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A Gaussian process431

Gaussian process (GP) is a typical choice for the surrogate model because of its model capacity for complicated432

black-box functions and uncertainty quantification. Consider, for the time being, a simplified scenario in which433

we have noise-contaminated observations {yi = g(xi) + ✏i}Ni=1. In a GP model, a prior distribution is placed434

over f(x), indexed by x:435

⌘(x)|✓ ⇠ GP
�
m(x), k(x,x0|✓)

�
, (A.1)

with mean and covariance functions:436

m0(x) = E[f(x)],
k(x,x0|✓✓✓) = E[(f(x)�m0(x))(f(x

0)�m0(x
0))],

(A.2)

where E[·] is the expectation and ✓✓✓ are the hyperparameters that control the kernel function. By centering the437

data, the mean function may be assumed to be an equal constant, m0(x) ⌘ m0. Alternative options are feasible,438

such as a linear function of x, but they are rarely used until previous knowledge of the shape of the function is439

provided. The covariance function can take several forms, with the automated relevance determinant (ARD)440

kernel being the most popular.441

k(x,x0|✓✓✓) = ✓0 exp
⇣
�(x� x

0)T diag(✓�2
1 , . . . , ✓

�2
l )(x� x

0)
⌘
. (A.3)

From this point on, we eliminate the explicit notation of k(x, x0)’s reliance on ✓✓✓. In this instance, the hyper-442

parameters ✓1, . . . , ✓l are referred to as length-scales. For constant parameter x, f(x) is its random variable.443

In contrast, a collection of values, f(xi), i = 1, . . . , N , is a partial realization of the GP. GP’s realizations444

are functions of x that are deterministic. The primary characteristic of GPs is that the joint distribution of445

g(xi), i = 1, . . . , N is multivariate Gaussian.446

Assuming the model deficiency " ⇠ N (0,�2) is likewise Gaussian, we can derive the model likelihood using447

the prior (A.1) and available data.448

L , p(y|x,✓) =
Z

(f(x) + ")df = N (y|m01,K + �
2
I)

= �1
2
(y �m01)

T (K + �
2
I)�1 (y �m01)

� 1
2
ln |K + �

2
I|� N

2
log(2⇡),

(A.4)

where K = [Kij ] is the covariance matrix, in which Kij = k(xi,xj), i, j = 1, . . . , N . The hyperparameters ✓✓✓449

is often derived from point estimations using the maximum likelihood (MLE) of Eq. (A.4) w.r.t. ✓. The joint450

distribution of y and f(x) is also a joint Gaussian distribution with mean value m01 and covariance matrix.451

K0 =


K + �

2
I k(x)

k
T (x) k(x,x) + �

2

�
, (A.5)

where k(x) = (k(x1,x), . . . , k(xN ,x))T . Conditioning on y, the conditional predictive distribution at x is452

obtained.453
f̂(x)|y ⇠ N (µ(x), v(x,x0)) ,

µ(x) = m01+ k(x)T
�
K + �

2
I
��1

(y �m01) ,

v(x) = �
2 + k(x,x)� k

T (x)
�
K + �

2
I
��1

k(x).

(A.6)

The expected value E[f(x)] is given by µ(x) and the predictive variance by v(x). From Eq. (A.5) to Eq. (A.6)454

is crucial since the prediction posterior of this wake is based on a comparable block covariance matrix.455
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B From AR to LiFiDE456

We first revisit the classic AR and reveal its connection to an ODE’s forward Euler solution. Rewrite Eq. (1) as457

follows,458
y(x, tT ) = �y(x, t0) + v(x, t0)

y(x, tT )� y(x, t0) = (� � 1)y(x, t0) + v(x, t0).

y(x, tT )� y(x, t0) = ↵y(x, t0) + v(x, t0),

(A.7)

where ↵ ⌘ � � 1. We then divide both sizes by the constant �(tT � t0) indicating the fidelity difference and459

absorb the constant into (⇢� 1) and u(x, t0) and write460

y(x, tT )� y(x, t0)
�(tT � t0)

=
↵

�(tT � t0)
y(x, t0) +

1
�(tT � t0)

v(x, t0). (A.8)

Since ↵ and v(x, t0) are values and function to be estimated, we can absorb the constant �(tT � t0) into ↵ and461

v(x, t0) and write462

y(x, tT )� y(x, t0)
�(tT � t0)

= �0y(x, t0) + u(x, t0). (A.9)

where �0 ⌘ ↵/�(tT � t0) and u(x, t0) ⌘ v(x, t0)/�(tT � t0). We recognize that is a explicit solution of a463

different equation. If we take the limit of �(tT � t0) ! 0, we have464

dy(x, t)
dt

= �(t)y(x, t) + u(x, t). (A.10)

which is in Proposition 1. Notice that in this equation we turn the constant � into a function �(t), which allows465

us to control differential level of information transfer depending on its fidelity level as a general formulation.466

Taking a forward Euler solution to solve Eq. (A.10), we have467

y(x, t+�t)� y(x, t)
�t

+ �(t)y(x, t) = u(x, t)

y(x, t+�t) = (1 +�t�(t))y(x, t) +�tu(x, t).
(A.11)

We recognize this is the formulation is extractly the same as the classic AR with ⇢ = 1+�t�(t) with a residual468

GP �tu(x, t).469

C A General Solution to LiFiDE470

We derive the general solution to the derived linear fidelity differential equation (LiFiDE)471

dy(x, t)
dt

+ �(t)y(x, t) = u(x, t), (A.12)

which is a standard non-homogeneous first order differential equation. We know that for the homogeneous472

equation, i.e., u(x, t) = 0, the general solution is473

y(x, t) = C(x)e�B(t)
, (A.13)

where C(x) is a functional of x, and B(t) =
R t

�(⌧)d⌧ is the antiderivative of �(t). Thus, we assume the474

general solution of the non-homogeneous equation is of the form y(x, t) = v(x, t)e�B(t), where v(x, t) is a475

functional of x and t. Substituting this into Eq. (A.12), we have476

dv(x, t)
dt

e
B(t) � v(x, t)e�B(t)

�(t) + �(t)v(x, t)e�B(t) = u(x, t)

dv(x, t)
dt

= u(x, t)e�B(t)
.

(A.14)

Integrating both sides, we have477

v(x, t) =

Z t

u(x, ⌧)e�B(⌧)d⌧ + C(x). (A.15)

Putting this back into the assumed solution, we have478

y(x, t) = e
�B(t)

Z t

u(x, ⌧)e�B(⌧)d⌧ + C(x)e�B(t)
. (A.16)
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If we assume a constant for �(t), i.e., �(t) = �, then we have479

y(x, t) = e
��t

Z t

u(x, ⌧)e�⌧d⌧ + C(x)e��t

= C(x)e��t +

Z t

u(x, ⌧)e��(t�⌧)d⌧.

(A.17)

For a practical from where the integral starts from t0, the lowest-fidelity index, we have480

y(x, t0) = C(x)e��t0 +

Z t0

0

u(x, ⌧)e��(t�⌧)d⌧

= C(x)e��t0
,

(A.18)

where we have assumed u(x, t) = 0 for t < t0 because we are not interested in t < t0. Substituting this into481

Eq. (A.17), we have482

y(x, t) = C(x)e��t +

Z t

0

u(x, ⌧)e��(t�⌧)d⌧

= y(x, t0)e
�t0

e
��t +

Z t0

0

u(x, ⌧)e��(t�⌧)d⌧ +

Z t

t0

u(x, ⌧)e��(t�⌧)d⌧

= y(x, t0)e
��(t�t0) +

Z t

t0

u(x, ⌧)e��(t�⌧)d⌧.

(A.19)

This formulation is equivalent to Eq. (A.17). However, it allows for more flexibility in practice as we can give483

start the model with the lowest-fidelity t0 and then use the model to predict the higher-fidelity t > t0.484

D General Solutions to LiFiDEs485

Consider LiFiDEs taking this general form486

dy(x, t)
dt

+B(t)y(x, t) = Su(x, t) (A.20)

where B(t) and S are matrices, y(x, t) is a vector of unknown functions, and u(x, t) is a non-zero vector.487

The general solution is the sum of the homogeneous solution yh(x, t) and a particular solution yp(x, t).488

The homogeneous solution comes from the homogeneous equation:489

dyh(x, t)
dt

+B(t)yh(x, t) = 0 (A.21)

This has the solution:490

yh(x, t) = e
�

R
B(t)dt

c (A.22)

where c is a constant vector. The particular solution comes from the non-homogeneous equation and can be491

obtained using the variation of parameters. The method involves finding a function v(x, t) such that:492

yp(x, t) = e
�

R
B(t)dt

v(x, t) (A.23)

is a solution to the non-homogeneous system. Substituting yp into the non-homogeneous system gives:493

dv(x, t)
dt

= e

R
B(t)dt

Su(x, t) (A.24)

which can be integrated to find v(x, t). Thus, the particular solution is:494

yp(x, t) = e
�

R
B(t)dt

Z h
e

R
B(t)dt

Su(x, t)
i
dt (A.25)
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The general solution to the non-homogeneous system is the sum of the homogeneous and particular solutions:495

y(x, t) = yh(x, t) + yp(x, t)

= e
�

R
B(t)dt

c+ e
�

R
B(t)dt

Z h
e

R
B(t)dt

Su(x, t)
i
dt

(A.26)

which is similar to the solution to LiFiDE in Eq. (A.17). Note that the matrix exponential computation is done496

by497

e
B(t) = I +B(t) +

(B(t))2

2!
+

(B(t))3

3!
+

(B(t))4

4!
+ · · · (A.27)

which is not easy to compute. However, if the matrix B(t) is a constant matrix �I, then the matrix exponential498

can be computed by499

e
B(t) = e

�I = Ie
� =

2

6664

e
� 0 · · · 0
0 e

� · · · 0
...

...
. . .

...
0 0 · · · e

�
,

3

7775
(A.28)

which gives us a efficient way to derive a solution to LiFiDEs,500

y(x, t) = e
��t

C+ e
��t

Z
e
�t
Su(x, t)dt. (A.29)

E Proof of Lemma 1501

Lemma 1. Autokrigeability in ContinuAR: the particular values of the spatial correlation matrix H and SS
> do502

not matter in the predictive mean as they will be canceled out.503

Proof. The autokrigeability in ContinuAR is easy to derive once we derive the predictive posterior for the subset504

case in Appendix G and the non-subset case in Appendix H. We can see the the matrix H and SS
> are canceled505

out in the predictive mean.506

F Joint Likelihood of FiDEs-1507

We derive the joint likelihood of FiDEs for observations Y = [~y(0); ~y(1)] as an illustrating example. For clarity,508

we slightly abuse the notations by replacing the previous spatial correlation H in the main paper with S
(0) and509

SS
> with S

(1). The joint probability for Y is510

✓
~y
(0)

~y
(1)

◆
⇠ N

✓
0,

k
0(X(0)

X
(0))⌦ S

(0)
e
��(t1�t0)k

0(X(1)
,X

(0))⌦ S
(0)

e
��(t1�t0)k

0(X(0)
,X

(1))⌦ S
(0)

e
�2�(t1�t0)k

0(X(1)
,X

(1))⌦ S
(0) + k

u1(X(1)
,X

(1))⌦ S
(1)

◆
,

(A.30)
where k

u1(X(1)
,X

(1)) =
R t1
t0

e
�B(t�⌧)

R t1
t0

e
�B(t0�⌧ 0)

k
u(X(1)

, ⌧,X
(1)

, ⌧
0)d⌧ 0d⌧ .511

Eq. (A.30) reveals that the for a two fidelity problem, ContinuAR is equivalent to AR. Thus, the likelihood512

decomposition for subset structure data [10] also holds for ContinuAR, which lays out the foundation for our513

fast inference algorithm for non-subset problems.514

G Predictive Posterior With Subset Structure515

In order to conduct the proof of decomposition for the likelihood function with non-subset data, we need to derive516

the form of predictive posterior distribution with multi-fidelity with subset structure i.e., X(T ) ⇢, · · · ,⇢ X
(0),517

first. Here, we take the simplest situation, i.e., T = 1 as an example, and the assumption, X(1) ⇢ X
(0) holds.518

To stay consistent with AR, we denote ⇢ = e
��(t1�t0) for clarity. Following the format of the covariance matrix519
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in Eq. (A.30) and Eq. (A.6), the mean function and covariance matrix have the following expression,520

ȳ(x⇤, 1)

=
⇣
⇢k

(0)
⇤ ⌦ S

(0)
, ⇢

2
k
(0)
⇤ (x(1))⌦ S

(0) + k
(1)
a⇤ ⌦ S

(1)
⌘
⌃

�1

✓
~y
(0)

~y
(1)

◆

=
⇣
⇢k

(0)
⇤ ⌦ S

(0)
⌘⇣

K
(00) ⌦ S

(0)
⌘�1

~y
(0) +

⇣
⇢k

(0)
⇤ ⌦ S

(0)
⌘✓

E
(1)(⇢2K(00))�1

⇣
E

(1)
⌘>

⌦ (S(1))�1

◆
~y
(0)

�
⇣
⇢
2
k
(0)
⇤ (x(1))⌦ S

(0)
⌘⇣

⇢K
(11)
a (E(1))> ⌦ S

(1)
⌘�1

~y
(0)

�
⇣
k
(0)
⇤ ⌦ S

(0)
⌘⇣

⇢K
(11)
a (E(1))> ⌦ S

(1)
⌘�1

~y
(0)

�
⇣
⇢k

(0)
⇤ ⌦ S

(0)
⌘⇣

E
(1)(⇢K(11)

a )�1 ⌦ S
(1)

⌘�1
y
(1)
a

+
⇣
⇢
2
k
(0)
⇤ (x(1))⌦ S

⌘⇣
K

(11)
a ⌦ S

⌘�1
y
(1)
a +

⇣
k
(1)
a⇤ ⌦ S

(0)
⌘⇣

K
(11)
a ⌦ S

(1)
⌘�1

y
(1)
a

=
⇣
⇢k

(0)
⇤ ⌦ S

(0)
⌘⇣

K
(00) ⌦ S

(0)
⌘�1

~y
(0) �

⇣
k
(0)
⇤ ⌦ S

(0)
⌘⇣

⇢K
(11)
a (E(1))> ⌦ (S(1))�1

⌘
~y
(0)

+
⇣
k
(0)
⇤ ⌦ S

(0)
⌘⇣

⇢K
(11)
a (E(1))> ⌦ (S(0))�1

⌘
~y
(0) +

⇣
k
(1)
a⇤ ⌦ S

(1)
⌘⇣

K
(11)
a ⌦ S

(1)
⌘�1

y
(1)
a

=

✓
⇢k

(0)
⇤

⇣
K

(00)
⌘�1

⌦ I

◆
~y
(0) +

✓
k
(1)
a⇤

⇣
K

(11)
a

⌘�1
⌦ I

◆
y
(1)
a ,

(A.31)

⌃
(1)
⇤

=
⇣
⇢
2
k
(00)
⇤ ⌦ S

(0) + k
(11)
a⇤ ⌦ S

(1)
⌘

�
⇣
⇢k

(0)
⇤ ⌦ S

(0)
, ⇢

2
k
(0)
⇤ (x(1))⌦ S

(0) + k
(1)
a⇤ ⌦ S

(1)
⌘
⌃

�1

0

@

⇣
⇢k

(0)
⇤ ⌦ S

(0)
⌘>

⇢
2
⇣
k
(0)
⇤ (x(1))⌦ S

(0)
⌘>

+
⇣
k
(1)
a⇤ ⌦ S

(1)
⌘>

1

A

=
⇣
⇢
2
k
(00)
⇤ ⌦ S

(0) + k
(11)
a⇤ ⌦ S

(1)
⌘
�

⇣
⇢k

(0)
⇤ ⌦ S

(0)
⌘⇣

K
(00) ⌦ S

(0)
⌘�1 ⇣

⇢k
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⌘>

+
⇣
k
(1)
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(11)
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(1)
⌘⇣

⇢k
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⌘>

�
⇣
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(1)
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(11)
a ⌦ S

(1)
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(0)
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(0)
⌘>

�
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a⇤ ⌦ S

(1)
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K
(11)
a ⌦ S

(1)
⌘�1 ⇣

k
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a⇤ ⌦ S

(1)
⌘>

=⇢
2

✓
k
(00)
⇤ �

⇣
k
(0)
⇤

⌘> ⇣
K

(00)
⌘�1

k
(0)
⇤

◆
⌦ S

(0) +

✓
k
(11)
a⇤ �

⇣
k
(1)
a⇤

⌘> ⇣
K

(11)
a

⌘�1
k
(1)
a⇤

◆
⌦ S

(1)
,

(A.32)
where k

(0)
⇤ = k

0(X⇤,X
(0)), k(00)

⇤ = k
0(X⇤,X⇤), K(00) = k

0(X(0)
,X

(0)) denotes the covariance in the521

lowest fidelity, and k
(1)
a⇤ = k

u1(X⇤,X
(1)), k(11)

⇤ = k
u1(X⇤,X⇤) and K

(11)
a = k

u1(X(1)
,X

(1)).522

Notice that Eq. (A.32) decomposes the predictive posterior into two parts that are related to the low- and523

high-fidelity data, respectively. This lays the foundation for our later derivation for the non-subset structure.524

In the following section, we will derive the predictive posterior for non-subset structure, and show that the525

autokrigeability also holds.526

H Predictive Posterior With Non-Subset Structure527

In this section, we derive the mean function and covariance matrix in the predictive posterior for non-subset528

structure following the previous two-fidelity setup.529

p(Ȳ(x⇤, 2)|Y(2)
,Y

(1)) =

Z
p(Ȳ(x⇤, 2), Ŷ

(1)|Y(2)
,Y

(1))dŶ(1)

=

Z
p(Ȳ(x⇤, 2)|Y(2)

,Y
(1)

, Ŷ
(1))

| {z }
fidelity 2 posterior

p(Ŷ(1))
| {z }

fidelity 1 posterior

dŶ
(1)

.
(A.33)
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As we know, once the Ŷ
(1) is decided, the high-fidelity posterior part can be written as the subset posterior530

distribution, in the following way,531

p(Ȳ(x⇤, 2)|Y(2)
,Y

(1)
, Ŷ

(1)) = 2⇡�NpD
2 ⇥

���⌃(2)
⇤

���
� 1

2 ⇥ exp � 1
2

⇣
y
(2)
⇤ � ȳ

(2)
⌘> ⇣

⌃
(2)
⇤

⌘�1 ⇣
y
(2)
⇤ � ȳ

(2)
⌘�

.

(A.34)
where532

⌃
(2)
⇤ =⌃(x⇤, 1) + ⌃̃

(2)
,

ȳ
(2) =


(k(11)

⇤ )
⇣
K

(11)
⌘�1

⌦ I

�✓
Y

(1)

ŷ
(1)

◆
+


(k(22)

a⇤ )
⇣
K

(22)
a

⌘�1
⌦ I

�
y
(2)

.

(A.35)

This is depends on the the conclusion in Eq. (A.31), ⌃(2)
⇤ and ȳ

(2) are posterior covariance matrix and mean533

function.534

At the same time, we know that Ŷ(1) are samples from fidelity 1 model, therefore the probabilityof getting Ŷ
(1)535

can be written as,536

p(Ŷ(1)) = 2⇡�N
(2)
n D
2 ⇥

���⌃(1)
⇤ ⌦ S

(1)
���
� 1

2 ⇥ exp


�1
2
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(1)
⌘�

,

(A.36)
where the ⌃(1)

⇤ ⌦ S means the posterior covariance matrix of sampling Ŷ
(1) from lower fidelity model and ȳ

(1)537

are predicted mean for the non-subset data. Therefore the posterior distribution of non-subset data structure is538
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ŷ
(1) � ȳ
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(1)
⌘�)

dŶ
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ỹ
>
⇣
⌃

(2)
⇤

⌘�1
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�ŷ

(1) � 1
2

⇣
ŷ
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where ỹ and � is defined by the following equations,539
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where E
(2)
m denotes the selection matrix which select the non-subset parts between two fidelities, X̂(1) =540
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After that, we can simplify the determenant and the exponential parts by decomposing them into different parts543

and using the Sherman-Morrison formula to obtain conclusions.544
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For the exponential parts in Eq. (A.37),546
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Therefore, the likelihood of the posterior distribution is547
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From the upper formula, for the non-subset data structure, the posetrior mean and covairance matrix are,548
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In Eq. (A.42), we also prove matrix S does not take part in posterior mean function which means that autokrige-549

ability again stands also in the non-subset data structure. By recursively applying this conclusion, we can easily550

extend it to a multi-fidelity problem; we show the detailed application in the main paper.551

I Decomposition of Joint Likelihood With Non-Subset Structure552

As we have shown that the autokrigeability holds in subset and non-subset data structure, we thus assume an553

identical spacial correlation, S = I, for easy computation acceleration (with the cost of losing the accuracy in554

the predictive variance). Due to the identical spatial correlations, we no longer need vectorization. First, we555

decompose the joint likelihood L into several independent parts,556
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Figure 6: Index notation explanation.

Once the Ŷ
(1) is fixed, the probability of part 1 in Eq. (A.43) can be written as,557
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Ȳ
(1)

◆�> ⇣
K

(22)
a

⌘�1
✓

Y̌
(2)

Ŷ
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Then is the part 2 in Eq. (A.43), it is based on the posterior distribution of lower fidelity, zu558
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Ŷ
(1) � Ȳ
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where we use the N

(2)
n to denotes the missing point in second fidelity corresponding with fidelity 2, which559

means the Ŷ
(2) parts, yellow part, in Fig. 6.560

Therefore, we can combine the Eq. (A.44) with the Eq. (A.45), the integral part in Eq. (A.43) can be written as,561
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Ȳ
(1)

◆◆#

⇥2⇡�N
(2)
n D
2 ⇥

���⌃̂(1)
���
� 1

2 ⇥ exp�1
2

⇣
Ŷ
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dŶ
(1)

=� (N (2) +N
(2)
n )D

2
log(2⇡)� 1

2
log

���K(11)
a

����
1
2
log

���⌃̂(1)
���

+ log

Z (
exp

"
�1
2

✓✓
Y̌

(2)

Ŷ
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After that, we try to decompose the vector Y as,562
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The Y is divided into subset part Y̌ and non-subset part Ŷ. Then, we consider the data fitting part by substituting563

Eq. (A.47) into Eq. (A.46), which gives the method to make the Eq. (A.46) calculable,564
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Sherman-Morrison formula.566
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Ê

(2) +
⇣
⌃̂

(1)
⌘�1

����

=� 1
2
log

���K(11)
a

����
1
2
log

���⌃̂(1)
���+

1
2
log

���K(11)
a

���+
1
2
log

���⌃̂(1)
����

1
2
log

����(K
(22)
a )�1 + Ê
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Then, we gather terms with � and simplify them as,568
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(2)
⌘

�
⇣
E

(2)
Y̌

(2) �E
(2)

Y̌
(1)

⌘> ⇣
K

(22)
a

⌘�1 ⇣
E

(2)
n Ŷ
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Ê
(2)

⌘>
�
�.

(A.50)

After that, we consider the interaction part between � and Ȳ
(1),569
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Finally, we simplify the terms related with Ȳ
(1),570
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Ȳ

(1)

◆

=� 1
2

⇣
Ȳ

(1)
⌘>

"⇣
⌃̂

(1)
⌘�1

�
⇣
⌃̂

⌘�1
✓
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Putting all the parts together, the joint likelihood for the R = 1 is,571
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Therefore, we can see that the joint likelihood of three different fidelities with non-subset dataset can be572

decomposed as three independent model to train. For problems with arbitrary number of fidelity, we can easily573

apply this conclusion recursively to decompose them into the summation structure, which is scalable to the574

number of training data and fidelity level and is easy to code up.575

J Experiment in Detail576

J.1 Canonical PDEs577

We consider three canonical PDEs: Poisson’s equation, Heat equation, and Burger’s equation, These PDEs have578

crucial roles in scientific and technological applications [41–43]. They offer common simulation scenarios, such579

as high-dimensional spatial-temporal field outputs, nonlinearities, and discontinuities, and are frequently used as580

benchmark issues for surrogate models [29, 37–39]. x and y denote the spatial coordinates, and t specifies the581

time coordinate, which contradicts the notation in the main paper. This notation in the appendix serves merely to582

make the information clear; it has no bearing on or connections to the main article.583

Burgers’ equation is regarded as a standard nonlinear hyperbolic PDE; it is commonly used to represent a
variety of physical phenomena, including fluid dynamics [42], nonlinear acoustics [48], and traffic flows [49]. It
serves as a benchmark test case for several numerical solvers and surrogate models [50–52] since it can generate
discontinuities (shock waves) based on a normal conservation equation. The viscous version of this equation is
given by

@u

@t
+ u

@u

@x
= v

@
2
u

@x2
,

where u indicates volume, x represents a spatial location, t indicates the time, and v denotes the viscosity. We584

set x 2 [0, 1], t 2 [0, 3], and u(x, 0) = sin(x⇡/2) with homogeneous Dirichlet boundary conditions. We585

uniformly sampled viscosities v 2 [0.001, 0.1] as the input parameter to generate the solution field.586

In the space and time domains, the problem is solved using finite elements with hat functions and backward587

Euler, respectively. To generate solutions at different fidelities, the solver solve the PDEs based on discretized588

spatial-temporal domain of regular rectangular meshes with {82, 162, 322, 642, 1282} grid points for simulations589

from low- to high-fidelity.590

Poisson’s equation is a typical elliptic PDE in mechanical engineering and physics for modeling potential fields,591

such as gravitational and electrostatic fields [41]. Written as592

@
2
u

@x2
+

@
2
u

@y2
= 0.

It is a generalization of Laplace’s equation [53]. Despite its simplicity, Poisson’s equation is commonly593

encountered in physics and is regularly used as a fundamental test case for surrogate models [37, 54]. In our594

experiment, we impose Dirichlet boundary conditions on a 2D spatial domain with x 2 [0, 1] ⇥ [0, 1]. The595

input parameters consist of the constant values of the four borders and the center of the rectangular domain,596

which vary from 0.1 to 0.9 each. We sampled the input parameters equally in order to create the matching597

potential fields as outputs. Using the finite difference approach with a first-order center differencing scheme and598

regular rectangular meshes, the PDE is solved. The meshes with {82, 162, 322, 642, 1282} grid nodes are used599

to generate simulations of five different fidelity.600

Heat equation is a fundamental PDE that defines the time-dependent evolution of heat fluxes. Despite having
been established in 1822 to describe just heat fluxes, the heat equation is prevalent in many scientific domains,
including probability theory [55, 43] and financial mathematics [56]. Consequently, it is commonly utilized as a

22



 

P2 

                

 

       
 

P1 

P3 

Figure 7: Geometry, boundary conditions, and simulation parameters for cantilever beam

stand-in model. This is the heat equation:
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where k is the materials conductivity qV is the rate at which energy is generated per unit volume of the medium601

⇢ is the density and cp is the specific heat capacity. The input parameters are the flux rate of the left boundary at602

x = 0 (ranging from 0 to 1), the flux rate of the right boundary at x = 1 (ranging from -1 to 0), and the thermal603

conductivity (ranging from 0.01 to 0.1).604

We establish a 2D spatial-temporal domain x 2 [0, 1], t 2 [0, 5] with the Neumann boundary condition atx = 0605

and x = 1, and u(x, 0) = H(x� 0.25)�H(x� 0.75), where H(·) is the Heaviside step function.606

The equation is solved using the finite difference in space and backward Euler in time domains. The spatial-607

temporal domain is discretized into a 16 ⇥ 16 regular rectangular mesh for the first (lowest) fidelity solver.608

A refined solver uses a 32 ⇥ 32 mesh for the second fidelity. The result fields are computed on a 100 ⇥ 100609

spatial-temporal grid.610

The equation is solved using a finite difference in the spatial domain and reverse Euler in the temporal domain.611

The spatial-temporal domain is discretized into a regular rectangular mesh with {82, 162, 322, 642, 1282} nodes612

to generate simulation results of five different fidelity simulation.613

J.2 Multi-Fidelity Fusion for Topology Optimization614

We use GAR in a topology structure optimization problem, where the output is the best topology structure (in615

terms of maximum mechanical metrics like stiffness) of a layout of materials, such as alloy and concrete, given616

some design parameters like external force and angle. Topology structure optimization is a significant approach617

in mechanical designs, such as airfoils and slab bridges, especially with recent 3D printing processes in which618

material is deposited in minute quantities. However, it is well known that topology optimization is computation-619

ally intensive due to the gradient-based optimization and simulations of the mechanical characteristics involved.620

A high-fidelity solution, which necessitates a huge discretization mesh and imposes a significant computing621

overhead in space and time, makes matters worse.622

Utilizing data-driven ways to aid in the process by offering the appropriate structures [57, 32] is subsequently623

gaining popularity. Here, we investigate the topology optimization of a cantilever beam (shown in the ap-624

pendix). We employ the rapid implementation [59] to carry out density-based topology optimization by reducing625

compliance C subject to volume limitations V  V̄ .626

The SIMP scheme [60] is used to convert continuous density measurements to discrete, optimal topologies. We627

set the position of point load P1, the angle of point load P2, and the filter radius P3 [61] as system input. The628

problems is solved based on a regular mesh with {322, 402, 482, 562, 642} nodes.629

J.3 Multi-Fidelity Fusion for Plasmonic nanoparticle arrays630

In the final example, we calculate the extinction and scattering efficiencies Qext and Qsc for plasmonic systems631

with varying numbers of scatterers using the Coupled Dipole Approximation (CDA) approach. CDA is a method632

for mimicking the optical response of an array of similar, non-magnetic metallic nanoparticles with dimensions633

far smaller than the wavelength of light (here 25 nm). Qext and Qsc are defined as the QoIs in this document. We634

constructed surrogate models for efficiency with up to three fidelities using our proposed method. We examined635

particle arrays resulting from Vogel spirals. Since the number of interactions of incident waves from particles636

influences the magnetic field, the number of nanoparticles in a plasmonic array has a substantial effect on the637

local extinction field caused by plasmonic arrays. The configurations of Vogel spirals with particle numbers in638

the set {2, 50, 200, 500, 1000} that define five fidelity simulations. � 2 [200, 800] nm, ↵vs 2 [0, 2⇡] rad, and639
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avs 2 (1, 1500) were determined to be the parameter space. These are, respectively, the incidence wavelength,640

the divergence angle, and the scaling factor. A Sobol sequence was utilized to choose inputs. The computing641

time required to execute CDA increases exponentially as the number of nanoparticles increases. Consequently,642

the proposed sampling approach results in significant reductions in computational costs.643

The response of a plasmonic array to electromagnetic radiation is calculable using the solution of the local644

electric fields, Eloc(rj), for each nano-sphere. Considering N metallic particles defined by the same volumetric645

polarizability ↵(!) and situated at vector coordinates ri, it is possible to calculate the local field Eloc(rj) by646

solving [62] the corresponding linear equation.647

Eloc(ri) = E0(ri)�
↵k

2

✏0

NX

j=1,j 6=i

G̃ijEloc(rj) (A.54)

in which E0(ri) is the incident field, k is the wave number in the background medium, ✏0 denotes the dielectric648

permittivity of vacuum (✏0 = 1 in the CGS unit system), and G̃ij is constructed from 3 ⇥ 3 blocks of the649

overall 3N ⇥ 3N Green’s matrices for the ith and jth particles. G̃ij is a zero matrix when j = i, and otherwise650

calculated as651

G̃ij =
exp(ikrij)
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⇢
I� brijbrTij �


1
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+

1
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(I� 3brijbrTij)
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(A.55)

where brij denotes the unit position vector from particles j to i and rij = |rij |. By solving Eqs. A.54 and A.55,652

the total local fields Eloc(ri), and as a result the scattering and extinction cross-sections, are computed. Details653

of the numerical solution can be found in [63].654

Qext and Qsc are derived by normalizing the scattering and extinction cross-sections relative to the array’s entire655

projected area. We considered the Vogel spiral class of particle arrays, which is described by [64]656

⇢n =
p
navs and ✓n = n↵vs, (A.56)

where ⇢n and ✓n represent the radial distance and polar angle of the n-th particle in a Vogel spiral array,657

respectively. Therefore, the Vogel spiral configuration may be uniquely defined by the incidence wavelength �,658

the divergence angle ↵vs, the scaling factor avs, and the number of particles n.659

J.4 Detailed Prediction Analysis660

To investigate the prediction error in detail, we define the average RMSE field y
(EF) by661

y
(EF) =

vuut 1
N

NX

i=1

(yi � ỹi)2,

where ỹi is the prediction, yi is the ground true value, and the square root is element-wise operation.662

The average RMSE field corresponding to the Heat equation, Burger’s equation, Poisson’s equation, and TopOP663

problem with a decreasing rate of ⌘ = 0.5, lowest-fidelity training samples,N0 = 128 and 128 testing samples664

are shown in Fig. 8 for the subset assessment and Fig. 9 for the non-subset assessment. Plasmonic nanoparticle665

arrays (PNA) have only two output variables and thus we do not show the average RMSE field for it.666

For the classic subset assessment in Fig. 8, we can see that clear that ContinuAR outperforms the competitors667

in all cases with a large margin by showing more blue areas and only tiny red areas. For Heat equation, the668

error is significantly reduced in most areas except for the bottom area of the domain, where a tiny thin bar of669

red area is shown. For the Burger’s equation, ContinuAR show some checker board pattern in the error field,670

which is probability caused by the conditional independence assumption. Nonetheless, the error is significantly671

reduced in most areas the largest error is also reduced. For the Poisson’s equation, different method has it own672

error patterns. ContinuAR show a more blue area in the left part of the domain, while AR has high-error areas673

everywhere except the center. For the TopOP problem, ContinuAR show a significantly reduced error by a674

significant reductions of deep red areas. The AR as the deepest blue ares, indicating its good performance.675

However, it also has a lar areas of red, indicating its poor performance overall.676

For the classic non-subset assessment in Fig. 9, the overall conclusion is similar to the subset assessment.677

ContinuAR outperforms the competitors in all cases with a large margin by showing more blue areas and tiny678

red areas. The overall error pattern for most methods are similar to the subset assessment with subtle difference.679

For instance, for the Burger’s equation, checker board pattern disappear, indicating a successful improvement680

by using training data across the input domain. The error for Poisson’s equation is also significantly reduced681

particularly on the right part of the domain. TopOP turns out to be the most stable problem as the error patterns682

for all methods are almost the same as the subset assessment.683
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Figure 8: Average RMSE fields of the subset evaluation with ⌘ = 0.5 and 128 N
0 training samples

for Heat equation(1st row), Burger’s equation(2nd row), Poisson’s equation(3rd row) and TopOP(4th
row).
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Figure 9: Average RMSE fields of the non-subset evaluation with ⌘ = 0.5 and 128 N
0 training

samples for Heat equation(1st row), Burger’s equation(2nd row), Poisson’s equation(3rd row) and
TopOP(4th row).
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