
Credal Marginal MAP

Radu Marinescu
IBM Research, Ireland

radu.marinescu@ie.ibm.com

Debarun Bhattacharjya
IBM Research, USA

debarunb@us.ibm.com

Junkyu Lee
IBM Research, USA

junkyu.lee@ibm.com

Alexander Gray
IBM Research, USA

alexander.gray@ibm.com

Fabio Cozman
Universidade de São Paulo, Brazil

fgcozman@usp.br

Abstract

Credal networks extend Bayesian networks to allow for imprecision in probability
values. Marginal MAP is a widely applicable mixed inference task that identi-
fies the most likely assignment for a subset of variables (called MAP variables).
However, the task is extremely difficult to solve in credal networks particularly
because the evaluation of each complete MAP assignment involves exact likelihood
computations (combinatorial sums) over the vertices of a complex joint credal set
representing the space of all possible marginal distributions of the MAP variables.
In this paper, we explore Credal Marginal MAP inference and develop new exact
methods based on variable elimination and depth-first search as well as several
approximation schemes based on the mini-bucket partitioning and stochastic local
search. An extensive empirical evaluation demonstrates the effectiveness of our
new methods on random as well as real-world benchmark problems.

1 Introduction

Probabilistic graphical models such as Bayesian networks [1] provide a powerful framework for
reasoning about conditional (in)dependency structures over many variables. Marginal MAP (MMAP)
is the task that identifies the most likely instantiation for a subset of variables given some evidence in
a Bayesian network. Since MMAP inference distinguishes between maximization variables (called
MAP variables) and summation variables, it is computationally more difficult than either max- or sum-
inference tasks alone, primarily because summation and maximization operations do not commute;
this forces processing along constrained variable orderings that may have significantly higher induced
widths [2, 3, 4]. MMAP is NPPP-complete, but despite its complexity, it is often the appropriate task
for problems that involve hidden variables such as conformant planning [5], image segmentation with
hidden fields [6], or probabilistic diagnosis in healthcare [7].

In many practical situations it may not always be possible to provide the precise specification of a
Bayesian network’s parameters (i.e., probability values). Credal networks [8] provide an elegant
extension to Bayesian networks that retain the graphical appeal of the latter while allowing for a more
flexible quantification of the probability values via credal sets. This ability to represent and reason
with imprecision in probability values allows credal networks to often reach more conservative and
robust conclusions than Bayesian networks. Over the past three decades, the bulk of research has

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

focused on developing marginal inference algorithms that are concerned with computing efficiently
the marginal probability of a query variable given some evidence in the credal network [9].

Abductive reasoning tasks such as explaining the evidence in a credal network with or without hidden
(unobserved) variables (i.e., Marginal MAP inference) are equally important to consider in practice.
For example, in a hypothetical medical diagnosis situation modeled as a credal network, one may be
interested in identifying the most likely combination of underlying medical conditions that determine
a negative CT scan result and the presence of severe memory loss [10, 11]. Furthermore, since
probabilistic structural causal models can be mapped exactly into equivalent credal networks, credal
Marginal MAP inference could also be used to enable effective counterfactual analysis [12].

Contributions In this paper, we address the Marginal MAP inference task in credal networks.
Specifically, we define the Credal Marginal MAP (CMMAP) task as finding an assignment to a
subset of variables that has maximum upper (respectively, lower) marginal probability. We focus
first on exact inference and propose a variable elimination as well as a depth-first search scheme
for CMMAP. The complexity analysis of these exact methods indicates that they are likely to be
limited to very easy problems. Therefore, we subsequently propose a mini-bucket partitioning based
approximation of variable elimination for CMMAP as well as a family of approximate search based
schemes that combine stochastic local search algorithms such as hill climbing, taboo search and
simulated annealing with approximate maginal inference for credal networks. We evaluate empirically
the new CMMAP inference algorithms on random credal networks with different graph topologies
as well as a collection of credal networks derived from real-world applications. Our experimental
results show that the exact approaches are limited to solving relatively small scale problems, while
the approximation schemes can scale to much larger and practical problems.

The supplementary material includes additional details, experimental results, code and benchmarks.

2 Background

2.1 Bayesian Networks

A Bayesian network (BN) [1] is defined by a tuple ⟨X,D,P, G⟩, where X = {X1, . . . , Xn} is a set
of variables over multi-valued domains D = {D1, . . . , Dn}, G is a directed acyclic graph (DAG)
over X as nodes where eachXi has a set of parents Πi, and P is a set of conditional probability tables
(CPTs) where each Pi = P (Xi|Πi)). A Bayesian network represents a joint probability distribution
over X, namely P (X) =

∏n
i=1 P (Xi|Πi).

Let XM = {X1, . . . , Xm} be a subset of X called MAP variables and XS = X \ XM be the
complement of XM , called sum variables. The Marginal MAP (MMAP) task seeks an assignment
x∗
M to variables XM having maximum probability. This requires access to the marginal distribution

over XM , which is obtained by summing out variables XS :

x∗
M = argmax

XM

∑
XS

n∏
i=1

P (Xi|Πi) (1)

MMAP is a mixed inference task (max-sum) and its complexity is known to be NPPP-complete
[3]. Over the past decades, several algorithmic schemes have been developed for solving MMAP
efficiently. We later overview the most relevant exact and approximate algorithms for MMAP.

2.2 Credal Networks

A set of probability distributions for variable X is called a credal set and is denoted by K(X) [13].
Similarly, a conditional credal set is a set of conditional distributions, obtained by applying Bayes rule
to each distribution in a credal set of joint distributions [14]. We consider credal sets that are closed
and convex with a finite number of vertices. Two credal sets K(X|Y = y1) and K(X|Y = y2),
where y1 and y2 are two distinct values of variable Y , are called separately specified if there is no
constraint on the first set that is based on the properties of the second set.

A credal network (CN) [8] is defined by a tuple ⟨X,D,K, G⟩, where X = {X1, . . . , Xn} is a set of
discrete variables with finite domains D = {D1, . . . , Dn}, G is a directed acyclic graph (DAG) over

2

(a) Bayesian network (b) Credal network

Figure 1: Examples of Bayesian and credal networks with bi-valued variables.

X as nodes, and K = {K(Xi|Πi = πik)} is a set of separately specified conditional credal sets for
each variable Xi and each configuration πik of its parents Πi in G. The strong extension K(X) of a
credal network is the convex hull (denoted CH) of all joint distributions that satisfy the following
Markov property: every variable is strongly independent of its non-descendants conditional on its
parents [8] (see also [8] for more details on strong conditional independence).

K(X) = CH{P (X) : P (X) =

n∏
i=1

P (Xi|Πi), P (Xi|Πi = πik) is a vertex of K(Xi|Πi = πik)}

(2)
Example 1. Figure 1a shows a simple Bayesian network with 5 bi-valued variables {A,B,C,D,E}.
The conditional probability tables are shown next to the nodes. For example, we have that P (B =
1|A = 0) = 0.2 and P (B = 1|A = 1) = 0.6, respectively. In Figure 1b we show a credal network
defined over the same set of variables. In this case, the conditional credal sets associated with the
variables are given by closed probability intervals such as, for example, 0.1 ≤ P (B = 1|A = 0) ≤
0.3 and 0.5 ≤ P (B = 1|A = 1) ≤ 0.7, respectively.

Unlike in Bayesian networks, a MAP assignment in a credal network may correspond to more than
one marginal distribution. Therefore, we define the following two Credal Marginal MAP (CMMAP)
tasks:
Definition 1 (maximin). Let C = ⟨X,D,K, G⟩ be a credal network whose variables are partitioned
into MAP variables XM and sum variables XS = X \XM . The maximin Credal Marginal MAP
task is finding the assignment x∗

M to XM with the maximum lower marginal probability, namely:

x∗
M = argmax

XM

min
P (X)∈K(X)

∑
XS

n∏
i=1

P (Xi|Πi) (3)

Definition 2 (maximax). Let C = ⟨X,D,K, G⟩ be a credal network whose variables are partitioned
into MAP variables XM and sum variables XS = X \XM . The maximax Credal Marginal MAP
task is finding the assignment x∗

M to XM with the maximum upper marginal probability, namely:

x∗
M = argmax

XM

max
P (X)∈K(X)

∑
XS

n∏
i=1

P (Xi|Πi) (4)

Solving CMMAP can be shown to be NPNPPP
-hard [15, 11]. Despite being much harder than MMAP,

CMMAP is applicable for explaining evidence in imprecise probabilistic models [12, 16].

3 Related Work

An exact solution to the Bayesian MMAP task given by Equation (1) can be obtained by using the
variable elimination (VE) algorithm, a form of dynamic programming which eliminates the variables

3

Algorithm 1 Variable Elimination for Credal Marginal MAP

1: procedure CVE(C, XM , XS)
2: initialize Γ← ∅
3: for all variable Xi ∈ X do
4: ϕ = {p : p ∈ ext(K(Xi|Πi))}
5: update Γ = Γ ∪ {ϕ}
6: create constrained elimination ordering o
7: for all variable Xi ∈ o do
8: ΓXi

= {ϕ : ϕ ∈ Γ, Xi ∈ vars(ϕ)}
9: update Γ = Γ \ ΓXi

10: for all variable Xi ∈ o do
11: if Xi ∈ XS then

12: ψ = max
(∑

Xi

∏
{ϕ ∈ ΓXi

}
)

13: else
14: ψ = max (maxXi

∏
{ϕ ∈ ΓXi

})
15: let Y ∈ vars(ψ) be the closest to Xi

16: update ΓY = ΓY ∪ {ψ}
17: initialize x∗

M = ∅
18: for all variable Xi ∈ reversed(o) do
19: if Xi ∈ XM then
20: x∗i = argmaxXi

∏
{ϕ(x∗

M) ∈ ΓXi
}

21: x∗
M = x∗

M ∪ {Xi = x∗i }
22: return x∗

M

along a constrained elimination order such that all sum variables are eliminated before the MAP
variables [2]. The optimal configuration x∗

M is obtained by a backward pass that proceeds from
the last to the first MAP variable in the constrained elimination ordering and processes each MAP
variable by an argmax operator conditioned on the previously instantiated MAP variables.

Alternatively, a depth-first branch and bound search can also be conducted to solve the MMAP exactly,
guided by an unconstrained join-tree based upper bound which can be re-evaluated fully [17] or
incrementally [18] at each step during search. More recently, a collection of exact schemes sensitive
to the problem structure have emerged including depth-first branch and bound search, best-first search,
memory efficient recursive best-first search as well as anytime weighted best-first search algorithms
that traverse an AND/OR search space associated with the MMAP task [4, 19, 20, 21]. These
algorithms are guided by an effective weighted mini-bucket partitioning-based heuristic function and
are currently the state-of-the-art for exact MMAP inference.

Several approximation schemes for Bayesian MMAP inference, including mini-bucket partitioning,
message-passing and variational methods, have been introduced over the years [22, 23, 24, 25, 26].
These methods, however, do not guarantee eventual optimality of their solutions without significantly
increasing their memory requirements.

Stochastic local search algorithms have also been developed to approximate MMAP efficiently [3]
while the algorithm introduced by [27] that propagates sets of messages between the clusters of a
join-tree and the hybrid schemes combining depth-first and best-first AND/OR search [20] provide
lower and upper bounds on the optimal MMAP value in an anytime manner.

4 Exact Credal Marginal MAP

In this section, we describe two exact algorithms for solving the Credal Marginal MAP tasks defined
by Equations (2) and (3), respectively. Due to space limitation, we discuss only the maximax case
(the maximin is analogous). Specifically, we present a variable elimination scheme that eliminates the
variables either by summation or by maximization, as well as a depth-first search scheme that finds
the optimal MAP assignment by traversing the search space defined by the MAP variables.

4.1 Variable Elimination

Algorithm 1 describes our variable elimination procedure for CMMAP which extends the exact
method developed previously for marginal inference tasks [9] and operates on potentials.

Definition 3 (potential). Given a set of variables Y, a potential ϕ(Y) is a set of non-negative
real-valued functions p(Y) on Y. The product of two potentials ϕ(Y) and ψ(Z) is defined by
ϕ(Y) · ψ(Z) = {p · q : p ∈ ϕ, q ∈ ψ}. The sum-marginal

∑
Z ϕ(Y) and the max-marginal

maxZ ϕ(Y) of a potential ϕ(Y) with respect to a subset of variables Z ⊆ Y are defined by∑
Z ϕ(Y) = {

∑
Z p(Y) : p ∈ ϕ} and maxZ ϕ(Y) = {maxZ p(Y) : p ∈ ϕ}, respectively.

4

Since the multiplication operator may grow the size of potentials dramatically, we introduce an
additional pruning operation that can reduces the cardinality of a potential. Specifically, the operator
maxϕ(Y) returns the set of non-zero maximal elements of ϕ(Y), under the partial order ≥ defined
component-wise as p ≥ q iff ∀yk ∈ DY, p(yk) ≥ q(yk), where DY is the cartesian product of the
domains of the variables in Y: maxϕ(Y) = {p ∈ ϕ(Y) : ∄q ∈ ϕ, q ≥ p}.
Given a credal network C = ⟨X,D,K, G⟩ as input together with a partitioning of its variables into
disjoint subsets XM (as MAP variables) and XS (as sum variables), algorithm CVE transforms
each conditional credal set K(Xi|Πi) into a corresponding potential that contains the set of all
conditional probability distributions in the strong extension of K(Xi|Πi) (lines 3–5). Subsequently,
given an ordering o of the variables in which all the MAP variables come after the sum variables,
the potentials are partitioned into buckets. A bucket is associated with a single variable Xi and
contains every unallocated potential ϕ that has Xi in its scope vars(ϕ) (lines 6–9). The algorithm
then processes each bucket, from first to last in the constrained elimination ordering o, by multiplying
all potentials in the current bucket and eliminating the bucket’s variable (by summation for sum
variables, and by maximization for MAP variables), resulting in a new potential which is first pruned
by its non-maximal elements and then placed in a subsequent bucket, depending on its scope (lines
10–16). Following the top-down elimination phase, a bottom-up pass over the MAP buckets, from
the last to the first MAP variable in the ordering, assembles the solution x∗

M by selecting the value
x∗i of variable Xi that maximizes the combination of potentials in its bucket, conditioned on the
already assigned MAP variables in the ordering (lines 18–21). Note that the bucket Xi’s combined
potential may contain more than one components. In this case, we choose the value x∗i that maximizes
the largest number of components in that potential (breaking ties arbitrarily). Clearly, we have the
following complexity result:
Theorem 1 (complexity). Given a credal network C, the complexity of algorithm CVE is time and
space O(n · C · kw∗

o), where n is the number of variables, k bounds the domain sizes, w∗
o is the

induced width of the constrained elimination order o and C bounds the cardinality of the potentials.

4.2 Depth-First Search

An alternative approach to solving CMMAP exactly is to conduct a depth-first search over the space
of partial assignments to the MAP variables, and, for each complete MAP assignment xM compute
its score as the exact upper probability P (xM). This way, the optimal solution x∗

M corresponds to the
configuration with the highest score. Evaluating P (xM) can be done by using a simple modification
of the CVE algorithm described in the previous section. Specifically, given a complete assignment xM

to the MAP variables, the modified CVE, denoted by CVE+, computes an unconstrained elimination
ordering of all the variables regardless of whether they are MAP or summation variables. Then,
for each MAP variable Xi and corresponding value xi ∈ xM , CVE+ adds to the bucket of Xi a
deterministic potential ϕ(Xi) = {δxi}, where δxi returns one if Xi = xi and zero otherwise. Finally,
CVE+ eliminates all variables by summation and obtains the desired upper probability bound after
processing the bucket of the last variable in the ordering.
Theorem 2 (complexity). Given a credal network C, the complexity of the depth-first search algorithm
is timeO(n·C ·km+w∗

u) and spaceO(n·C ·kw∗
u), where n is the number of variables,m is the number

of MAP variables, k is the maximum domain size, w∗
u is the induced width of the unconstrained

elimination ordering u and C bounds the cardinality of the potentials.

5 Approximate Credal Marginal MAP

Solving the CMMAP task exactly is computationally hard and does not scale to large problems. There-
fore, in this section, we present several approximation schemes using the mini-bucket partitioning as
well as stochastic local search combined with approximate credal marginal inference.

5.1 Mini-Buckets Approximation

The first approximation scheme is described by Algorithm 2 and adapts the mini-bucket partitioning
scheme developed for graphical models [28] to the CMMAP task. Specifically, algorithm CMBE(i)
is parameterized by an i-bound i and works by partitioning large buckets into smaller subsets, called
mini-buckets, each containing at most i distinct variables (line 5). The mini-buckets are processed

5

Algorithm 2 Mini-Buckets for Credal Marginal MAP

1: procedure CMBE(C, XM , XS , i-bound)
2: create constrained elimination ordering o
3: initialize buckets ΓXi

as in Algorithm 1
4: for all variable Xi ∈ o do
5: create mini-buckets {Q1, . . . , Ql} of ΓXi

6: for all mini-bucket Qj , j ∈ {1, . . . , l} do
7: if Xi ∈ XS then

8: ψ = max
∑

Xi

∏
{ϕ ∈ Qj}

9: else
10: ψ = maxmaxXi

∏
{ϕ ∈ Qj}

11: let Y ∈ vars(ψ) be the closest to Xi

12: update ΓY = ΓY ∪ {ψ}
13: generate x∗

M as in Algorithm 1
14: return x∗

M

separately, as follows: MAP mini-buckets (in XM) are eliminated by maximization, while variables in
XS are eliminated by summation. In practice, however, for variables in XS , one (arbitrarily selected)
is eliminated by summation, while the rest of the mini-buckets are processed by maximization.
Clearly, CMBE(i) outputs an upper bound on the optimal maximax CMMAP value from Equation 4.
Theorem 3 (complexity). Given a credal network C, the complexity of algorithm CMBE(i) is time
and space O(n · C · ki), where n is the number of variables, k is the maximum domain size, i is the
mini-bucket i-bound and C bounds the cardinality of the potentials.

5.2 Local Search

The second approximation scheme is described by Algorithm 3 and combines stochastic local search
with approximate marginal inference for credal networks [29, 30]. More specifically, the basic idea
behind the method is to start from an initial guess xM as a solution, and iteratively try to improve it
by moving to a better neighbor x′

M that has a higher score. A neighbor x′
M of instantiation xM is

defined as an instantiation x′
M which results from changing the value of a single variable X in xM .

For example, the neighbors of xM : (B = 0, C = 1, D = 0) for the credal network from Figure 1b
are (B = 1, C = 1, D = 0), (B = 0, C = 0, D = 0) and (B = 0, C = 1, D = 1), respectively. In
this case, computing the score score(x′

M) of a neighbor x′
M requires estimating the upper probability

of the evidence P (x′
M) represented by the assignment x′

M . This can be done efficiently using any of
the approximation schemes developed for marginal inference in credal networks such as L2U [29],
GL2U [30] or ApproxLP [31]. However, since these schemes were originally designed to compute
the lower and upper marginal probabilities of a query variable Z = z conditioned on evidence
Y = y, we use a simple transformation of the credal network to evaluate the probability of evidence
P (Y = y) (see the supplementary material for more details). We present next three strategies for
conducting the local search for CMMAP.

Stochastic Hill Climbing. Firstly, procedure SHC in Algorithm 3 describes our Stochastic Hill
Climbing based approach for CMMAP. Specifically, SHC proceeds by repeatedly either changing
the state of the variable that creates the maximum score change (line 13), or changing a variable at
random (lines 9 and 15). The quality of the solution returned by the method depends to a large extent
on which part of the search space it is given to explore. Therefore, our scheme restarts the search
from a different initial solution which is initialized uniformly at random (lines 3-4).

Taboo Search. Secondly, procedure TS in Algorithm 3 implements the Taboo Search approach
for CMMAP. Taboo search is similar to stochastic hill climbing except that the next neighbor of the
current solution is chosen as the best neighbor that hasn’t been visited recently. A taboo list maintains
a portion of the previously visited solutions so that at the next step a unique point is selected. Our TS
algorithm implements a random restarts strategy.

Simulated Annealing. Finally, procedure SA in Algorithm 3 describes our Simulated Annealing
based scheme for CMMAP. The basic principle behind this approach is to consider some neighboring
state x′

M of the current state xM , and probabilistically decides between moving to state x′
M or

staying in the current state. The probability of making the transition from xM to x′
M is specified

by an acceptance probability function P (x′
M ,xM , T) that depends on the scores of the two states

as well as a global time-varying parameter T called temperature. We chose P (x′
M ,xM , T) = e

∆
T ,

6

Algorithm 3 Local Search for Credal Marginal MAP

1: procedure SHC(C, XM ⊆ X, pflip)
2: initialize x∗

M ← ∅, best← −∞
3: for all iterations i = 1 . . . N do
4: initialize xM randomly
5: for all flips j = 1 . . .M do
6: sample randomly p ∈ (0, 1)
7: let N be xM ’s neighbors
8: if (p ≤ pflip) then
9: select random neighbor x′

M ∈ N
10: else
11: for all neighbor x′

M ∈ N do
12: compute score(x′

M)

13: select highest score neighbor x′′
M ∈ N

14: if score(x′′
M) ≤ score(xM) then

15: select random neighbor x′
M ∈ N

16: else
17: select x′

M ← x′′
M

18: if score(x′
M) > best then

19: x∗
M ← x′

M
20: best← score(x′

M)

21: xM ← x′
M

22: return x∗
M

23: procedure TS(C, XM ⊆ X)
24: initialize xM = ∅, best← −∞
25: for all iterations i = 1 . . . N do
26: initialize xM randomly
27: T ← ∅
28: for all flips j = 1 . . .M do
29: T ← T ∪ {xM}
30: let N be xM ’s neighbors
31: initialize x′′

M ← ∅, b← −∞
32: for all neighbor x′

M ∈ N do
33: if x′

M /∈ T and score(x′
M) > b then

34: x′′
M ← x′

M

35: b← score(x′
M)

36: if x′′
M = ∅ then

37: select random neighbor x′
M ∈ N

38: else
39: x′

M ← x′′
M

40: if score(x′
M) > best then

41: x∗
M ← x′

M
42: best← score(x′

M)

43: xM ← x′
M

44: if size(T) ≥ S then
45: prune T until size(T) < S

46: return x∗
M

47: procedure SA(C, XM ⊆ X, Tinit, σ)
48: initialize x∗

M randomly
49: best← score(x∗

M)
50: for all iterations i = 1 . . . N do
51: set xM ← x∗

M , T ← Tinit
52: for all flips j = 1 . . .M do
53: let N be xM ’s neighbors
54: select random neighbor x′

M ∈ N
55: ∆← log score(x′

M)− log score(xM)
56: if ∆ > 0 then
57: xM ← x′

M
58: else
59: sample randomly p ∈ (0, 1)

60: if p < e
∆
T then

61: xM ← x′
M

62: if score(xM) > best then
63: x∗

M ← xM

64: best← score(xM)

65: T ← T ∗ σ
66: return x∗

M

where ∆ = logP (x′
M)− logP (xM). At each iteration, the temperature is decreased using a cooling

schedule σ < 1. Like SHC and TS, algorithm SA implements a random restarts strategy.
Theorem 4 (complexity). Given a credal network C, the complexity of algorithms SHC, TS and
SA is time O(N ·M · P) and space O(n), where n is the number of variables, N is the number of
iterations, M is the maximum number of flips allowed per iteration, and P bounds the complexity of
approximating the probability of evidence in C.

6 Experiments

We evaluate the proposed algorithms for CMMAP on random credal networks and credal networks
derived from real-world applications. All competing algorithms were implemented in C++ and the
experiments were run on a 32-core machine with 128GB of RAM running Ubuntu Linux 20.04.

We consider the two exact algorithms denoted by CVE and DFS, as well as the four approximation
schemes denoted by SHC, TS, SA and CMBE(i), respectively. The local search algorithms used
N = 10 iterations and M = 10, 000 maximum flips per iteration, and they all used the approximate
L2U algorithm with 10 iterations [29] to evaluate the MAP assignments during search. Furthermore,
for SHC we set the flip probability pflip to 0.2, TS used a taboo list of size 100, while for SA we set

7

n Q w∗ SHC TS SA CMBE(2)
time (#) W time (#) W time (#) W time (#) W

random

20 25 32.69 100 23.08 100 6.47 100 225.28 (70) 1
100 40 37 163.05 100 79.11 100 14.78 100 327.67 (43) 0

60 23 421.93 100 185.41 100 29.99 100 224.93 (7) 0
30 39 254.32 100 141.03 100 24.08 100 294.48 (43) 0

150 60 57 1143.78 100 531.45 100 70.06 100 555.98 (14) 0
90 66 2811.47 100 1259.79 100 139.78 75 925.41 (2) 0
50 58 1044.79 100 490.38 100 72.09 100 276.98 (38) 0

200 100 86 3496.77 (32) 32 2143.79 100 211.47 14 927.31 (1) 0
150 69 3601.67 (16) 16 3550.99 (17) 17 339.34 72 - (0) 0

grid

20 25 31.35 100 22.77 100 4.66 100 0.07 2
100 40 37 155.34 100 79.83 100 10.51 100 3.85 0

60 23 358.81 100 168.79 100 19.18 100 28.76 0
30 36 219.49 100 121.86 100 21.02 100 0.34 0

144 60 53 878.63 100 426.70 100 54.77 100 1.03 0
90 26 2109.47 100 958.13 100 102.93 73 27.79 0
50 55 817.52 100 382.46 100 58.13 100 0.68 0

196 100 56 3045.54 (94) 94 1453.39 100 147.11 13 51.01 (98) 0
150 22 3601.25 (23) 23 3011.47 (93) 93 190.26 3 41.27 (99) 2

k-tree

20 25 68.25 100 44.25 100 10.48 100 221.18 (55) 0
100 40 37 307.91 100 151.97 100 23.19 100 163.59 (8) 0

60 23 650.72 100 306.26 100 40.19 100 - (0) 0
30 28 443.33 100 245.71 100 44.58 100 492.55 (26) 0

150 60 47 1647.29 100 724.01 100 106.71 100 14.68 (1) 0
90 51 2917.01 (84) 84 1541.91 100 192.76 82 - (0) 0
50 45 1306.43 100 660.59 100 108.36 100 1199.83 0

200 100 64 3376.59 (54) 54 1917.95 100 266.24 21 - (0) 0
1500 48 3602.98 (4) 4 3334.49 (59) 59 344.96 38 - (0) 0

Table 1: Results on random, grid and k-tree credal networks. Mean CPU times in seconds,
number of instance solved (#) and number of wins (W). Time limit 1 hour, 8GB of RAM.

the initial temperature and cooling schedule to Tinit = 100 and σ = 0.9, respectively. For CMBE(i)
we set the i-bound i to 2 and used the same L2U algorithm to evaluate the solution found. All
competing algorithms were allocated a 1 hour time limit and 8GB of memory per problem instance.

In all our experiments, we report the CPU time in seconds, the number of problems solved within the
time/memory limit and the number of times an algorithm converged to the best possible solution. The
latter is called the number of wins and is meant to be a measure of solution quality for the respective
algorithm. We also record the number of variables (n), the number (or percentage) of MAP variables
(Q) and the constrained induced widths (w∗). The best performance points are highlighted.

6.1 Random Credal Networks

For our purpose, we generated random credal networks, m-by-m grid networks as well as k-tree net-
works. Specifically, for the random networks, we varied the number of variables n ∈ {100, 150, 200},
for grids, we choose m ∈ {10, 14, 16}, and for k-trees we selected k = 2 and the number of variables
n ∈ {100, 150, 200}, respectively. In all cases, the maximum domain size was set to 2 and the
conditional credal sets were generated uniformly at random as probability intervals such that the
difference between the lower and upper probability bounds was at most 0.3.

First, we note that the exact algorithms CVE and DFS could only solve very small problems with up
to 10 variables and 5 MAP variables. The main reason for the poor performance of these algorithms
is the extremely large size of the intermediate potentials generated during the variable elimination
procedure which causes the algorithms to run out of memory or time on larger problems. Therefore,
we omit their evaluation hereafter.

8

problem w∗ SHC TS SA CMBE(2)
time (#) W time (#) W time (#) W time (#) W

alarm 12 27.32 (10) 10 21.31 (10) 10 4.89 (10) 10 324.23 (10) 0
child 7 3.51 (10) 10 3.69 (10) 10 1.19 (10) 10 0.64 (10) 0
link 239 3655.67 (2) 2 3628.15 (2) 1 1300.14 (10) 8 - (0) 0
insurance 12 64.22 (10) 10 45.77 (10) 10 17.11 (10) 10 97.16 (9) 0
hepar2 25 1734.11 (10) 10 833.82 (10) 10 163.16 (10) 10 - (0) 0
pathfinder 33 2509.89 (10) 10 79.78 (10) 10 93.98 (10) 10 - (0) 0
hailfinder 14 126.60 (10) 10 72.73 (10) 10 12.53 (10) 10 531.52 (10) 0
largefam 402 - (0) 0 - (0) 0 2903.55 (10) 10 - (0) 0
mastermind1 389 - (0) 0 - (0) 0 3600.85 (10) 10 - (0) 0
mastermind2 726 - (0) 0 - (0) 0 3617.17 (5) 5 - (0) 0
mastermind3 1193 - (0) 0 - (0) 0 3650.54 (3) 3 - (0) 0
mildew 12 22.49 (10) 10 15.22 (10) 10 3.15 (10) 10 0.16 (10) 0
munin 175 3615.45 (5) 4 3639.57 (3) 3 652.72 (10) 5 - (0) 0
pedigree1 74 3603.87 (7) 7 3609.44 (8) 8 410.61 (10) 0 1269.45 (8) 0
pedigree7 147 3620.74 (2) 1 3625.51 (2) 1 1689.89 (10) 9 - (0) 0
pedigree9 175 - (0) 0 - (0) 0 1719.92 (10) 6 1128.50 (4) 4
win95pts 28 3612.38 (6) 6 3610.94 (6) 6 821.20 (10) 10 - (0) 0
xandes 75 3619.00 (6) 6 3611.76 (6) 6 3565.62 (10) 3 - (0) 0
xdiabetes 75 3605.08 (9) 9 3603.76 (10) 10 175.76 (10) 0 182.38 (6) 0
zbarley 18 140.93 (10) 10 82.36 (10) 10 18.47 (10) 10 863.64 (1) 0
zpigs 105 3606.83 (4) 4 3603.8 (5) 5 234.84 (10) 5 100.47 (2) 0
zwater 16 207.07 (10) 10 126.87 (10) 10 44.68 (10) 10 - (0) 0

Table 2: Results on real-world credal networks with Q = 50% MAP variables. Mean CPU time in
seconds, number of instances solved (#) and number of wins (W). Time limit 1 hour, 8 GB of RAM.

Table 1 summarizes the results obtained on random, grid and k-tree networks. Each data point
represents an average over 100 random problem instances generated for each problem size (n) and
number of MAP variables (Q), respectively. Next to the running time we show the number of
instances solved within the time/memory limit (if the number is omitted then all 100 instances were
solved). We can see that in terms of running time, CMBE(2) performs best on the grid networks.
This is because the intermediate potentials generated during elimination are relatively small size
and therefore are processed quickly. However, the algorithm is not able converge to good quality
solutions compared with its competitors. The picture is reversed on the random and k-tree networks
where CMBE(2) is the worst performing algorithm both in terms of running time and solution quality.
In this case, the relatively large intermediate potentials cause the algorithm to exceed the time and
memory limits on many problem instances and thus impact negatively its performance.

The local search algorithms SHC, TS and SA yield the best performance in terms of solution quality
with all three algorithms almost always converging to the best possible solutions on these problem
instances. In terms of running time, SA is the fastest algorithm achieving almost one order of
magnitude speedup over its competitors, especially for larger numbers of MAP variables (e.g., k-trees
with n = 100 variables and Q = 60 MAP variables). Algorithms SHC and TS have comparable
running times (with SHC being slightly slower than TS) but they are significantly slower than SA.
This is due to the significantly larger computational overhead required for evaluating the scores of all
the neighbors of the current state, especially when there are many MAP variables.

6.2 Real-World Credal Networks

Table 2 shows the results obtained on a set of credal networks derived from 22 real-world Bayesian
networks1 by converting the probability values in the CPTs into probability intervals such that
the difference between the corresponding lower and upper probability bounds was at most 0.3.
Furthermore, since the local search algorithms rely on the L2U approximation to evaluate the MAP
configurations, we restricted the domains of the multi-valued variables to the first two values in the
domain while shrinking and re-normalizing the corresponding CPTs. For each network we selected
uniformly at random Q = 50% of the variables to act as MAP variable and generated 10 random
instances. As before, we indicate next to the average running times the number of instances solved

1Available at https://www.bnlearn.com/bnrepository/

9

(a) Brain Tumour diagnosis
(b) Attack Intelligence report

Figure 2: Applications of Credal Marginal MAP inference.

by the respective algorithms within the time and memory limits. We can see again that CMBE(2) is
competitive only on the easiest instances (e.g., child, mildew) while SA yields the best performance
in terms of both running time and solution quality on the majority of the problem instances. In
summary, the relatively large potentials hinder CMBE’s performance, while the computational
overhead incurred during the evaluation of relatively large neighborhoods of the current state slows
down significantly SHC and TS compared with SA.

6.3 Applications

Figure 2a shows the credal network for the brain tumour diagnosis use case derived from the Bayesian
network described in [11]. The variables are: MC - metastatic cancer, PD - Paget disease, B - brain
tumour, ISC - increased serum calcium, H - headaches, M - memory loss, CT - scan result.

Considering the query variables B and ISC, the exact solution for both maximax and maximin
CMMAP is (B = 0, ISC = 0) (obtained by both the CVE and DFS algorithms). In this case, the
maximax and maximin scores are 0.837 and 0.42, respectively. Algorithms SHC, TS and SA also
find the optimal configuration (B = 0, ISC = 0) which is evaluated by L2U to 0.8316 for maximax
CMMAP and to 0.37296 for maximin CMMAP, respectively.

Figure 2b shows the credal network for the intelligence report analysis described in [9]. The variables
are: As - assassination, C - coup/revolt, R - regime change, D - decision to invade, At - attack, B -
build-up, P - propaganda, I - invasion.

Considering the query variables D, At and I , the exact solution for both maximax and maximin
CMMAP is (D = 0, At = 0, I = 0) and is obtained by both algorithms CVE and DFS. The
corresponding scores are in this case 0.765 and 0.458806, respectively. The approximation schemes
SHC, TS and SA also find the same optimal CMMAP configuration (D = 0, At = 0, I = 0) which
is evaluated by L2U to 0.69651 for maximax CMMAP and to 0.305486 for maximin CMMAP,
respectively.

We note that in both cases, the constrained induced width is 2 and therefore CMBE(2) coincides with
the exact CVE. Therefore, all our approximation schemes found the optimal solutions.

7 Conclusions

The paper explores the Marginal MAP inference task in credal networks. We formally define the
Credal Marginal MAP task and present new exact algorithms based on variable elimination and depth-
first search. Subsequently, we introduce approximate algorithms using the mini-bucket partitioning or
a combination of stochastic local search and approximate credal marginal inference. Our experiments
on random and real-world credal networks demonstrate the effectiveness of our CMMAP algorithms.
A potential direction for future work is to investigate branch-and-bound and best-first search strategies
guided by a credal version of weighted mini-buckets [32].

10

Acknowledgements

Fabio Cozman was supported in part by C4AI funding (FAPESP and IBM Corporation, grant
2019/07665-4) and CNPq (grant 305753/2022-3).

References
[1] Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

[2] Rina Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence,
113:41–85, 1999.

[3] James Park. MAP complexity results and approximation methods. In Uncertainty in Artificial
Intelligence (UAI), pages 388–396, 2002.

[4] Radu Marinescu, Rina Dechter, and Alexander Ihler. AND/OR search for marginal MAP. In
Uncertainty in Artificial Intelligence (UAI), pages 563–572, 2014.

[5] Junkyu Lee, Radu Marinescu, and Rina Dechter. Applying search based probabilistic inference
algorithms to probabilistic conformant planning: Preliminary results. In Proceedings of the
International Symposium on Artificial Intelligence and Mathematics (ISAIM), 2016.

[6] Jose M. Bioucas-Dias and Mario A. T. Figueiredo. Bayesian image segmentation using hidden
fields: Supervised, unsupervised, and semi-supervised formulations. In Proceedings of the
European Signal Processing Conference (EUSIPCO), pages 523–527, 2016.

[7] Evangelia Kyrimi, Scott McLachlan, Kudakwashe Dube, Mariana R. Neves, Ali Fahmi, and
Norman Fenton. A comprehensive scoping review of bayesian networks in healthcare: Past,
present and future. Artificial Intelligence in Medicine, 117, 2021.

[8] Fabio Cozman. Generalizing variable-elimination in Bayesian networks. In Workshop on
Probabilistic Reasoning in Bayesian Networks at SBIA/Iberamia 2000, pages 21–26, 2000.

[9] Denis Maua and Fabio Cozman. Thirty years of credal networks: Specifications, algorithms
and complexity. International Journal of Approximate Reasoning, 1(126):133–137, 2020.

[10] Gregory Cooper. Nestor: A computer-based medical diagnosis aid that integrates causal and
probabilistic knowledge. Technical report, Computer Science department, Stanford University,
Palo-Alto, California, 1984.

[11] Johan Kwisthout. Most probable explanations in Bayesian networks: Complexity and tractability.
International Journal of Approximate Reasoning, 52(1):1452–1469, 2011.

[12] Marco Zaffalon, Alessandro Antonucci, and Rafael Cabañas. Structural causal models are
(solvable by) credal networks. In European Workshop on Probabilistic Graphical Models, 2020.

[13] Isaac Levi. The Enterprise of Knowledge. MIT Press, 1980.

[14] Peter Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London,
UK, 1991.

[15] Cassio Campos and Fabio Cozman. The inferential complexity of Bayesian and credal networks.
In International Joint Conference on Artificial Intelligence (IJCAI), pages 1313–1318, 2005.

[16] Eyke Hüllermeier, Sébastien Destercke, and Mohammad Hossein Shaker. Quantification of
credal uncertainty in machine learning: A critical analysis and empirical comparison. In James
Cussens and Kun Zhang, editors, Proceedings of the Thirty-Eighth Conference on Uncertainty
in Artificial Intelligence, volume 180 of Proceedings of Machine Learning Research, pages
548–557. PMLR, 01–05 Aug 2022.

[17] James Park and Adnan Darwiche. Solving MAP exactly using systematic search. In Uncertainty
in Artificial Intelligence (UAI), pages 459–468, 2003.

11

[18] Changhe Yuan and Eric Hansen. Efficient computation of jointree bounds for systematic MAP
search. In International Joint Conference on Artificial Intelligence (IJCAI), pages 1982–1989,
2009.

[19] Junkyu Lee, Radu Marinescu, Rina Dechter, and Alexander Ihler. From exact to anytime
solutions for marginal MAP. In 30th AAAI Conference on Artificial Intelligence, pages 1749–
1755, 2016.

[20] Radu Marinescu, Junkyu Lee, Rina Dechter, and Alexander Ihler. Anytime best+depth-first
search for bounding marginal MAP. In 31st AAAI Conference on Artificial Intelligence, pages
1749–1755, 2017.

[21] Radu Marinescu, Junkyu Lee, Rina Dechter, and Alexander Ihler. AND/OR search for marginal
MAP. Journal of Artificial Intelligence Research, 63:875–921, 2018.

[22] Rina Dechter and Irina Rish. Mini-buckets: A general scheme of approximating inference.
Journal of ACM, 50(2):107–153, 2003.

[23] Jiarong Jiang, Piyush Rai, and Hal Daume. Message-passing for approximate MAP inference
with latent variables. In Advances in Neural Information Processing Systems (NIPS), pages
1197–1205. 2011.

[24] Qiang Cheng, Feng Chen, Jianwu Dong, Wenli Xu, and Alexander Ihler. Approximating the
sum operation for marginal-MAP inference. In 26th AAAI Conference on Artificial Intelligence,
AAAI, pages 1882–1887, 2012.

[25] Qiang Liu and Alexander Ihler. Variational algorithms for marginal MAP. Journal of Machine
Learning Research, 14:3165–3200, 2013.

[26] Wei Ping, Qiang Liu, and Alexander Ihler. Decomposition bounds for marginal MAP. In
Advances in Neural Information Processing Systems 28, pages 3267–3275, 2015.

[27] Denis Maua and Cassio Campos. Anytime marginal MAP inference. In International Conference
on Machine Learning (ICML), pages 1471–1478, 2012.

[28] Rina Dechter. Mini-buckets: A general scheme of generating approximations in automated
reasoning. In International Joint Conference on Artificial Intelligence (IJCAI), pages 1297–1302,
1997.

[29] Jaime Shinsuke Ide and Fabio Gagliardi Cozman. Approximate algorithms for credal networks
with binary variables. International Journal of Approximate Reasoning, 48(1):275–296, 2008.

[30] Alessandro Antonucci, Yi Sun, Cassio P De Campos, and Marco Zaffalon. Generalized loopy
2u: A new algorithm for approximate inference in credal networks. International Journal of
Approximate Reasoning, 51(5):474–484, 2010.

[31] Alessandro Antonucci, Cassio Campos, David Huber, and Marco Zaffalon. Approximate credal
network updating by linear programming with applications to decision making. International
Journal of Approximate Reasoning, 58(3):25–38, 2015.

[32] R. Marinescu and R. Dechter. AND/OR branch-and-bound search for combinatorial optimization
in graphical models. Artificial Intelligence, 173(16-17):1457–1491, 2009.

12

	Introduction
	Background
	Bayesian Networks
	Credal Networks

	Related Work
	Exact Credal Marginal MAP
	Variable Elimination
	Depth-First Search

	Approximate Credal Marginal MAP
	Mini-Buckets Approximation
	Local Search

	Experiments
	Random Credal Networks
	Real-World Credal Networks
	Applications

	Conclusions

