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Appendix1

The supplementary material consists of:2

A. Experimental Details: Descriptions of datasets, baseline methods, and implementation details.3

B. Additional Experimental Results: Robustness analysis on noisy data, sensitivity analysis on4

hyperparameters, and visualization of forecasting results.5

C. Derivation of Computational Complexity: A theoretical proof of the linear computation6

complexity of CrossGNN.7

A Experimental Details8

A.1 Datasets9

We conduct extensive experiments on 8 real-world datasets following [4]. The interval length, time10

step number, and the variable number of each real-world dataset are presented in Table 1. The11

detailed dataset descriptions are as follows:12

1) ETTh (ETTh1, ETTh2, ETTm1, ETTm2) consists of two hourly-level datasets (ETTh) and two13

15minute-level datasets (ETTm). Each of them contains seven oil and load features of electricity14

transformers from July 2016 to July 2018.15

2) Weather includes 21 indicators of weather, such as air temperature, and humidity. Its data is16

recorded every 10 min for 2020 in Germany.17

3) Traffic describes hourly road occupancy rates measured by 862 sensors on San Francisco Bay18

area freeways from 2015 to 2016.19

4) Exchange-rate collects the daily exchange rates of 8 countries from 1990 to 2016.20

5) Electricity contains hourly electricity consumption (in Kwh) of 321 clients from 2012 to 2014.21

Table 1: The statistics of the datasets for MTS forecasting.
Datasets ETTh1 ETTh2 ETTm1 ETTm2 Weather Traffic Exchange-rate Electricity

Interval Length 1 Hour 1 Hour 15 Minutes 15 Minutes 10 Minutes 1 Hour 1 Day 1 Hour
Time step # 17,420 17,420 69,680 69,680 52,696 17,544 7,588 26,304
Variable # 7 7 7 7 21 862 8 321

A.2 Baseline Methods22

We briefly describe the selected 7 state-of-the-art baselines as follows:23

1) TimesNet [3] is a task-general foundational model for time series analysis that utilizes a modular24

architecture to unravel intricate temporal variations. A parameter-efficient inception block is leveraged25
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to capture intra-period and inter-period variations in 2D space.26

2) ETSformer [2] is a Transformer-based model for time-series forecasting that incorporates27

inductive biases of time-series structures and introduces novel exponential smoothing attention (ESA)28

and frequency attention (FA) to improve performance.29

3) DLinear [6] is a simple linear-based model combined with a decomposition scheme.30

4) FEDformer [7] is a Transformer-based model that uses the seasonal-trend decomposition with31

frequency-enhanced blocks to capture cross-time dependency for forecasting.32

5) Autoformer [4] is a Transformer-based model using decomposition architecture with an auto-33

Correlation mechanism to capture cross-time dependency for forecasting.34

6) Pyraformer [1] is a Transformer-based model learning multi-resolution representation of the time35

series by the pyramidal attention module to capture cross-time dependency for forecasting.36

7) MTGNN [5] explicitly utilizes cross-variable dependency using GNN. A graph learning layer37

learns a graph structure where each node represents one variable in MTS.38

A.3 Implementation Details39

To ensure a fair comparison, the look-back window size is set to 96, which is consistent with all40

baselines. We set the scale numbers S to 5 and set K to 15 for all datasets, as sensitivity experiments41

have shown that S does not have a significant impact beyond 5 and CrossGNN is not sensitive to K.42

Besides, the dimension of the channel is set to 16 based on efficiency considerations. Additionally,43

the mean squared error (MSE) is used as the loss function. For the learning rate, a grid search is44

conducted among [5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5] to obtain the most suitable learning rate for all45

datasets. The total number of training epochs is set to 10, and training would be terminated early46

if the validation loss does not decrease for three consecutive rounds. The model is implemented in47

PyTorch 1.8.0 and trained on a single NVIDIA Tesla V100 PCIe GPU with 16GB memory.48

B Additional Experimental Results49

B.1 Analysis on Robustness Against Noise50

Figure 1: The MSE results (Y-axis) of models on ETTh2, ETTm2 and Weather with different signal-
to-noise ratio (SNR).
To evaluate the robustness of CrossGNN against noise, we add different intensities of Gaussian white51

noise to the original MTS and observe the performance changes. As the intensity of Gaussian white52

noise increases, the signal-to-noise ratio (SNR) gradually decreases from 100 dB to 0 dB. Figure 153

shows the MSE results of CrossGNN, ETSformer [2] and MTGNN [5] on ETTh2, ETTTm2, and54

Weather under different SNR. As the SNR decreases from 100db to 0db, the mean square error (MSE)55

of CrossGNN increases more slowly than MTGNN and ETSformer.56

Taking the results on the ETTm2 dataset as an example, when the noise intensity increases at the57

beginning (i.e., SNR decreases from 100db to 10db), the prediction accuracy of MTGNN and58

ETSformer becomes unstable. Their prediction accuracy drops more rapidly when the noise intensity59

suddenly increases (i.e., SNR decreases from 10db to 0db). In contrast, CrossGNN maintains60

overall stability, and its performance degrades more slowly. The quantitative results demonstrate61

that CrossGNN exhibits good robustness against noisy data and has a great advantage when dealing62

with unexpected fluctuations. Such improvements benefit from the explicit modeling of respective63

cross-scale and cross-variable interactions.64
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B.2 Sensitivity Analysis65

Figure 2: The MSE results (Y-axis) of models with different look-back window sizes (X-axis) on
ETTh2, ETTm2, Traffic and Weather. The first row shows the performance when the prediction
horizon is 96, while the second row shows the performance when the prediction horizon is 336.

Figure 3: The MSE (left Y-axis) and MAE results (right Y-axis) of CrossGNN with different number
of scales (X-axis) on ETTh2, ETTm2, Traffic, and Weather.

Figure 4: The MSE (left Y-axis) and MAE results (right Y-axis) of CrossGNN with different K
(X-axis) on ETTh2, ETTm2, Traffic, and Weather.

Look-Back Window Size Figure 2 shows the MSE results of models with different look-back66

window sizes on four datasets. As the window size increases, the performance of Transformer-based67

models fluctuates while CrossGNN constantly improves. This indicates that the attention mechanism68

of Transformer-based models may focus much more on the temporal noise, while CrossGNN can69

better extract the relationships between different time nodes via the Cross-Scale module.70

Number of Scales We vary the number of scales from 4 to 8 and report the MSE and MAE results71

on ETTh2, ETTm2, Traffic, and Weather. As shown in Figure 3, We observe that the performance72

improvement becomes less significant after a certain number of scales (i.e., 5), indicating that a73

certain scale size is sufficient to eliminate most of the effects of temporal noise.74
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Number of Temporal Node Neighbors The number of temporal neighboring nodes is primarily75

determined by the hyperparameter K. As depicted in Figure 4, we conducted experiments with76

different K values, including 10, 15, 20, 25, and 30, and observed that CrossGNN is not sensitive to77

the number of K. This suggests that effective cross-scale interaction can be achieved by focusing78

only on strongly correlated time nodes.79

B.3 Visualization of Forecasting Results of Different Models80

We present the visualization of forecasting results of CrossGNN and other baseline models on 881

datasets in Figure 5 and Figure 6. These datasets exhibit diverse temporal patterns, with 96-steps82

input length and output horizon. It can be observed that the prediction results of the Transformer-83

based model are significantly affected by noise, resulting in fluctuations. In contrast, the prediction84

results of CrossGNN are less affected by noise, and the predicted values are closer to the true results.85

For example, considering the forecasting results on the Traffic dataset, there are three unexpected86

noise points (i.e., irregularly high points) in the input data. During prediction, the attention mechanism87

of the Transformer-based model may focus on the noisy points, leading to a bias towards higher88

output predictions. As a result, although the Transformer-based model seems to capture the periods89

of the time series, it fails to produce accurate predictions. In contrast, CrossGNN is unaffected by90

these three noisy data points and generates predictions that are closer to the ground truth. While91

Transformer-based models struggle to capture the scale and bias of future data due to unexpected92

noise in the input data, CrossGNN outperforms other models in terms of both scale and bias in93

forecasting.

Figure 5: Visualization of 96-step forecasting results on Electricity, Exchange-rate, Traffic, and
Weather, and the look-back window size is set as 96.

94
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Figure 6: Visualization of 96-step forecasting results on ETTh1, ETTh2, ETTm1 and ETTm2, and
the look-back window size is set as 96.

C Derivation of Computational Complexity95

In this section, we theoretically prove that the time and space complexity of the Cross-Scale module96

and Cross-Variable module in CrossGNN are both linear. We have organized the notations used in97

Table 2 for ease of reading.98

Table 2: Meaning of notations
Notation Meaning

vi The i-th time node
S Number of scales
s Index of the scale
ps Period length of the s-th scale
L Original input length (i.e., look-back window size)
L(s) Time length at the s-th scale
L′ Total length of concatenated multi-scale time series
Kscale The hyperparameter to control temporal neighbor numbers
Kvar The hyperparameter to control variable neighbor numbers
ks The temporal neighbor numbers at the s-th scale
A(vi) Total temporal neighbor node number correlated to vi
A Total correlated temporal node pair number
D Variable numbers

Proposition 1. The time and space complexity for the Cross-scale GNN is O(Kscale × lnS × L)99

and amounts to O(L) when S and Kscale are constants w.r.t. L.100
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Proof. To improve readability, we substitute K for Kscale. Denote L(s) as the number of time nodes101

at s-th scale:102

L(s) = ⌊ L
ps

⌋, 1 ≤ s ≤ S, (1)

where ps is the corresponding period length of the s-th scale and L is the original input length (i.e.,103

look-back window size). L′ is the sum of time nodes at different scales, and it could be expressed by:104

L′ =

S∑
s=1

L(s) =

S∑
s=1

⌊ L
ps

⌋ ≤
S∑

s=1

⌊L
s
⌋ ≤ L

S∑
s=1

1

s
≈ L(lnS + ϵ+

1

2S
), (2)

where lnS + ϵ+ 1
2S ≈

∑S
s=1

1
S is the approximate summation formula for the harmonic series, and105

ϵ is the Euler-Mascheroni constant.106

For a time node, we set its scale-sensitive time node neighbor numbers to ks = ⌈K
ps
⌉ at s-th scale.107

Since the trend-aware neighbor nodes are defined as its previous node and next node at the current108

scale, the number of trend-aware neighbor nodes can reach 2 when these nodes do not overlap with109

the scale-sensitive neighbor nodes. However, when there is overlap, the number of trend-aware110

neighbor nodes can be 0 or 1.Therefore, the maximum neighbor node number of vi is given by:111

A(vi) ≤
S∑

s=1

ks + 2 (3)

= K

s=S∑
s=1

1

p(s)
+ 2 (4)

≤ K(
1

1
+

1

2
+ ...+

1

S
) + 2 (5)

≈ K(lnS + ϵ+
1

2S
) + 2, (6)

Total correlated node pair number is expressed as:112

A = L′ ×A(vi) ≤ L(lnS + ϵ+
1

2S
)(K(lnS + ϵ+

1

2S
) + 2) ≈ 2K × ln (S)× L. (7)

Consequently, the complexity of the proposed cross-scale GNN is:113

O(A) ≤ O(2K × ln (S)× L). (8)

Since K and S are all constant terms that are independent of the length L and remain fixed when L114

changes, the complexity can be further reduced to O(L).115

Proposition 2. The time and space complexity for the Cross-variable GNN is O(Kvar ×D) and116

amounts to O(D) when Kvar is a constant w.r.t. D.117

Proof. Without loss of generality, we assume that the number of homogeneous and heterogeneous118

correlated nodes for each variable are both Kvar. For a cross-variable graph, there are a total of119 ∑D
i=1 2K

var = 2KvarD correlated variable node pairs. Correspondingly, since the complexity of120

graph computation is related to the number of edges, the time and space complexity of cross-variable121

GNN are both O(Kvar ×D). As Kvar is a constant that is independent of D, its complexity is linear122

(i.e., O(D)).123
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