at 33m/s, and the
pedestrian runs out from on the side of the road and cross the sidewalk at 5m/s, and the two collide
without braking.

The ground truth of optical flow and RGB frames are 500 fps and spike frames are 40K fps. We
first increase the frame rate of RGB frames to 40K fps through a flow-based interpolation method in
OpenCV and then generate spikes by treating pixel value (0 ~ 255) as incoming light intensity and
simulating the integrate-and-fire mechanism mentioned in Section 3.1 of paper. The 6 is set to 400.

Note that we will release the SSES dataset after the publication of the paper.

S Training Details

All training images are cropped to 500 x 800 size. Adam optimizer is used for the training process.
In USFlow(pwc), the initial learning rate is scaled by ~ following milestones. While in USFlow(raft),
torch.optim.lr_scheduler.0OneCycleLR is used with default settings in [53].

More detailed hyper-parameter in training process can be found in Tabel [2]



Table 2: Hyper-parameters in training process.

H Supervised Unsupervised
yper-parameter
At =10 At = 20 At=10 At=20
learning rate 0.0004 0.0006 0.0004
batch size 4
training epochs 60 25
~v (Adam optimizer) 0.8
USFlow milestones (Adam optimizer) [5,10,20,30,40,50,70] [10,30,40,50]
(pwc) N (half window length) 12 (following settings in [3[])

k - - 1,2

Dy - - 40

D - - 100

A - - 50000
learning rate 0.005 - -
USFlow batch size 4 - -
(raft) training epochs 30 - -
N (half window length) 12 (following settings in [3]) - -
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Figure 6: The architecture of PWC(variant).

6 Architecture

6.1 Backbones

The backbone PWC(variant)[3]], is illustrated in Figure [6] We build a 4-level feature pyramid
{E\(x)}L,,i= 0,1, which denotes the feature for describing the scene at time ¢; at [-th level. The
feature pyramid has 32, 64, 96, and 128 channels at each level respectively.

We estimate the optical flow from the higher level to the lower level in the pyramid. We refer to the
well-known PWC-Net[4] to design the decoder. At [-th level, we firstly warp E! (s) via the current

estimated flow f/."} (S):
Bly, . () =B (x+ 101, (x), )

where we use bilinear interpolation for the warping operation. We use the features to build a
correlation volume[4]] to describe the similarity between the features. The correlation volume
represents the potential displacements between the two frames, and we normalize the feature in each
channel, which can be formulated as:

Bj(x) —ph Biw(x+m)— Mll,w>

Cl(x,m)< 0 ; , — 7 2)
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Figure 7: The architecture of dilated convolutions.
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Figure 8: The architecture of layer attention.

where m represents the displacement between the two features, f;, ;, is written as f for simplicity
and (-) is the channel-wise inner product operation. y and o is the mean and standard deviation value
corresponding to the feature with the same subscript.

The correlation and the feature extracted from the former spike stream at the current level are input to
the weight-shared flow estimator. A 1 x 1 convolution is employed to adjust the channel numbers at
different levels to be 32. The flow estimator consisting of cascaded convolutional layers predicts the
residual flow. The refined flow is then upsampled via bilinear kernel as the final output of current
level.

For RAFT, it has three main components. A feature encoder extracts features from both input spike
streams, along with a context encoder that extracts features only from the first input spike stream. A
correlation layer that constructs a 4D correlation volume by taking the inner product of all pairs of
feature vectors. An update operator based on Conv-GRU recurrently updates optical flow by using
the current estimation to look up values from the set of correlation volumes. Note that we adopt an
official small version of RAFT, of which the feature dimension is largely reduced. Please move to
paper[5] and get more detailed descriptions. For implementation, we follow the official code, whose
link is https://github.com/princeton-vI/RAFT.

6.2 Input Representation

To avoid gradient explosion or vanishing, we adopt the residual 1D-dilated convolution block as
shown in Figure[7] which includes a shortcut connection that adds the input and output of convolution
together. The output feature dimension for each block is 1. We have 6 1D-dilated convolution blocks.

The architecture of the layer attention module is presented in Figure[§] Since we have 6 outputs after
dilated convolution, the feature dimension of the hidden layer of MLP is also set to 6.

7 Evaluation Metric
Average End-point Error (AEE is used as an evaluation metric for optical flow estimation. It measures

the mean distance between the predicted flow f},,..q and the ground truth f; provided by the dataset.
The AEE is computed as follows:

1
AEE = W;;prmd . 3)


https://github.com/princeton-vl/RAFT
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