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Abstract

Recently, multivariate time series (MTS) forecasting techniques have seen rapid
development and widespread applications across various fields. Transformer-based
and GNN-based methods have shown promising potential due to their strong ability
to model interaction of time and variables. However, by conducting a compre-
hensive analysis of the real-world data, we observe that the temporal fluctuations
and heterogeneity between variables are not well handled by existing methods.
To address the above issues, we propose CrossGNN, a linear complexity GNN
model to refine the cross-scale and cross-variable interaction for MTS. To deal
with the unexpected noise in time dimension, an adaptive multi-scale identifier
(AMSI) is leveraged to construct multi-scale time series with reduced noise. A
Cross-Scale GNN is proposed to extract the scales with clearer trend and weaker
noise. Cross-Variable GNN is proposed to utilize the homogeneity and heterogene-
ity between different variables. By simultaneously focusing on edges with higher
saliency scores and constraining those edges with lower scores, the time and space
complexity (i.e., O(L)) of CrossGNN can be linear with the input sequence length
L. Extensive experimental results on 8 real-world MTS datasets demonstrate the
effectiveness of CrossGNN compared with state-of-the-art methods. The code is
available at https://github.com/hqh0728/CrossGNN.

1 Introduction

Time series forecasting has been widely used in many fields (i.e., climate [1], traffic [31], energy [3],
finance [13], etc) [8, 29, 20, 10]. Multivariate time series (MTS) consists of time series with multiple
variables and MTS forecasting aims at predicting future values based on historical time series. Deep
learning models [26, 24, 17, 4, 21] have demonstrated superior performance in MTS forecasting.
In particular, Transformer-based models [34, 27, 35] have achieved great power in MTS, benefiting
from its attention mechanism which can model the long-term interaction between different time
points of sequences (cross-time). Graph Neural Networks (GNNs) [28, 16, 2, 19, 7] have also shown
promising results for MTS forecasting, which can extract pre-defined or adaptive interaction between
different variables (cross-variable).

However, a recent study [33] shows that a simple linear model dramatically outperformed many state-
of-the-art (SOTA) models, and it inspires us to investigate the reasons why the existing cross-time
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and cross-variable interaction modeling fail to enhance prediction performance. By conducting a
thorough analysis on real-world data, we observe that the presence of some unexpected noise (caused
by humans, sensor distortion) may be responsible for it. In time dimension, as shown in Figure 1 (a),
Transformer-based model heavily relies on the input sequences to generate the attention map, while
its prediction may be susceptible to incidental noise, even some small fluctuation (i.e., noise) could
easily lead to significant shifts on temporal dependencies. Our findings reveal that self-attention
mechanism tend to assign high scores to outlier points in time series, resulting in spurious cross-time
correlations. In variable dimension, cross-variable correlation exhibits a complex and dynamic
evolution over time [18]. Despite the existence of underlying causal associations between variables,
extracting cross-variable interaction is difficult due to the influence of noise interference. Additionally,
as shown in Figure1 (b), we observe that such unexpected noise, which can be detected by the outlier
detection algorithm [14], accounts for a high proportion in the time series.

Figure 1: Data analysis on the real-world dataset [31]. (a) Forecasting results of Transformer-based
models suffering from unexpected noise. (b) Proportion of noise in the ETTh1, ETTm1, Traffic, and
Weather datasets [27] detected by [14]. (c) Different levels of noise signals in multi-scale time series.
(d) Homogeneous and heterogeneous relationships between variables.

Despite the non-negligible noise in time series, we can still discover the potential opportunities to
confront noise challenges. (1) Cross-Scale Interaction. As shown on Figure 1 (c), by performing
multi-scale extraction on the time series, we observe that different scales possess distinct levels
of noise intensity, typically with coarser scales exhibiting lower noise intensity. Evidently, captur-
ing dependencies across different scales enables the cross-time relationships to be robust against
noise [15]. (2) Cross-Variable Interaction. As shown on Figure 1 (d), there is both homogeneity
and heterogeneity for cross-variable interaction in real-world data [36]. In fact, the two relationships
can both contribute to invariant connections during the temporal progression. Consequently, learning
the invariant associations that contain both homogeneous and heterogeneous relationships among
variables can boost its robustness to confront noise. Based on above analysis, it is still challenging to
refine interaction in noisy MTS. The key obstacles can be summarized as follows: 1) How to capture
cross-scale interaction that is not sensitive to unexpected input noise. 2) How to extract cross-variable
relations between heterogeneous variables.

In this work, we propose CrossGNN, which is the first GNN solution to refine both cross-time
and cross-variable interactions for MTS forecasting. To deal with the unexpected noise in time
dimension, we firstly devise an adaptive multi-scale identifier (AMSI) to construct multi-scale time
series with different noise levels. In time dimension, we propose Cross-Scale GNN, which is a
temporal correlation graph, to model the dependency between different scales. The scales with
clearer trends and weaker noise will be assigned with more edge weight. In variable dimension,
we first introduce heterogeneous interaction modeling between variables into MTS forecasting and
propose cross-variable GNN to utilize the homogeneity and heterogeneity between different variables
with positive and negative edge weights. By focusing on edges with higher saliency scores and
constraining those edges with lower scores at the same time, CrossGNN achieves linear time and
space complexity (i.e., O(L)) with input sequence length L. The main contributions are summarized
as follows:

• We conduct comprehensive studies on real-world MTS data and discover that the unexpected
noise in time dimension and variable-wise heterogeneity between variables is not well
handled by existing Transformer-based and GNN-based models.

• We propose a linear complexity CrossGNN model, which is the first GNN model to refine
both cross-scale and cross-variable interaction for MTS forecasting.
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1) To deal with the unexpected noise in time dimension, AMSI is leveraged to construct
multi-scale time series with different noise level and a Cross-Scale GNN is proposed to
capture the scales with clearer trend and weaker noise.
2) Cross-Variable GNN is designed to model the dynamic correlations between different
variables. This the �rst model to introduce heterogeneous interaction modeling between
variables into MTS forecasting.

• Extensive evaluation on 8 real-world MTS datasets demonstrates the effectiveness of Cross-
GNN. Speci�cally, CrossGNN achieved top-1 performance on 47 settings and top-2 on 9
settings when compared with 9 state-of-the-art models with varying prediction lengths.

2 Related Work

Multivariate Time Series Forecasting. MTS forecasting has witnessed signi�cant advancements
due to the emergence of deep neural networks. These networks can be based on Convolutional Neural
Network (CNN) [26, 23], Recurrent Neural Network (RNN) [5, 6], Transformer [11, 25, 27, 35, 9],
or Graph Neural Network (GNN) [28, 32]. Generally, the primary emphasis of these studies lies
in devising interactions between the temporal dimensions (cross-time) and the variable dimensions
(cross-variable).

Cross-Time Interaction Modeling. Cross-time interaction modeling aims to capture correlations
between different time points. Recently, CNN-based model TimesNet [26] transforms the time
series into a two-dimensional matrix and uses a CNN-based backbone for feature extraction. RNN-
based model LSTnet [6] utilizes the Long Short-Term Memory (LSTM) to model the temporal
dependencies, but it may be limited by the inherent issue of gradient vanishing/exploding in RNNs.
Transformer-based models bene�t from its self-attention mechanism, enabling them to capture long-
term cross-time dependency. AutoFormer [27] incorporates a decomposition mechanism that splits
the input sequence into trend and seasonality, and integrate an auto-correlation module into the
transformer to capture long-term cross-time dependency. FedFormer [35] leverages a frequency-
enhanced decomposition mechanism while incorporating additional frequency information. However,
despite the outstanding performance of Transformer-based methods, we observe that their self-
attention mechanism is susceptible to unexpected noise, as shown on Figure 1(a). Based on these
�ndings, we propose an innovative GNN-based method that constructs a cross-scale temporal graph
to mitigate the impact of temporal noise on modeling cross-time correlations.

Cross-Variable Interaction Modeling. Cross-Variable Interaction is proved to be critical for MTS
forecasting [34], and numerous works have employed Graph Neural Networks (GNNs) [22, 37, 30, 38]
to capture cross-variable relationships. STGCN [32] �rstly utilizes GNN to model the cross-variable
dependency in traf�c forecasting, which can effectively capture the dependency between different
roads in pre-de�ned topology graphs. MTGNN [28] expands the utilization of GNN from spatio-
temporal prediction to MTS forecasting, and proposes a straightforward method for computing
adaptive cross-variable graph. On the other hand, the Transformer-based MTS prediction works
have also recognized the potential of cross-variable interactions to enhance prediction performance,
such as CrossFormer [34]. However, the cross-variable relationship is dynamic and can be greatly
in�uenced by noise during the learning process. Given this, we re�ne the cross-variable relationship
by decoupling homogeneity and heterogeneity in MTS, resulting in a noise-insensitive relationship
during the temporal evolution.

3 Methodology

In long-term multivariate time series (MTS) forecasting, the input comprises historical sequences
acrossD variables denoted byX = f X t

1; :::; X t
D gL

t =1 2 RL � D , whereL denotes the look-back
window size andX t

i denotes time series of thei th variate at thet th time step. The objective of MTS
forecasting is to predict future time series denoted byX̂ = f X̂ t

1; :::; X̂ t
D gL + T

t = L +1 2 RT � D based on
X , whereT represents the prediction time steps andT � 1. The detailed structure of CrossGNN
is illustrated in Figure 2. We �rstly employ an adaptive multi-scale identi�er (AMSI) to generate
multi-scale time series and reduce noise on coarse scale. Then, we construct scale-sensitive and trend-
aware temporal graph to extract cross-scale interaction. We perform cross-variable aggregation via
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