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Abstract

We propose a novel framework for analyzing the dynamics of distribution shift in1

real-world systems that captures the feedback loop between learning algorithms and2

the distributions on which they are deployed. Prior work largely models feedback-3

induced distribution shift as adversarial or via an overly simplistic distribution-shift4

structure. In contrast, we propose a coupled partial differential equation model that5

captures fine-grained changes in the distribution over time by accounting for com-6

plex dynamics that arise due to strategic responses to algorithmic decision-making,7

non-local endogenous population interactions, and other exogenous sources of dis-8

tribution shift. We consider two common settings in machine learning: cooperative9

settings with information asymmetries, and competitive settings where a learner10

faces strategic users. For both of these settings, when the algorithm retrains via11

gradient descent, we prove asymptotic convergence of the retraining procedure to12

a steady-state, both in finite and in infinite dimensions, obtaining explicit rates in13

terms of the model parameters. To do so we derive new results on the convergence14

of coupled PDEs that extends what is known on multi-species systems. Empirically,15

we show that our approach captures well-documented forms of distribution shifts16

like polarization and disparate impacts that simpler models cannot capture.17

1 Introduction18

In many machine learning tasks, there are commonly sources of exogenous and endogenous dis-19

tribution shift, necessitating that the algorithm be retrained repeatedly over time. Some of these20

shifts occur without the influence of an algorithm; for example, individuals influence each other to21

become more or less similar in their attributes, or benign forms of distributional shift occur [Qui+].22

Other shifts, however, are in response to algorithmic decision-making. Indeed, the very use of a23

decision-making algorithm can incentivize individuals to change or mis-report their data to achieve24

desired outcomes— a phenomenon known in economics as Goodhart’s law. Such phenomena have25

been empirically observed, a well-known example being in [CC11], where researchers observed26

a population in Columbia strategically mis-reporting data to game a poverty index score used for27

distributing government assistance. Works such as [Mil+20; Wil+21], which investigate the effects of28

distribution shift over time on a machine learning algorithm, point toward the need for evaluating the29

robustness of algorithms to distribution shifts. Many existing approaches for modeling distribution30

shift focus on simple metrics like optimizing over moments or covariates [DY10; LHL21; BBS09].31

Other methods consider worst-case scenarios, as in distributionally robust optimization [AZ22;32

LFG22; DN21; Kuh+19]. However, when humans respond to algorithms, these techniques may not33

be sufficient to holistically capture the impact an algorithm has on a population. For example, an34

algorithm that takes into account shifts in a distribution’s mean might inadvertently drive polarization,35

rendering a portion of the population disadvantaged.36
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Motivated by the need for a more descriptive model, we present an alternative perspective which37

allows us to fully capture complex dynamics that might drive distribution shifts in real-world systems.38

Our approach is general enough to capture various sources of exogenous and endogenous distribution39

shift including the feedback loop between algorithms and data distributions studied in the literature on40

performative prediction [Per+20; IYZ21; Ray+22; Nar+22; MPZ21], the strategic interactions studied41

in strategic classification [Har+16; Don+18], and also endogenous factors like intra-population42

dynamics and distributional shifts. Indeed, while previous works have studied these phenomena in43

isolation, our method allows us to capture all of them as well as their interactions. For example,44

in [Zrn+21], the authors investigate the effects of dynamics in strategic classification problems—45

but the model they analyze does not capture individual interactions in the population. In [IYZ21],46

the authors model the interaction between a population that repeatedly responds to algorithmic47

decision-making by shifting its mean. Additionally, [Ray+22] study settings in which the population48

has both exogenous and endogenous distribution shifts due to feedback, but much like the other cited49

work, the focus remains on average performance. Each of these works fails to account for diffusion50

or intra-population interactions that can result in important qualitative changes to the distribution.51

Contributions. Our approach to this problem relies on a detailed non-local PDE model of the data52

distribution which captures each of these factors. One term driving the evolution of the distribution53

over time captures the response of the population to the deployed algorithm, another draws on models54

used in the PDE literature for describing non-local effects and consensus in biological systems to55

model intra-population dynamics, and the last captures a background source of distribution shift.56

This is coupled with an ODE, lifted to a PDE, which describes the training of a machine learning57

algorithm results in a coupled PDE system which we analyze to better understand the behaviors that58

can arise among these interactions.59

In one subcase, our model exhibits a joint gradient flow structure, where both PDEs can be written as60

gradients flows with respect to the same joint energy, but considering infinite dimensional gradients61

with respect to the different arguments. This mathematical structure provides powerful tools for62

analysis and has been an emerging area of study with a relatively small body of prior work, none of63

which related to distribution shifts in societal systems, and a general theory for multi-species gradient64

flows is still lacking. We give a brief overview of the models that are known to exhibit this joint65

gradient flow structure: in [DS20] the authors consider a two-species tumor model with coupling66

through Brinkman’s Law. A number of works consider coupling via convolution kernels [Bur+18;67

Giu+22; JPZ22; CHS18; FF13; FF13; DT20] and cross-diffusion [LY22; AB21; MKB14], with68

applications in chemotaxis among other areas. In the models we consider here, the way the interaction69

between the two populations manifests is neither via cross-diffusion, nor via the non-local interaction70

term. It represents a new way of coupling the evolution of two interacting species via gradient flows71

and our results on the long-time asymptotics for these coupled PDEs add to the current state-of-the-art72

in the field. In the other subcase, we prove exponential convergence in two competitive, timescale73

separated settings where the algorithm and strategic population have conflicting objectives. We show74

numerically that retraining in a competitive setting leads to polarization in the population, illustrating75

the importance of fine-grained modeling.76

2 Problem Formulation77

Machine learning algorithms that are deployed into the real world for decision-making often become78

part of complex feedback loops with the data distributions and data sources with which they interact.79

In an effort to model these interactions, consider a machine learning algorithm that has loss given by80

L(z, x) where x ∈ Rd are the algorithm parameters and z ∈ Rd are the population attributes, and the81

goal is to solve82

argmin
x∈X

E
z∼ρ

L(z, x),

where X is the class of model parameters and ρ(z) is the population distribution. Individuals have an83

objective given by J(z, x) in response to a model parameterized by x, and they seek to solve84

argmin
z∈Rd

E
z∼ρ

J(z, x).

When individuals in the population and the algorithm have access to gradients, we model the85

optimization process as a gradient-descent-type process. Realistically, individuals in the population86
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will have nonlocal information and influences, as well as external perturbations, the effects of87

which we seek to capture in addition to just minimization. To address this, we propose a partial88

differential equation (PDE) model for the population, that while modelling the individuals as a89

collective population, also maintains the nonlocal interactions of individuals. The model for this90

strategic population population is given by91

∂tρ = div

(
ρ∇δρ

[
E

z∼ρ
J(z, x) + E(ρ)

])
, (1)

where E(ρ) is a functional with terms for influences and external perturbations. In real-world92

deployment of algorithms, decision makers update their algorithm over time, leading to an interaction93

between the two processes. We also consider the algorithm dynamics over time, which we model as94

ẋ = −∇x

[
E

z∼ρ
L(z, x)

]
. (2)

In this work, we analyze the behavior of the dynamics under the following model. The algorithm95

suffers a cost f1(z, x) for a data point z under model parameters x in the strategic population, and a96

cost f2(z, x) for a data point in a fixed, non-strategic population. The strategic population is denoted97

by ρ ∈ P , and the non-strategic ρ̄ ∈ P , where P is the space of probability measures on the Borel98

sigma algebra. The algorithm aims to minimize99

E
z∼ρ

L(z, x) =

∫
f1(z, x)dρ(z) +

∫
f2(z, x)dρ̄(z) +

β

2
∥x− x0∥2 ,

where the norm is the vector inner product ∥x∥2 = ⟨x, x⟩ and β > 0 weighs the cost of updating the100

model parameters from its initial condition.101

We consider two settings: (i) aligned objectives, and (ii) competing objectives. Case (i) captures the102

setting in which the strategic population minimization improves the performance of the algorithm,103

subject to a cost for deviating from a reference distribution ρ̃ ∈ P . This cost stems from effort104

required to manipulate features, such as a loan applicant adding or closing credit cards. On the105

other hand, Case (ii) captures the setting in which the strategic population minimization worsens the106

performance of the algorithm, again incurring cost from distributional changes.107

2.1 Case (i): Aligned Objectives108

In this setting, we consider the case where the strategic population and the algorithm have aligned109

objectives. This occurs in examples such as recommendation systems, where users and algorithm110

designers both seek to develop accurate recommendations for the users. This corresponds to the111

population cost112

E
z∼ρ,x∼µ

J(z, x) =

∫∫
f1(z, x)dρ(z)dµ(x) + αKL(ρ | ρ̃),

where KL(· | ·) denotes the Kullback-Leibler divergence. Note that the KL divergence introduces113

diffusion to the dynamics for ρ. The weight α > 0 parameterizes the cost of distribution shift to the114

population. To account for nonlocal information and influence among members of the population,115

we include a kernel term E(ρ) = 1
2

∫
ρW ∗ ρdz, where W ∗ ρ is a convolution integral and W is a116

suitable interaction potential.117

2.2 Case (ii): Competing Objectives118

In settings such as online internet forums, where algorithms and users have used manipulative119

strategies for marketing [Del06], the strategic population may be incentivized to modify or mis-report120

their attributes. The algorithm has a competitive objective, in that it aims to maintain performance121

against a population whose dynamics cause the algorithm performance to suffer. When the strategic122

population seeks an outcome contrary to the algorithm, we model strategic population cost as123

E
z∼ρ,x∼µ

J(z, x) = −
∫∫

f1(z, x)dρ(z)dµ(x) + αKL(ρ | ρ̃).

A significant factor in the dynamics for the strategic population is the timescale separation between124

the two "species"—i.e., the population and the algorithm. In our analysis, we will consider two cases:125

one, where the population responds much faster than the algorithm, and two, where the algorithm126

responds much faster than the population. We illustrate the intermediate case in a simulation example.127

3



3 Results128

We are interested in characterizing the long-time asymptotic behavior of the population distribution,129

as it depends on the decision-makers action over time. The structure of the population distribution130

gives us insights about how the decision-makers actions influences the entire population of users.131

For instance, as noted in the preceding sections, different behaviors such as bimodal distributions or132

large tails or variance might emerge, and such effects are not captured in simply looking at average133

performance. To understand this intricate interplay, one would like to characterize the behavior of134

both the population and the algorithm over large times. Our main contribution towards this goal is a135

novel analytical framework as well as analysis of the long-time asymptotics.136

A key observation is that the dynamics in (1) and (2) can be re-formulated as a gradient flow; we lift137

x to a probability distribution µ by representing it as a Dirac delta µ sitting at the point x. As a result,138

the evolution of µ will be governed by a PDE, and combined with the PDE for the population, we139

obtain a system of coupled PDEs,140

∂tρ = div

(
ρ∇zδρ

[
E

z∼ρ,x∼µ
J(z, x) + E(ρ)

])
∂tµ = div

(
µ∇xδµ

[
E

z∼ρ,x∼µ
L(z, x)

])
,

where δρ and δµ are first variations with respect to ρ and µ according to Definition A.2. The natural141

candidates for the asymptotic profiles of this coupled system are its steady states, which - thanks142

to the gradient flow structure - can be characterized as ground states of the corresponding energy143

functionals. In this work, we show existence and uniqueness of minimizers (maximizers) for the144

functionals under suitable conditions on the dynamics. We also provide criteria for convergence and145

explicit convergence rates. We begin with the case where the interests of the population and algorithm146

are aligned, and follow with analogous results in the competitive setting. We show convergence147

energy, which ensures convergence in a product Wasserstein metric. For convergence in energy, we148

use the notion of relative energy and prove that the relative energy converges to zero as time increases.149

150

Definition 1 (Relative Energy). The relative energy of a functional G is given by G(γ|γ∞) =151

G(γ)−G(γ∞), where G(γ∞) is the energy at the steady state.152

Since we consider the joint evolution of two probability distributions, we define a distance metric153

W on the product space of probability measures with bounded second moment. We will establish154

convergence both in energy and in the metric W .155

Definition 2 (Joint Wasserstein Metric). The metric over P2 × P2 is called W and is given by156

W ((ρ, µ), (ρ̃, µ̃))2 = W2(ρ, ρ̃)
2 +W2(µ, µ̃)

2

for all pairs (ρ, µ), (ρ̃, µ̃) ∈ P2(Rd)×P2(Rd), and where W2 denotes the Wasserstein-2 metric (see157

Definition 3). We denote by W(Rd) := (P2(Rd)× P2(Rd),W ) the corresponding metric space.158

3.1 Gradient Flow Structure159

In the case where the objectives of the algorithm and population are aligned, we can write the160

dynamics as a gradient flow by using the same energy functional for both species. Let Ga(ρ, µ) :161

P(Rd)× P(Rd) 7→ [0,∞] be the energy functional given by162

Ga(ρ, µ) =

∫∫
f1(z, x)dρ(z)dµ(x) +

∫∫
f2(z, x)dρ̄(z)dµ(x) + αKL(ρ|ρ̃) + 1

2

∫
ρW ∗ ρ

+
β

2

∫
∥x− x0∥2 dµ(x).

This expression is well-defined as the relative entropy KL(ρ | ρ̃) can be extended to the full set163

P(Rd) by setting Ga(ρ, µ) = +∞ in case ρ is not absolutely continuous with respect to ρ̃.164

In the competitive case we define Gc(ρ, x) : P(Rd)× Rd 7→ [−∞,∞] by165

Gc(ρ, x) =

∫
f1(z, x)dρ(z) +

∫
f2(x, z

′)dρ̄(z′)− αKL(ρ|ρ̃)− 1

2

∫
ρW ∗ ρ+ β

2
∥x− x0∥2 .
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In settings like recommender systems, the population and algorithm have aligned objectives; they166

seek to minimize the same cost but are subject to different dynamic constraints and influences,167

modeled by the regularizer and convolution terms. In the case where the objectives are aligned, the168

dynamics are given by169

∂tρ = div (ρ∇zδρGa[ρ, µ])

∂tµ = div (µ∇xδµGa[ρ, µ]) .
(3)

Note that (3) is a joint gradient flow, because the dynamics can be written in the form ∂tγ =170

div (γ∇δγGa(γ)), where γ = (ρ, µ) and where the gradient and divergence are taken in both171

variables (z, x).172

In other settings, such as credit score reporting, the objectives of the population are competitive with173

the algorithm. Here we consider two scenarios; one, where the algorithm responds quickly relative174

to the population, and two, where the population responds quickly relative to the algorithm. In the175

case where the algorithm can immediately adjust optimally (best-respond) to the distribution, the176

dynamics are given by177

∂tρ = −div
(
ρ (∇zδρGc[ρ, x]) |x=b(ρ)

)
,

b(ρ) := argmin
x̄

Gc(ρ, x̄) .
(4)

Next we can consider the population immediately responding to the algorithm, which has dynamics178

d

dt
x = −∇xGc(ρ, x)|ρ=r(x) ,

r(x) := argmin
ρ̂∈P

−Gc(ρ̂, x) .
(5)

The key results on existence and uniqueness of a ground state as well as the convergence behavior179

of solutions depend on convexity (concavity) of Ga and Gc. The notion of convexity that we will180

employ for energy functionals is (uniform) displacement convexity, which is analogous to (strong)181

convexity in Euclidean spaces. One can think of displacement convexity for an energy functional182

defined on P2 as convexity along the shortest path in the Wasserstein-2 metric (linear interpolation in183

the Wasserstein-2 space) between any two given probability distributions. For a detailed definition184

of (uniform) displacement convexity and concavity, see Section A.2. In fact, suitable convexity185

properties of the input functions f1, f2 and ρ̃ will ensure (uniform) displacement convexity of the186

resulting energy functionals appearing in the gradient flow structure, see for instance [Vil03b, Chapter187

5.2].188

We make the following assumptions in both the competitive case and aligned interest cases. Here,189

Id denotes the d× d identity matrix, Hess (f) denotes the Hessian of f in all variables, while ∇2
xf190

denotes the Hessian of f in the variable x only.191

Assumption 1 (Convexity of f1 and f2). The functions f1, f2 ∈ C2(Rd × Rd; [0,∞)) satisfy for all192

(z, x) ∈ Rd × Rd the following:193

• There exists constants λ1, λ2 ≥ 0 such that Hess (f1) ⪰ λ1 I2d and ∇2
xf2 ⪰ λ2 Id;194

• There exist constants ai > 0 such that x · ∇xfi(z, x) ≥ −ai for i = 1, 2;195

• There exists a constant σ ≥ 0 such that ∥∇x∇zf1(z, x)∥ ≤ σ .196

Assumption 2 (Reference Distribution Shape). The reference distribution ρ̃ ∈ P(Rd) ∩ L1(Rd)197

satisfies log ρ̃ ∈ C2(Rd) and ∇2
z log ρ̃(z) ⪯ −λ̃ Id for some λ̃ > 0.198

Assumption 3 (Convex Interaction Kernel). The interaction kernel W ∈ C2(Rd; [0,∞)) is convex,199

symmetric W (−z) = W (z), and for some D > 0 satisfies200

z · ∇zW (z) ≥ −D, |∇zW (z)| ≤ D(1 + |z|) ∀ z ∈ Rd .

We make the following observations regarding the assumptions above:201

• The convexity in Assumption 3 can be relaxed and without affecting the results outlined202

below by following a more detailed analysis analogous to the approach in [CMV03].203

• If f1 and f2 are strongly convex, the proveable convergence rate increases, but without strict204

or strong convexity of f1 and f2, the regularizers KL(ρ|ρ̃) and
∫
∥x− x0∥22 dx provide the205

convexity guarantees necessary for convergence.206
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For concreteness, one can consider the following classical choices of input functions to the evolution:207

• Using the log-loss function for f1 and f2 satisfies Assumption 1.208

• Taking the reference measure ρ̃ to be the normal distribution satisfies Assumption 2, which209

ensures the distribution is not too flat.210

• Taking quadratic interactions W (z) = 1
2 |z|

2 satisfies Assumption 3.211

Remark 1 (Cauchy-Problem). To complete the arguments on convergence to equilibrium, we require212

sufficient regularity of solutions to the PDEs under consideration. In fact, it is sufficient if we can213

show that equations (3), (4), and (5) can be approximated by equations with smooth solutions. Albeit214

tedious, these are standard techniques in the regularity theory for partial differential equations,215

see for example [CMV03, Proposition 2.1 and Appendix A], [OV00], [Vil03b, Chapter 9], and the216

references therein. Similar arguments as in [DV00] are expected to apply to the coupled gradient217

flows considered here, guaranteeing existence of smooth solutions with fast enough decay at infinity,218

and we leave a detailed proof for future work.219

3.2 Analysis of Case (i): Aligned Objectives220

The primary technical contribution of this setting consists of lifting the algorithm dynamics from an221

ODE to a PDE, which allows us to model the system as a joint gradient flow on the product space of222

probability measures. The coupling occurs in the potential function, rather than as cross-diffusion or223

non-local interaction as previously seen in the literature for multi-species systems.224

Theorem 1. Suppose that Assumptions 1-3 are satisfied and let η := λ1 +min(λ2 + β, αλ̃) > 0.225

Consider solutions γt := (ρt, µt) to the dynamics (3) with initial conditions satisfying γ0 ∈ P2(Rd)×226

P2(Rd) and Ga(γ0) < ∞. Then the following hold:227

(a) There exists a unique minimizer γ∞ of Ga, which is also the unique steady state for equation228

(3).229

(b) The solution γt converges exponentially fast in Ga and W ,230

Ga(γt | γ∞) ≤ e−2ηtGa(γ0 | γ∞) and W (γt, γ∞) ≤ ce−ηt for all t ≥ 0 ,

where c > 0 is a constant only depending on γ0, γ∞ and the parameter η.231

Proof. (Sketch) For existence and uniqueness, we leverage classical techniques in the calculus232

of variations. To obtain convergence to equilibrium in energy, our key result is a new HWI-type233

inequality, providing as a consequence generalizations of the log-Sobolev inequality and the Talagrand234

inequality. Together, these inequalities relate the energy (classically denoted by H in the case of the235

Boltzmann entropy), the metric (classically denoted by W in the case of the Wasserstein-2 metric) and236

the energy dissipation (classically denoted by I in the case of the Fisher information)1. Combining237

these inequalities with Gronwall’s inequality allows us to deduce convergence both in energy and in238

the metric W .239

3.3 Analysis of Case (ii): Competing Objectives240

In this setting, we consider the case where the algorithm and the strategic population have goals in241

opposition to each other; specifically, the population benefits from being classified incorrectly. First,242

we will show that when the algorithm instantly best-responds to the population, then the distribution243

of the population converges exponentially in energy and in W2. Then we will show a similar result244

for the case where the population instantly best-responds to the algorithm.245

In both cases, we begin by proving two Danskin-type results (see [Dan67; Ber71]) which will be used246

for the main convergence theorem, including convexity (concavity) results. To this end, we make the247

following assumption ensuring that the regularizing component in the evolution of ρ is able to control248

the convexity introduced by f1 and f2.249

Assumption 4 (Upper bounds for f1 and f2). There exists a constant Λ1 > 0 such that250

∇2
zf1(z, x) ⪯ Λ1Id for all (z, x) ∈ Rd × Rd .

1Hence the name HWI inequalities.

6



and for any R > 0 there exists a constant c2 ∈ R such that251

sup
x∈BR(0)

∫
f2(z, x)dρ̄(z) < c2 .

Equipped with Assumption 4, we state the result for a best-responding algorithm.252

Theorem 2. Suppose Assumptions 1-4 are satisfied with αλ̃ > Λ1. Let λb := αλ̃ − Λ1. Define253

Gb(ρ) := Gc(ρ, b(ρ)). Consider a solution ρt to the dynamics (4) with initial condition ρ0 ∈ P2(Rd)254

such that Gb(ρ0) < ∞. Then the following hold:255

(a) There exists a unique maximizer ρ∞ of Gb(ρ) which is also the unique steady state of (4).256

(b) The solution ρt converges exponentially fast to ρ∞ with rate λb in Gb(· | ρ∞) and W2,257

Gb(ρt | ρ∞) ≤ e−2λbtGa(ρ0 | ρ∞) and W2(ρt, ρ∞) ≤ ce−λbt for all t ≥ 0 ,

where c > 0 is a constant only depending on ρ0, ρ∞ and the parameter λb.258

Proof. (Sketch) The key addition in this setting as compared with Theorem 1 is proving that Gb(ρ)259

is bounded below, uniformly displacement concave and guaranteeing its smoothness via Berge’s260

Maximum Theorem. This is non-trivial as it uses the properties of the best response b(ρ). A central261

observation for our arguments to work is that δρGb[ρ] = (δρGc[ρ, x]) |x=b(ρ). We can then conclude262

using the direct method in the calculus of variations and the HWI method.263

Here, the condition that αλ̃ must be large enough corresponds to the statement that the system must264

be subjected to a strong enough regularizing effect.265

In the opposite case, where ρ instantly best-responds to the algorithm, we show Danskin-like results266

for derivatives through the best response function and convexity of the resulting energy in x which267

allows to deduce convergence.268

Theorem 3. Suppose Assumptions 1-4 are satisfied. Define Gd(x) := Gc(r(x), x). Then it holds:269

(a) There exists a unique minimizer x∞ of Gd(x).270

(b) The vector x(t) solving the dynamics (5) with initial condition x(0) ∈ Rd converges271

exponentially fast to x∞ with rate λd := λ1+λ2+β > 0 in Gd and in the Euclidean norm:272

∥x(t)− x∞∥ ≤ e−λdt∥x(0)− x∞∥ ,
Gd(x(t))−Gd(x∞) ≤ e−2λdt (Gd(x(0))−Gd(x∞))

for all t ≥ 0.273

These two theorems illustrate that, under sufficient convexity conditions on the cost functions, we274

expect the distribution ρ and the algorithm x to converge to a steady state. In practice, when the275

distributions are close enough to the steady state there is no need to retrain the algorithm.276

While we have proven results for the extreme timescale cases, we anticipate convergence to the same277

equilibrium in the intermediate cases. Indeed, it is well known (especially for systems in Euclidean278

space) that two-timescale stochastic approximation dynamical systems, with appropriate stepsize279

choices, converge asymptotically, and finite-time high probability concentration bounds can also280

be obtained [Bor09]. These results have been leveraged in strategic classification [Zrn+21], and281

Stackelberg games [FCR20; FR21; Fie+21]. We leave this intricate analysis to future work.282

In the following section we show numerical results in the case of a best-responding x, best-responding283

ρ, and in between where x and ρ evolve on a similar timescale. Note that in these settings, the284

dynamics do not have a gradient flow structure due to a sign difference in the energies, requiring285

conditions to ensure that one species does not dominate the other.286

4 Numerical Examples287

We illustrate numerical results for the case of a classifier, which are used in scenarios such as loan288

or government aid applications [CC11], school admissions [PS13], residency match [Ree18], and289

recommendation algorithms [LSW10], all of which have some population which is incentivized290
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to submit data that will result in a desirable classification. For all examples, we select classifiers291

of the form x ∈ R, so that a data point z ∈ R is assigned a label of 1 with probability q(z, x) =292

(1 + exp (−b⊤z + x))−1 where b > 0. Let f1 and f2 be given by293

f1(z, x) = − log(1− q(z, x)) , f2(z, x) = − log q(z, x).

Note that Hess (f1) ⪰ 0 and Hess (f2) ⪰, so λ1 = λ2 = 0. The strictness of the convexity of the294

functional is coming from the regularizers, not the cost functions. We show numerical results for two295

scenarios with additional settings in the appendix. First we illustrate competitive interests under three296

different timescale settings. Then we simulate the classifier taking an even more naïve strategy than297

gradient descent and discuss the results. The PDEs were implemented based on the finite volume298

method from [CCH15].299

4.1 Competitive Objectives300

In the setting with competitive objectives, we utilize Gc(ρ, x) with W = 0, f1 and f2 as defined301

above with b = 3 fixed as it only changes the steepness of the classifier for d = 1, and α = 0.1 and302

β = 0.05. In Figure 1, we simulate two extremes of the timescale setting; first when ρ is nearly303

best-responding and then when x is best-responding. The simulations have the same initial conditions304

and end with the same distribution shape; however, the behavior of the strategic population differs in305

the intermediate stages. When ρ is nearly best-responding, we see that the distribution quickly shifts

Figure 1: When x versus ρ best-responds, we observe the same final state but different intermediate
states. Modes appear in the strategic population which simpler models cannot capture.

306
mass over the classifier threshold. Then the classifier shifts right, correcting for the shift in ρ, which307

then incentivizes ρ to shift more mass back to the original mode. In contrast, when x best-responds,308

the right-hand mode slowly increases in size until the system converges.309

Figure 2 shows simulation results from the setting where ρ and x evolve on the same timescale. We310

observe that the distribution shift in ρ appears to fall between the two extreme timescale cases, which311

we expect. We highlight two important observations for the competitive case. One, a single-mode

Figure 2: In this experiment the population and classifier have similar rates of change, and the
distribution change for ρ exhibits behaviors from both the fast ρ and fast x simulations; the right-hand
mode does not peak as high as the fast ρ case but does exceed its final height and return to the
equilibrium.

312
distribution becomes bimodel, which would not be captured using simplistic metrics such as the313

mean and variance. This split can be seen as polarization in the population, a phenomenon that314
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a mean-based strategic classification model would not capture. Two, the timescale on which the315

classifier updates significantly impacts the intermediate behavior of the distribution. In our example,316

when x updated slowly relative to the strategic population, the shifts in the population were greater317

than in the other two cases. This suggests that understanding the effects of timescale separation are318

important for minimizing volatility of the coupled dynamics.319

4.2 Naïve Behavior320

In this example, we explore the results of the classifier adopting a non-gradient-flow strategy, where321

the classifier chooses an initially-suboptimal value for x and does not move, allowing the strategic322

population to respond. All functions and parameters are the same as in the previous example. When

(a) Both species minimize their respective losses;
when the classifier uses a naïve strategy, the final
performance is better for the classifier and uni-
formly worse for the population.

(b) The classifier selects a suboptimal initial condi-
tion x = 2.2, instead of x = 1.5 which minimizes
the initial loss, and then does not move in response
to the population.

Figure 3: Although the classifier starts with a larger cost by taking the naive strategy, the final loss
is better. This illustrates how our model can be used to compare robustness of different strategies
against a strategic population.

323
comparing with the gradient descent strategy, we observe that while the initial loss for the classifier324

is worse for the naive strategy, the final cost is better. While this results is not surprising, because325

one can view this as a general-sum game where the best response to a fixed decision may be better326

than the equilibrium, it illustrates how our method provides a framework for evaluating how different327

training strategies perform in the long run against a strategic population.328

5 Future Directions, Limitations, and Broader Impact329

Our work presents a method for evaluating the robustness of an algorithm to a strategic population,330

and investigating a variety of robustness using our techniques opens a range of future research331

directions. Additionally, our application suggests many questions relevant to the PDE literature, such332

as: (1) Does convergence still hold with the gradient replaced by an estimated gradient? (2) Can we333

prove convergence in between the two timescale extremes? (3) How do multiple dynamic populations334

respond to an algorithm, or multiple algorithms?335

A challenge in our method is that numerically solving high-dimensional PDEs is computationally336

expensive and possibly unfeasible. Here we note that in many applications, agents in the population337

do not alter more than a few features due to the cost of manipulation. We are encouraged by the338

recent progress using deep learning to solve PDEs, which could be used in our application.339

Broader Impacts Modeling the full population distribution rather than simple metrics of the distri-340

bution is important because not all individuals are affected by the algorithm in the same way. For341

example, if there are tails of the distribution that have poor performance even if on average the model342

is good, we need to know how that group is advantaged or disadvantaged relative to the rest of the343

population. Additionally, understanding how people respond to algorithms offers an opportunity to344

incentivise people to move in a direction that increases social welfare.345
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A General structure and preliminaries604

In this section, we give more details on the models discussed in the main article, and introduce definitions and605

notation that are needed for the subsequent proofs.606

A.1 Structure of the dynamics607

For the case of aligned objectives, the full coupled system of PDEs (3) can be written as608

∂tρ = α∆ρ+ div

(
ρ∇z

(∫
f1dµ− α log ρ̃+W ∗ ρ

))
, (6a)

∂tµ = div

(
µ∇x

(∫
f1dρ+

∫
f2dρ̄+

β

2
∥x− x0∥2

))
. (6b)

In other words, the population ρ in (6a) is subject to an isotropic diffusive force with diffusion coefficient α > 0,609

a drift force driven by the time-varying confining potential
∫
f1dµ(t)− α log ρ̃, and a self-interaction force via610

the interaction potential W . If we consider the measure µ to be given and fixed in time, this corresponds exactly611

to the type of parabolic equation studied in [CMV03]. Here however the dynamics are more complex due to612

the coupling of the confining potential with the dynamics (6b) for µ(t) via the coupling potential f1. Before613

presenting the analysis of this model, let us give a bit more intuition on the meaning and the structure of these614

dynamics.615

In the setting where µ represents a binary classifier, we can think of the distribution ρ̄ as all those individuals616

carrying the true label 1, say, and the distribution ρ(t) as all those individuals carrying a true label 0, say. The617

term
∫
f1(z, x)µ(t, dx) represents a penalty for incorrectly classifying an individual at z with true label 0618

when using the classifier µ(t, x). In other words,
∫
f1(z, x)µ(t,dx) ∈ [0,∞) is increasingly large the more619

z digresses from the correct classification 0. Similarly,
∫
f1(z, x)ρ(t,dz) ∈ [0,∞) is increasingly large if620

the population ρ shifts mass to locations in z where the classification is incorrect. The terminology aligned621

objectives refers to the fact that in (6) both the population and the classifier are trying to evolve in a way as to622

maximize correct classification. Analogously, the term
∫
f2(z, x)ρ̄(dz) is large if x would incorrectly classify623

the population ρ̄ that carries the label 1. A natural extension of the model (6) would be a setting where also the624

population carrying labels 1 evolves over time, which is simulated in Section E.2. Most elements of the new625

framework presented here would likely carry over the setting of three coupled PDEs: one for the evolution of626

ρ(t), one for the evolution of ρ̄(t) and one for the classifier µ(t).627

The term
α∆ρ− αdiv (ρ∇ log ρ̃) = αdiv (ρ∇δρKL(ρ | ρ̃))

forces the evolution of ρ(t) to approach ρ̃. In other words, it penalizes (in energy) deviations from a given628

reference measure ρ̃. In the context of the application at hand, we take ρ̃ to be the initial distribution ρ(t = 0).629

The solution ρ(t) then evolves away from ρ̃ over time due to the other forces that are present. Therefore, the630

term KL(ρ | ρ̃) in the energy both provides smoothing of the flow and a penalization for deviations away from631

the reference measure ρ̃.632

The self-interaction termW ∗ρ introduces non-locality into the dynamics, as the decision for any given individual
to move in a certain direction is influenced by the behavior of all other individuals in the population. The choice
of W is application dependent. Very often, the interaction between two individuals only depends on the distance
between them. This suggests a choice of W as a radial function, i.e. W (z) = ω(|z|). A choice of ω : R → R
such that ω′(r) > 0 corresponds to an attractive force between individuals, whereas ω′(r) < 0 corresponds to a
repulsive force. The statement |z|ω′(|z|) = z · ∇zW (z) ≥ −D in Assumption 3 therefore corresponds to a
requirement that the self-interaction force is not too repulsive. Neglecting all other forces in (6a), we obtain the
non-local interaction equation

∂tρ = div (ρ∇W ∗ ρ)
which appears in many instances in mathematical biology, mathematical physics, and material science, and it633

is an equation that has been extensively studied over the past few decades, see for example [Car+11; BCY12;634

CCH14; BCL09; BLL12; CMV06; CFG23] and references therein. Using the results from these works, our635

assumptions on the interaction potential W can be relaxed in many ways, for example by allowing discontinuous636

derivatives at zero for W , or by allowing W to be negative.637

The dynamics (6b) for the algorithm µ is a non-autonomous transport equation,
∂tµ = div (µv) ,

where the time-dependence in the velocity field

v(t, x) := ∇x

(∫
f1(z, x)dρ(t, z) +

∫
f2(z, x)dρ̃(z) +

β

2
∥x− x0∥2

)
,

comes through the evolving population ρ(t). This structures allows to obtain an explicit solution for µ(t) in638

terms of the initial condition µ0 and the solution ρ(t) to (6a) using the methods of characteristics.639
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Proposition 4. Assume that f1 and f2 are Lipschitz in x uniformly in z. Then the unique distributional solution640

µ(t) to (6b) is given by641

µ(t) = Φ(t, 0, ·)#µ0 , (7)
where Φ(t, s, x) solves the characteristic equation642

∂sΦ(s, t, x) + v(s,Φ(s, t, x)) = 0 , Φ(t, t, x) = x . (8)

Proof. Thanks to Assumption 1, we have that v ∈ C1(R× Rd;Rd). Moreover, we claim that the velocity field643

v satisfies644

∥v(t, x)∥ ≤ c(1 + ∥x∥) for all t ≥ 0, x ∈ Rd (9)
for some constant c > 0 independent of t and x. By classical Cauchy-Lipschitz theory for ODEs, this guarantees645

the existence of a unique global solution Φ(t, s, x) solving (8). Then it can be checked directly that µ(t) as646

defined in (7) is a distributional solution to (6b).647

It remains to prove the bound (9). Thanks to the Lipschitz assumption together with Assumption 1, we have that648

∥∇xf1(z, x) +∇xf2(z, x)∥ ≤ c for all z, x ∈ Rd for some constant c > 0. Therefore, we have649 ∥∥∥∥∫ ∇xf1(z, x)dρ(z) +

∫
∇xf2(z, x)dρ̄(z) + β(x− x0)

∥∥∥∥ ≤ c′(1 + ∥x∥)

for another constant c′ > 0.650

Remark 2. The Lipschitz assumption on f1 and f2 can be relaxed as long as we can still guarantee that (9)651

holds.652

In the characteristic equation (8), Φ(s, t, x) is a parametrization of all trajectories: if a particle was at location653

x at time t, then it is at location Φ(s, t, x) at time s. Our assumptions on f1, f2 and ρ̄ also ensure that654

Φ(s, t, ·) : Rd → Rd is a C1-diffeomorphism for all s, t ∈ R. For more details on transport equations, see for655

example [Per15, Chapter 8.4].656

Remark 3. Consider the special case where µ0 = δx0 for some initial position x0 ∈ Rd. Then by Proposition 4,657

the solution to (6b) is given by µ(t) = δx(t), where x(t) := Φ(t, 0, x0) solves the ODE658

ẋ(t) = −v(t, x(t)) , x(0) = x0 ,

which is precisely of type (2).659

For the case of competing objectives, the two models we consider can be written as660

∂tρ = −div (ρ (∇(f1(z, b(ρ))− α log(ρ/ρ̃)− ρW ∗ ρ)) ,

b(ρ) := argmin
x̄

∫
f1(z, x̄)dρ(z) +

∫
f2(x̄, z

′)dρ̄(z′) +
β

2
∥x̄− x0∥2

for (4), and661

d

dt
x = −∇x

(∫
f1(z, x) r(x)(dz) +

∫
f2(x, z

′)dρ̄(z′) +
β

2
∥x− x0∥2

)
,

r(x) := argmax
ρ̂∈P

∫
f1(z, x)dρ̂(z)− αKL(ρ̂|ρ̃)− 1

2

∫
ρ̂W ∗ ρ̂ .

for (5).662

A.2 Definitions and notation663

Here, and in what follows, Id denotes the d× d identity matrix, and id denotes the identity map. The energy
functionals we are considering are usually defined on the set of probability measures on Rd, denoted by P(Rd).
If we consider the subset P2(Rd) of probability measures with bounded second moment,

P2(Rd) := {ρ ∈ P(Rd) :

∫
Rd

∥z∥2dρ(z) <∞} ,

then we can endow this space with the Wasserstein-2 metric.664

Definition 3 (Wasserstein Metric). The Wasserstein metric between two probability measures µ, ν ∈ P2(Rd) is665

given by666

W2(µ, ν)
2 = inf

γ∈Γ(µ,ν)

∫ ∥∥z − z′
∥∥2

2
dγ(z, z′)

where Γ is the set of all joint probability distributions with marginals µ and ν, i.e. µ(dz) =
∫
γ(dz, z′)dz′ and667

ν(dz′) =
∫
γ(z, dz′)dz.668
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The restriction to P2(Rd) ensures that the W2 is always finite. Then the space (P2(Rd),W2) is indeed a metric669

space. We will make use of the fact that W2 metrizes narrow convergence of probability measures. To make this670

statement precise, let us introduce two common notions of convergence for probability measures, which are a671

subset of the finite signed Radon measures M(Rd).672

Definition 4. Consider a sequence (µn) ∈ M(Rd) and a limit µ ∈ M(Rd).673

• (Narrow topology) The sequence (µn) converges narrowly to µ, denoted by µn ⇀ µ, if for all
continuous bounded functions f : Rd → R,∫

Rd

f(z)dµn(z) →
∫
Rd

f(z)dµ(z) .

• (Weak-∗ topology) The sequence (µn) converges weakly-∗ to µ, denoted by µn
∗
⇀ µ, if for all

continuous functions vanishing at infinity (i.e. f : Rd → R such that for all ϵ > 0 there exists a
compact set K ⊂ Rd such that |f(z)| < ϵ on Rd \K), we have∫

Rd

f(z)dµn(z) →
∫
Rd

f(z)dµ(z) .

Let us denote the set of continuous functions on Rd vanishing at infinity by C0(Rd), and the set of continuous674

bounded functions by Cb(Rd). Note that narrow convergence immediately implies that µn(Rd) → µ(Rd) as675

the constant function is in Cb(Rd). This is not necessarily true for weak-∗ convergence. We will later make use676

of the Banach-Alaoglu theorem [Ala40], which gives weak-∗ compactness of the unit ball in a dual space. Note677

that M(Rd) is indeed the dual of C0(Rd), and P(Rd) is the unit ball in M(Rd) using the dual norm. Moreover,678

if we can ensure that mass does not escape to infinity, the two notions of convergence in Definition 4 are in fact679

equivalent.680

Lemma 5. Consider a sequence (µn) ∈ M(Rd) and a measure µ ∈ M(Rd). Then µn ⇀ µ if and only if681

µn
∗
⇀ µ and µn(Rd) → µ(Rd).682

This follows directly from Definition 4. Here, the condition µn(Rd) → µ(Rd) is equivalent to tightness of (µn),683

and follows from Markov’s inequality [Gho02] if we can establish uniform bounds on the second moments, i.e.684

we want to show that there exists a constant C > 0 independent of n such that685 ∫
∥x∥2dµn(x) < C ∀n ∈ N . (10)

686

Definition 5 (Tightness of probability measures). A collection of measures (µn) ∈ M(Rd) is tight if for all687

ϵ > 0 there exists a compact set Kϵ ⊂ Rd such that |µn|(Rd \Kϵ) < ϵ for all n ∈ N, where |µ| denotes the688

total variation of µ.689

Another classical result is that the Wasserstein-2 metric metrizes narrow convergence of probability measures,690

see for example [San15a, Theorem 5.11] or [Vil03a, Theorem 7.12].691

Lemma 6. Let µn, µ ∈ P2(Rd). Then W2(µn, µ) → 0 if and only if692

µn
∗
⇀ µ and

∫
Rd

∥z∥2dµn(z) →
∫
Rd

∥z∥2dµ(z) .

Next, we consider two measures µ, ν ∈ P(Rd) that are atomless, i.e µ({z}) = 0 for all z ∈ Rd. By Brenier’s693

theorem [BB00] (also see [Vil03a, Theorem 2.32]) there exists a unique measurable map T : Rd → Rd such694

that T#µ = ν, and T = ∇ψ for some convex function ψ : Rd → R. Here, the push-forward operator ∇ψ# is695

defined as696 ∫
Rd

f(z)d∇ψ#ρ0(z) =

∫
Rd

f(∇ψ(z))dρ0(z)

for all Borel-measurable functions f : Rd 7→ R+. If ρ1 = ∇ψ#ρ0, we denote by ρt = [(1− t) id+t∇ψ]#ρ0697

the discplacement interpolant between ρ0 and ρ1. We are now ready to introduce the notion of displacement698

convexity, which is the same as geodesic convexity in the geodesic space (P2(Rd),W2). We will state the699

definition here for atomless measures, but it can be relaxed to any measures in P2 using optimal transport plans700

instead of transport maps.701

Definition 6 (Displacement Convexity). A functional G : P 7→ R is displacement convex if for all ρ0, ρ1 that702

are atomless we have703

G(ρt) ≤ (1− t)G(ρ0) + tG(ρ1) ,
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where ρt = [(1− t) id+t∇ψ]#ρ0 is the displacement interpolant between ρ0 and ρ1. Further, G : P 7→ R is704

uniformly displacement convex with constant η > 0 if705

G(ρt) ≤ (1− t)G(ρ0) + tG(ρ1)− t(1− t)
η

2
W2(ρ0, ρ1)

2 ,

where ρt = [(1− t) id+t∇ψ]#ρ0 is the displacement interpolant between ρ0 and ρ1.706

Remark 4. In other words, G is displacement convex (concave) if the function G(ρt) is convex (concave) with707

ρt = [(1 − t) id+t∇ψ]#ρ0 being the displacement interpolant between ρ0 and ρ1. Contrast this with the708

classical notion of convexity (concavity) for G, where we require that the function G((1− t)ρ0 + tρ1) is convex709

(concave).710

In fact, if the energy G is twice differentiable along geodesics, then the condition d2

ds2
G(γs) ≥ 0 along711

any geodesic (ρs)s∈[0,1] between ρ0 and ρ1 is sufficient to obtain displacement convexity. Similarly, when712

d2

ds2
G(ρs) ≥ ηW2(ρ0, ρ1)

2, then G is uniformly displacement convex with constant η > 0. For more details,713

see [McC97] and [Vil03a, Chapter 5.2].714

Finally, we introduce a notion of derivative in infinite dimensions. This expression appears when computing the715

gradient of an energy in the Wasserstein-2 topology.716

Definition 7 (First Variation). For a map G : P(Rd) 7→ R and fixed probability distribution ρ ∈ P(Rd), the717

first variation of G at the point ρ is denoted by δρG[ρ] : Rd → R, and is defined via the relation718 ∫
δρG[ρ](z)ψ(z)dz = lim

ϵ→0

1

ϵ
(G(ρ+ ϵψ)−G(ρ))

for all ψ such that
∫
dψ = 0, assuming that G is regular enough for all quantities to exist.719

Using the first variation, we can express the gradient in Wasserstein-2 space, see for example [Vil03a, Exercise720

8.8].721

Lemma 7. The gradient of an energy G : P2(Rd) → R in the Wasserstein-2 space is given by

∇W1G(ρ) = −div (ρ∇δρG[ρ]) .

As a consequence, the infinite dimensional steepest descent in Wasserstein-2 space can be expressed as the PDE722

∂tρ = −∇W1G(ρ) = div (ρ∇δρG[ρ]) . (11)

All the coupled gradient flows considered in this work have this Wasserstein-2 structure.723

A.3 Steady states724

The main goal in our theoretical analysis is to characterize the asymptotic behavior for the models (3), (4) and725

(5) as time goes to infinity. The steady states of these equations are the natural candidates to be asymptotic726

profiles for the corresponding equations. Thanks to the gradient flow structure, we expect to be able to make a727

connection between ground states of the energy functionals, and the steady state of the corresponding gradient728

flow dynamics. More precisely, any minimizer or maximizer is in particular a critical point of the energy, and729

therefore satisfies that the first variation is constant on disconnected components of the support. If this ground730

state also has enough regularity (weak differentiability) to be a solution to the equation, it immediately follows731

that it is in fact a steady state.732

To make this connection precise, we first introduce what exactly we mean by a steady state.733

Definition 8 (Steady states for (3)). Given ρ∞ ∈ L1
+(Rd) ∩ L∞

loc(Rd) with ∥ρ∞∥1 = 1 and µ∞ ∈ P2(Rd),734

then (ρ∞, µ∞) is a steady state for the system (3) if ρ∞ ∈W 1,2
loc (R

d), ∇W ∗ρ∞ ∈ L1
loc(Rd), ρ∞ is absolutely735

continuous with respect to ρ̃, and (ρ∞, µ∞) satisfy736

∇z

(∫
f1(z, x)dµ∞(x) + α log

(
ρ∞(z)

ρ̃(z)

)
+W ∗ ρ∞(z)

)
= 0 ∀z ∈ supp (ρ∞) , (12a)

∇x

(∫
f1(z, x)dρ∞(z) +

∫
f2(z, x)dρ̃(z) +

β

2
∥x− x0∥2

)
= 0 ∀x ∈ supp (µ∞) (12b)

in the sense of distributions.737

Definition 9 (Steady states for (4)). Let ρ∞ ∈ L1
+(Rd) ∩ L∞

loc(Rd) with ∥ρ∞∥1 = 1. Then ρ∞ is a steady738

state for the system (4) if ρ∞ ∈W 1,2
loc (R

d), ∇W ∗ ρ∞ ∈ L1
loc(Rd), ρ∞ is absolutely continuous with respect739

to ρ̃, and ρ∞ satisfies740

∇z

(
f1(z, b(ρ∞))− α log

(
ρ∞(z)

ρ̃(z)

)
−W ∗ ρ∞(z)

)
= 0 ∀z ∈ Rd , (13)

in the sense of distributions, where b(ρ∞) := argminxGc(ρ∞, x).741
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Definition 10 (Steady states for (5)). The vector x∞ ∈ Rd is a steady state for the system (5) if it satisfies742

∇xGd(x∞) = 0 .

In fact, with the above notions of steady state, we can obtain improved regularity for ρ∞.743

Lemma 8. Assume ρ̃ ∈ C1(Rd). Then the steady states ρ∞ for (3) and (4) are continuous.744

Proof. We present here the argument for equation (4) only. The result for (3) follows in exactly the same way745

by replacing f1(z, b(ρ∞)) with −
∫
f1(z, x)dµ∞(x).746

Thanks to our assumptions, we have f1(·, b(ρ∞)) + α log ρ̃(·) ∈ C1, which implies that ∇(f1(·, b(ρ∞)) +747

α log ρ̃(·)) ∈ L∞
loc. By the definition of a steady state, ρ∞ ∈ L1 ∩ L∞

loc and thanks to Assumption 3 we have748

W ∈ C2, which implies that ∇W ∗ ρ∞ ∈ L∞
loc. Let749

h(z) := ρ∞(z)∇ [f1(z, b(ρ∞)) + α log ρ̃(z)− (W ∗ ρ∞)(z)] .

Then by the aforementioned regularity, we obtain h ∈ L1
loc ∩L∞

loc. By interpolation, it follows that h ∈ Lp
loc for750

all 1 < p <∞. This implies that div (ρ∞h) ∈W−1,p
loc . Since ρ∞ is a weak W 1,2

loc -solution of (13), we have751

∆ρ∞ = div (ρ∞h) ,

and so by classic elliptic regularity theory we conclude ρ∞ ∈W 1,p
loc . Finally, applying Morrey’s inequality, we752

have ρ∞ ∈ C0,k where k = p−d
p

for any d < p <∞. Therefore ρ∞ ∈ C(Rd) (after possibly being redefined753

on a set of measure zero).754

B Proof of Theorem 1755

For ease of notation, we write Ga : P(Rd)× P(Rd) 7→ [0,∞] as756

Ga((ρ, µ)) = αKL(ρ|ρ̃) + V(ρ, µ) +W(ρ) ,

where we define757

V(ρ, µ) =
∫∫

f1(z, x)dρ(z)dµ(x) +

∫
V (x)dµ(x) ,

W(ρ) =
1

2

∫∫
W (z1 − z2)dρ(z1)dρ(z2) ,

with potential given by V (x) :=
∫
f2(z, x)dρ̄(z) +

β
2
∥x− x0∥2.758

In order to prove the existence of a unique ground state forGa, a natural approach is to consider the corresponding759

Euler-Lagrange equations760

α log
ρ(z)

ρ̃(z)
+

∫
f1(z, x)dµ(x) + (W ∗ ρ)(z) = c1[ρ, µ] for all z ∈ supp (ρ) , (14a)∫

f1(z, x)dρ(z) + V (x) = c2[ρ, µ] for all x ∈ supp (µ) , (14b)

where c1, c2 are constants that may differ on different connected components of supp (ρ) and supp (µ). These761

equations are not easy to solve explicitly, and we are therefore using general non-constructive techniques from762

calculus of variations. We first show continuity and convexity properties for the functional Ga (Lemma 9 and763

Proposition 10), essential properties that will allow us to deduce existence and uniqueness of ground states764

using the direct method in the calculus of variations (Proposition 11). Using the Euler-Lagrange equation 14,765

we then prove properties on the support of the ground state (Corollary 12). To obtain convergence results,766

we apply the HWI method: we first show a general ’interpolation’ inequality between the energy, the energy767

dissipation and the metric (Proposition 13); this fundamental inequality will then imply a generalized logarithmic768

Sobolev inequality (Corollary 14) relating the energy to the energy dissipation, and a generalized Talagrand769

inequality (Corollary 15 that allows to translate convergence in energy into convergence in metric. Putting all770

these ingrediends together will then allow us to conclude for the statements in Theorem 1.771

Lemma 9. The functional Ga : P × P → R is lower semi-continuous with respect to the weak-∗ topology.772

Proof. We split the energy Ga into three parts: (i) KL(ρ|ρ̃), (ii) the interaction energy W , and (iii) the potential773

energy V . For (i), lower semi-continuity has been shown in [Pos75]. For (ii), we can directly apply [San15b,774

Proposition 7.2] using Assumption 3. For (iii), note that V and f1 are lower semi-continuous and bounded below775

thanks to Assumption 1, and so the result follows from [San15b, Proposition 7.1].776
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Proposition 10 (Uniform displacement convexity). Let α > 0 and β > 0. Fix γ0, γ1 ∈ P2 × P2 and let777

Assumptions 1,2 and 3 hold. Along any geodesic (γs)s∈[0,1] ∈ P2 × P2 connecting γ0 to γ1, we have for all778

s ∈ [0, 1]779

d2

ds2
Ga(γs) ≥ ηW (γ0, γ1)

2 , η := λ1 +min(λ2 + β, αλ̃) . (15)

As a result, the functional Ga : P × P → R is uniformly displacement convex with constant η > 0.780

Proof. Let γ0 and γ1 be two probability measures with bounded second moments. Denote by ϕ, ψ : Rd → R781

the optimal Kantorovich potentials pushing ρ0 onto ρ1, and µ0 onto µ1, respectively:782

ρ1 = ∇ϕ#ρ0 such that W2(ρ0, ρ1)
2 =

∫
Rd

∥z −∇ϕ(z)∥2dρ0(z) ,

µ1 = ∇ψ#µ0 such that W2(µ0, µ1)
2 =

∫
Rd

∥x−∇ψ(x)∥2dµ0(x) .

The now classical results in [BB00] guarantee that there always exists convex functions ϕ, ψ that satisfy the783

conditions above. Then the path (γs)s∈[0,1] = (ρs, µs)s∈[0,1] defined by784

ρs = [(1− s) id+s∇zϕ]#ρ0 ,

µs = [(1− s) id+s∇xψ]#µ0

is a W -geodesic from γ0 to γ1.785

The first derivative of V along geodesics in the Wasserstein metric is given by786

d

ds
V(γs) =

d

ds

[∫∫
f1((1− s)z + s∇ϕ(z), (1− s)x+ s∇ψ(x)) dρ0(z)dµ0(x)

+

∫
V ((1− s)x+ s∇ψ(x)) dµ0(x)

]
=

∫∫
∇xf1((1− s)z + s∇ϕ(z), (1− s)x+ s∇ψ(x)) · (∇ψ(x)− x) dρ0(z)dµ0(x)∫∫
∇zf1((1− s)z + s∇ϕ(z), (1− s)x+ s∇ψ(x)) · (∇ϕ(z)− z) dρ0(z)dµ0(x)

+

∫
∇xV ((1− s)x+ s∇ψ(x)) · (∇ψ(x)− x) dµ0(x) ,

and taking another derivative we have787

d2

ds2
V(γs) =−

∫∫ [
(∇ψ(x)− x)
(∇ϕ(z)− z)

]T

·Ds(z, x) ·
[
(∇ψ(x)− x)
(∇ϕ(z)− z)

]
dρ0(z)dµ0(x)

+

∫∫
(∇ψ(x)− x)T · ∇2

xV ((1− s)x+ s∇ψ(x)) · (∇ψ(x)− x) dρ0(z)dµ0(x)

≥ λ1W (γ0, γ1)
2 + (λ2 + β)W2(µ0, µ1)

2 ,

where we denoted Ds(z, x) := Hess(f1)((1 − s)z + s∇ϕ(z), (1 − s)x + s∇ψ(x)), and the last inequality788

follows from Assumption 1 and the optimality of the potentials ϕ and ψ.789

Following [CMV03; Vil03b] and using Assumption 2, the second derivatives of the diffusion term and the790

interaction term along geodesics are given by791

d2

ds2
KL(ρs|ρ̃) ≥ αλ̃W2(ρ0, ρ1)

2 ,
d2

ds2
W(ρs) ≥ 0. (16)

Putting the above estimates together, we obtain (15).792

793

Remark 5. Alternatively, one could assume strong convexity of W , which would improve the lower-bound on794

the second derivative along geodesics.795

Proposition 11. (Ground state) Let Assumptions 1-3 hold for α, β > 0. Then the functional Ga : P(Rd) ×796

P(Rd) → [0,∞] admits a unique minimizer γ∗ = (ρ∗, µ∗), and it satisfies ρ∗ ∈ P2(Rd) ∩ L1(Rd), µ∗ ∈797

P2(Rd), and ρ∗ is absolutely continuous with respect to ρ̃.798
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Proof. We show existence of a minimizer of Ga using the direct method in the calculus of variations. Denote by799

γ = (ρ, µ) ∈ P×P ⊂ M×M a pair of probability measures as a point in the product space of Radon measures.800

Since Ga ≥ 0 on P × P (see Assumption 1) and not identically +∞ everywhere, there exists a minimizing801

sequence (γn) ∈ P × P . Note that (γn) is in the closed unit ball of the dual space of continuous functions802

vanishing at infinity (C0(Rd) × C0(Rd))∗ endowed with the dual norm ∥γn∥∗ = sup
|
∫
fdρn+

∫
gdµn|

∥(f,g)∥∞
over803

f, g ∈ C0(Rd) with ∥(f, g)∥∞ := ∥f∥∞ + ∥g∥∞ ̸= 0. By the Banach-Alaoglu theorem [Rud91, Thm 3.15]804

there exists a limit γ∗ = (ρ∗, µ∗) ∈ M×M = (C0 × C0)
∗ and a convergent subsequence (not relabelled)805

such that γn
∗
⇀ γ∗. In fact, ρ∗ is absolutely continuous with respect to ρ̃ implying ρ∗ ∈ L1(Rd) thanks to806

Assumption 2. Further, µ∗ has bounded second moment, else we would have infγ∈P×P Ga(γ) = ∞ which807

yields a contradiction. It remains to show that
∫
dρ∗ =

∫
dµ∗ = 1 to conclude that γ∗ ∈ P × P . To this808

aim, it is sufficient to show tightness of (ρn) and (µn), preventing the escape of mass to infinity as we have809 ∫
dρn =

∫
dµn = 1 for all n ≥ 1. Tightness follows from Markov’s inequality [Gho02] if we can establish810

uniform bounds on the second moments, i.e. we want to show that there exists a constant C > 0 independent of811

n such that812 ∫
∥z∥2dρn(z) +

∫
∥x∥2dµn(x) < C ∀n ∈ N . (17)

To establish (17), observe that thanks to Assumption 2, there exists a constant c0 ∈ R (possibly negative) such813

that − log ρ̃(z) ≥ c0 +
λ̃
4
∥z∥2 for all z ∈ Rd. Then814

αλ̃

4

∫
∥z∥2dρn ≤ −αc0 − α

∫
log ρ̃(z)dρn

Therefore, using
∫
dρn =

∫
dµn = 1 and writing ζ := min{αλ̃

4
, β
2
} > 0, we obtain the desired uniform upper815

bound on the second moments of the minimizing sequence,816

ζ

∫∫ (
∥z∥2 + ∥x∥2

)
dρndµn ≤ −αc0 − α

∫
log ρ̃(z)dρn + β

∫
∥x− x0∥2dµn + β∥x0∥2

≤ −αc0 + β∥x0∥2 +Ga(γn)

≤ −αc0 + β∥x0∥2 +Ga(γ1) <∞ .

This concludes the proof that the limit γ∗ satisfies indeed γ∗ ∈ P×P , and indeed ρ∗ ∈ P2(Rd) as well. Finally,817

γ∗ is indeed a minimizer of Ga thanks to weak-* lower-semicontinuity of Ga following Lemma 9.818

Next we show uniqueness using a contradiction argument. Suppose γ∗ = (ρ∗, µ∗) and γ′
∗ = (ρ′∗, µ

′
∗) are819

minimizers of Ga. For t ∈ [0, 1], define γt := ((1− t) id+tT, (1− t) id+tS)#γ∗, where T, S : Rd 7→ Rd
820

are the optimal transport maps such that ρ′∗ = T#ρ∗ and µ′
∗ = S#µ∗. By Proposition 10 the energy Ga is821

uniformly displacement convex, and so we have822

Ga(γt) ≤ (1− t)Ga(γ∗) + tGa(γ
′
∗) = Ga(γ∗).

If γ∗ ̸= γ′
∗ and t ∈ (0, 1), then strict inequality holds by applying similar arguments as in [McC97, Proposition823

1.2]. However, if γ∗ ̸= γ′
∗, the strict inequality Ga(γt) < Ga(γ∗) is a contradiction to the minimality of γ∗.824

Hence, the minimizer is unique.825

Remark 6. If λ1 > 0, then the strict convexity of f1 can be used to deduce uniqueness, and the assumptions on826

− log ρ̃ can be weakened from strict convexity to convexity.827

Corollary 12. Any minimizer γ∗ = (ρ∗, µ∗) of Ga is a steady state for equation (3) according to Definition 8828

and satisfies supp (ρ∗) = supp (ρ̃).829

Proof. By Proposition 11, we have ρ∗ ∈ L1
+, ∥ρ∗∥1 = 1, µ∗ ∈ P2 and that ρ∗ is absolutely continuous with830

respect to ρ̃. Since W ∈ C2(Rd), it follows that ∇W ∗ ρ∗ ∈ L1
loc. In order to show that γ∗ is a steady state for831

equation (3), it remains to prove that ρ∗ ∈W 1,2
loc ∩ L∞

loc. As γ∗ is a minimizer, it is in particular a critical point,832

and therefore satisfies equations (14). Rearranging, we obtain (for a possible different constant c1[ρ∗, µ∗] ̸= 0)833

from (14a) that834

ρ∗(z) = c1[ρ∗, µ∗]ρ̃(z) exp

[
− 1

α

(∫
f1(z, x)µ∗(x) +W ∗ ρ∗(z)

)]
on supp (ρ∗) . (18)

Then for any compact set K ⊂ Rd,835

sup
z∈K

ρ∗(z) ≤ c1[ρ∗, µ∗] sup
z∈K

ρ̃(z) sup
z∈K

exp

(
− 1

α

(∫
f1(z, x)µ∗(x)

))
sup
z∈K

exp

(
− 1

α
W ∗ ρ∗

)
.

As f1 ≥ 0 by Assumption 1 and W ≥ 0 by Assumption 3, the last two terms are finite. The first supremum836

is finite thanks to continuity of ρ̃. Therefore ρ∗ ∈ L∞
loc. To show that ρ∗ ∈ W 1,2

loc , note that for any compact837
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set K ⊂ Rd, we have
∫
K
|ρ∗(z)|2dz < ∞ as a consequence of ρ∗ ∈ L∞

loc. Moreover, defining T [γ](z) :=838

− 1
α

(∫
f1(z, x)µ(x) +W ∗ ρ(z)

)
≤ 0, we have839 ∫

K

|∇ρ∗|2dz = c1[ρ∗, µ∗]
2

∫
K

|∇ρ̃+ ρ̃∇T [γ∗]|2 exp(2T [γ∗])dz

≤ 2c1[ρ∗, µ∗]
2

∫
K

|∇ρ̃|2 exp(2T [γ∗])dz + 2c1[ρ∗, µ∗]
2

∫
K

|∇T [γ∗]|2ρ̃2 exp(2T [γ∗])dz ,

which is bounded noting that exp(2T [γ∗]) ≤ 1 and that T [γ∗](·), ∇T [γ∗](·) and ∇ρ̃ are in L∞
loc, where we used840

that f1, (·, x),W (·), ρ̃(·) ∈ C1(Rd) by Assumptions 1-3. We conclude that ρ∗ ∈ W 1,2
loc , and indeed (ρ∗, µ∗)841

solves (12) in the sense of distributions as a consequence of (14).842

Next, we show that supp (ρ∗) = supp (ρ̃) using again the relation (18). Firstly, note that
supp (ρ∗) ⊂ supp (ρ̃) since ρ∗ is absolutely continuous with respect to ρ̃. Secondly, we claim
that exp

[
− 1

α

(∫
f1(z, x)µ∗(x) +W ∗ ρ∗(z)

)]
> 0 for all z ∈ Rd. In other words, we claim that∫

f1(z, x)µ∗(x) < ∞ and W ∗ ρ∗(z) < ∞ for all z ∈ Rd. Indeed, for the first term, fix any z ∈ Rd

and choose R > 0 large enough such that z ∈ BR(0). Then, thanks to continuity of f1 according to Assump-
tion 1, we have ∫

f1(z, x)µ∗(x) ≤ sup
z∈BR(0)

∫
f1(z, x)µ∗(x) <∞ .

For the second term, note that by Assumption 3, we have for any z ∈ Rd and ϵ > 0,843

W (z) ≤W (0) +∇W (z) · z ≤W (0) +
1

2ϵ
∥∇W (z)∥2 + ϵ

2
∥z∥2

≤W (0) +
D2

2ϵ
(1 + ∥z∥)2 + ϵ

2
∥z∥2 ≤W (0) +

D2

ϵ
+

(
D2

ϵ
+
ϵ

2

)
∥z∥2

=W (0) +
D√
2
+

√
2D∥z∥2 ,

where the last equality follows by choosing the optimal ϵ =
√
2D. We conclude that844

W ∗ ρ∗(z) ≤W (0) +
D√
2
+

√
2D

∫
∥z − z̃∥2 ρ∗(z̃)

≤W (0) +
D√
2
+ 2

√
2D∥z∥2 + 2

√
2D

∫
∥z̃∥2 ρ∗(z̃) , (19)

which is finite for any fixed z ∈ Rd thanks to the fact that ρ∗ ∈ P2(Rd). Hence, supp (ρ∗) = supp (ρ̃).845

Remark 7. If we have in addition that ρ̃ ∈ L∞(Rd), then the minimizer ρ∗ of Ga is in L∞(Rd) as well. This846

follows directly by bounding the right-hand side of (18).847

The following inequality is referred to as HWI inequality and represents the key result to obtain convergence to848

equilibrium.849

Proposition 13 (HWI inequality). Define the dissipation functional850

Da(γ) :=

∫∫
|δγGa(z, x)|2dγ(z, x) .

Assume α, β > 0 and let η as defined in (15). Let γ0, γ1 ∈ P2 × P2 such that Ga(γ0), Ga(γ1), Da(γ0) <∞.851

Then852

Ga(γ0)−Ga(γ1) ≤W (γ0, γ1)
√
Da(γ0)−

η

2
W (γ0, γ1)

2 (20)

Proof. For simplicity, consider γ0, γ1 that have smooth Lebesgue densities of compact support. The general853

case can be recovered using approximation arguments. Let (γs)s∈[0,1] denote a W -geodesic between γ0, γ1.854

Following similar arguments as in [CMV03] and [OV00, Section 5] and making use of the calculations in the855

proof of Proposition 10, we have856

d

ds
Ga(γs)

∣∣∣∣
s=0

≥
∫∫ [

ξ1(z)
ξ2(x)

]
·
[
(∇ϕ(z)− z)
(∇ψ(x)− x)

]
dγ0(z, x) ,

where857

ξ1[γ0](z) := α∇z log

(
ρ0(z)

ρ̃(z)

)
+

∫
∇zf1(z, x)dµ0(x) +

∫
∇zW (z − z′)dρ0(z

′) ,

ξ2[γ0](x) :=

∫
∇xf1(z, x)dρ0(z) +∇xV (x) .
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Note that the dissipation functional can then be written as

Da(γ0) =

∫∫ (
|ξ1(z)|2 + |ξ2(x)|2

)
dγ0(z, x) .

Using the double integral Cauchy-Schwarz inequality [Ste04], we obtain858

d

ds
Ga(γs)

∣∣∣∣
s=0

≥ −

√∫∫ ∥∥∥∥[ξ1ξ2
]∥∥∥∥2

2

dγ0

√∫∫ ∥∥∥∥[∇ϕ(z)− z
∇ψ(x)− x

]∥∥∥∥2

2

dγ0


= −

√
Da(γ0)

√∫
∥∇ϕ(z)− z∥2dρ0 +

∫
∥∇ψ(x)− x∥2dµ0

= −
√
Da(γ0)W (γ0, γ1) .

Next, we compute a Taylor expansion of Ga(γs) when considered as a function in s and use the bound on859
d2

ds2
Ga from (15):860

Ga(γ1) = Ga(γ0) +
d

ds
Ga(γs)

∣∣∣∣
s=0

+

∫ 1

0

(1− t)

(
d2

ds2
Ga(γs)

)∣∣∣∣
s=t

dt

≥ Ga(γ0)−
√
Da(γ0)W (γ0, γ1) +

η

2
W (γ0, γ1)

2 .

861

Remark 8. The HWI inequality in Proposition 13 immediately implies uniqueness of minimizers for Ga in the862

set {γ ∈ P × P : Da(γ) < +∞}. Indeed, if γ0 is such that Da(γ0) = 0, then for any other γ1 in the above863

set we have Ga(γ0) ≤ Ga(γ1) with equality if and only if W (γ0, γ1) = 0.864

Corollary 14 (Generalized Log-Sobolev inequality). Denote by γ∗ the unique minimizer of Ga. With η as865

defined in (15), any product measure γ ∈ P2 × P2 such that G(γ), Da(γ) <∞ satisfies866

Da(γ) ≥ 2η Ga(γ|γ∗) . (21)

Proof. This statement follows immediately from Proposition 13. Indeed, let γ1 = γ∗ and γ0 = γ in (20). Then867

Ga(γ | γ∗) ≤W (γ, γ∗)
√
Da(γ)−

η

2
W (γ, γ∗)

2

≤ max
t≥0

(√
Da(γ)t−

η

2
t2
)
=
Da(γ)

2η
.

868

Corollary 15 (Talagrand inequality). Denote by γ∗ the unique minimizer of Ga. With η as defined in (15), it
holds

W (γ, γ∗)
2 ≤ 2

η
Ga(γ | γ∗)

for any γ ∈ P2 × P2 such that Ga(γ) <∞.869

Proof. This is also a direct consequence of Proposition 13 by setting γ0 = γ∗ and γ1 = γ. Then Ga(γ∗) <∞870

and Da(γ∗) = 0, and the result follows.871

Proof of Theorem 1. The entropy term
∫
ρ log ρ produces diffusion in ρ for the corresponding PDE in (3). As a872

consequence, solutions ρt to (3) and minimizers ρ∗ for Ga have to be L1 functions. As there is no diffusion for873

the evolution of µt, solutions may have a singular part. In fact, for initial condition µ0 = δx0 , the corresponding874

solution will be of the form µt = δx(t), where x(t) solves the ODE (2) with initial condition x0. This follows875

from the fact that the evolution for µt is a transport equation (also see Section A.1 for more details). Results (a)876

and (b) are the statements in Proposition 11, Corollary 12 and Corollary 15. To obtain (c), we differentiate the877

energy Ga along solutions γt to the equation (3):878

d

dt
Ga(γt) =

∫
δρGa[γt](z)∂tρtdz +

∫
δµGa[γt](x)∂tµtdx

= −
∫

∥∇zδρGa[γt](z)∥2 dρt(z)−
∫

∥∇xδµGa[γt](x)∥2 dµt(x)

= −Da(γt) ≤ −2ηGa(γt | γ∗) ,
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where the last bound follows from Corollary 14. Applying Gronwall’s inequality, we immediately obtain decay879

in energy,880

Ga(γt | γ∗) ≤ e−2ηtGa(γ0 | γ∗) .
Finally, applying Talagrand’s inequality (Corollary 15), the decay in energy implies decay in the product881

Wasserstein metric,882

W (γt, γ∗) ≤ ce−ηt

where c > 0 is a constant only depending on γ0, γ∗ and the parameter η.883

C Proof of Theorem 2884

In the case of competing objectives, we rewrite the energy Gc(ρ, x) : P(Rd)× Rd 7→ [−∞,∞] as follows:885

Gc(ρ, x) =

∫
f1(z, x)dρ(z) +

∫
f2(z, x)dρ̄(z) +

β

2
∥x− x0∥2 − P (ρ) ,

where886

P (ρ) := αKL(ρ|ρ̃) + 1

2

∫
ρW ∗ ρ .

Note that for any fixed ρ ∈ P , the energy Gc(ρ, ·) is strictly convex in x, and therefore has a unique minimizer.
Define the best response by

b(ρ) := argmin
x̄

Gc(ρ, x̄)

and denote Gb(ρ) := Gc(ρ, b(ρ)). We begin with an auxiliary result computing the first variations of the887

different terms in Gb(ρ) using Definition A.2.888

Lemma 16 (First variation of Gb). The first variation of Gb is given by889

δρGb[ρ](z) = h1(z) + h2(z) + βh3(z)− δρP [ρ](z) ,

where890

h1(z) :=
δ

δρ

(∫
f1(z̃, b(ρ))dρ(z̃)

)
(z) =

〈∫
∇xf1(z̃, b(ρ))dρ(z̃),

δb

δρ
[ρ](z)

〉
+ f1(z, b(ρ)) ,

h2(z) :=
δ

δρ

(∫
f2(z̃, b(ρ))dρ̄(z̃)

)
(z) =

〈∫
∇xf2(z̃, b(ρ))dρ̄(z̃),

δb

δρ
[ρ](z)

〉
,

h3(z) :=
1

2

δ

δρ
∥b(ρ)− x0∥2 =

〈
b(ρ)− x0,

δb

δρ
[ρ](z)

〉
,

and891

δρP [ρ](z) = α log(ρ(z)/ρ̃(z)) + (W ∗ ρ)(z) .

Proof. We begin with general expressions for Taylor expansions of b : P(Rd) → Rd and fi(z, b(·)) : P(Rd) →892

R for i = 1, 2 around ρ. Let ψ ∈ T with T = {ψ :
∫
ψ(z)dz = 0}. Then893

b(ρ+ ϵψ) = b(ρ) + ϵ

∫
δb

δρ
[ρ](z′)ψ(z′)dz′ +O(ϵ2) (22)

and894

fi(z, b(ρ+ ϵψ)) = fi(z, b(ρ)) + ϵ

〈
∇xfi(z, b(ρ)),

∫
δb

δρ
[ρ](z′)ψ(z′)dz′

〉
+O(ϵ2) . (23)

We compute explicitly each of the first variations:895

(i) Using (23), we have896 ∫
ψ(z)h1(z)dz = lim

ϵ→0

1

ϵ

[ ∫
f1(z, b(ρ+ ϵψ))(ρ(z) + ϵψ(z))dz −

∫
f1(z, b(ρ))ρ(z)dz

]
=

〈∫
∇xf1(z, b(ρ))dρ(z),

∫
δb(ρ)

δρ
[ρ](z′)ψ(z′)dz′

〉
+

∫
f1(z, b(ρ))ψ(z)dz

=

∫ 〈∫
∇xf1(z, b(ρ))dρ(z),

δb(ρ)

δρ
[ρ](z′)

〉
ψ(z′)dz′ +

∫
f1(z, b(ρ))ψ(z)dz

⇒ h1(z) =

〈∫
∇xf1(z̃, b(ρ))dρ(z̃),

δb

δρ
[ρ](z)

〉
+ f1(z, b(ρ)) .
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(ii) Similarly, using again (23),897 ∫
ψ(z)h2(z)dz = lim

ϵ→0

1

ϵ

[ ∫
f2(z, b(ρ+ ϵψ))dρ̄(z)−

∫
f2(z, b(ρ))ρ̄(z)dz

]
=

∫ 〈∫
∇xf2(z̃, b(ρ))dρ̄(z̃),

δb

δρ
[ρ](z)

〉
ψ(z)dz

⇒ h2(z) =

〈∫
∇xf2(z̃, b(ρ))dρ̄(z̃),

δb

δρ
[ρ](z)

〉
.

(iii) Finally, from (22) it follows that898 ∫
ψ(z)h3(z)dz = lim

ϵ→0

1

2ϵ

[
⟨b(ρ+ ϵψ)− x0, b(ρ+ ϵψ)− x0⟩ − ⟨b(ρ)− x0, b(ρ)− x0⟩

]
=

∫ 〈
b(ρ)− x0,

δb

δρ
[ρ](z)

〉
ψ(z)dz

⇒ h3(z) =

〈
b(ρ)− x0,

δb

δρ
[ρ](z)

〉
.

Finally, the expression for δρP [ρ] follows by direct computation899

Lemma 17. Denote Gb(ρ) := Gc(ρ, b(ρ)) with b(ρ) given by (4). Then δρGb[ρ] = δρGc[ρ]|x=b(ρ).900

Proof. We start by computing δρGc(·, x)[ρ](z) for any z, x ∈ Rd:901

δρGc(·, x)[ρ](z) = f1(z, x)− δρP [ρ](z). (24)

Next, we compute δρGb. Using Lemma 16, the first variation of Gb is given by902

δρGb[ρ](z) = h1(z) + h2(z) + βh3(z)− δρP [ρ](z)

= −
〈[∫

∇xf1(z̃, b(ρ))dρ(z̃) +

∫
∇xf2(z̃, b(ρ))dρ̄(z̃) + β(b(ρ)− x0)

]
, δρb[ρ](z)

〉
+ f1(z, b(ρ))− δρP [ρ](z) .

Note that903

∇xGc(ρ, x) =

∫
∇xf1(z̃, x)dρ(z̃) +

∫
∇xf2(z̃, x)dρ̄(z̃) + β(x− x0) , (25)

and by the definition of the best response b(ρ), we have ∇xGx(ρ, x)|x=b(ρ) = 0. Substituting into the expression904

for δρGb and using (24), we obtain905

δρGb[ρ](z) = f1(z, b(ρ))− δρP [ρ](z) = δρGc(·, x)[ρ](z)
∣∣∣∣
x=b(ρ)

.

This concludes the proof.906

Lemma 18 (Uniform boundedness of the best response). Let Assumption 1 hold. Then for any ρ ∈ P(Rd), we907

have908

∥b(ρ)∥2 ≤ ∥x0∥2 +
2(a1 + a2)

β
.

Proof. ∫
∇xf1(z, b(ρ))dρt +

∫
∇xf2(z, b(ρ))dρ̄(z) + β(b(ρ)− x0) = 0 .

To show that that b(ρ) is uniformly bounded, we take the inner product of the above expression with b(ρ) itself909

β∥b(ρ)∥2 = βx0 · b(ρ)−
∫

∇xf1(z, b(ρ)) · b(ρ)dρ(z)−
∫

∇xf2(z, b(ρ)) · b(ρ)dρ̄(z) .

Using Assumption 1 to bound the two integrals, together with using Young’s inequality to bound the first term910

on the right-hand side, we obtain911

β∥b(ρ)∥2 ≤ β

2
∥x0∥2 +

β

2
∥b(ρ)∥+ a1 + a2 ,

which concludes the proof after rearranging terms.912
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Lemma 19 (Upper semi-continuity). The functionalsGc : P(Rd)×Rd → [−∞,+∞] is upper semi-continuous913

when P(R2)× Rd is endowed with the product topology of the weak-∗ topology and the Euclidean topology,914

and Gb : P(Rd) → [−∞,+∞] is upper semi-continuous with respect to the weak-∗ topology.915

Proof. The functional Gc : P(Rd) × Rd → [−∞,+∞] is continuous in the second variable thanks to916

Assumption 1. Similarly,
∫
f1(z, x)dρ(z) +

∫
f2(z, x)dρ̄(z) is continuous in ρ thanks to [San15b, Proposition917

7.1] using the continuity of f1 and f2. Further, −P is upper semi-continuous using [Pos75] and [San15b,918

Proposition 7.2] thanks to Assumptions 2 and 3. This concludes the continuity properties for Gc.919

The upper semi-continuity of Gb then follows from a direct application of a version of Berge’s maximum920

theorem [AB06, Lemma 16.30]. Let R := ∥x0∥2 + 2(a1+a2)
β

> 0. We define φ : (P(Rd),W2) ↠ Rd
921

as the correspondence that maps any ρ ∈ P(Rd) to the closed ball BR(0) ⊂ Rd. Then the graph of φ is922

Grφ = P(Rd)×{BR(0)}. With this definition of φ, the range of φ is compact and φ is continuous with respect923

to weak-∗ convergence, and so it is in particular upper hemicontinuous. Thanks to Lemma 18, the best response924

function b(ρ) is always contained in BR(0) for any choice of ρ ∈ P(Rd). As a result, maximizing −Gc(ρ, x)925

in x over Rd for a fixed ρ ∈ P(Rd) reduces to maximizing it over BR(0). Using the notation introduced above,926

we can restrict Gc to Gc : Grφ→ R and write927

Gb(ρ) := max
x̂∈φ(ρ)

−Gc(ρ, x̂).

BecauseGc(ρ, x) is upper semi-continuous when P(R2)×Rd is endowed with the product topology of the weak-928

∗ topology and the Euclidean topology, [AB06, Lemma 16.30] guarantees that Gb(·) is upper semi-continuous929

in the weak-∗ topology.930

Lemma 20 (First variation of the best response). The first variation of the best response of the classifier at ρ is931

δρb[ρ](z) = −Q(ρ)−1∇xf1(z, b(ρ))

where Q(ρ) ⪰ (β + λ1 + λ2) Id is a symmetric matrix, constant in z and x, defined as

Q(ρ) := β Id +

∫
∇2

xf1(z, b(ρ))dρ(z) +

∫
∇2

xf2(z, b(ρ))dρ̄(z) .

Proof. We compute δρb[ρ](z) by using that any minimizer of Gc(ρ, x) for fixed ρ must satisfy932

∇xGc(ρ, b(ρ)) = 0 .

Taking the first variation on the left-hand side (assuming it exists), we obtain933

δρ∇xGc[ρ, b(ρ)] + δρb[ρ](z)∇2
xGc(ρ, b(ρ)) = 0 .

Next, we explicitly compute all terms involved and show that ∇2
xGc(ρ, b(ρ)) is invertible. Computing the934

derivatives yields935

∇xGc(ρ, x) =

∫
∇xf1(z, x)dρ(z) +

∫
∇xf2(z, x)dρ̄(z) + β(x− x0)

δρ∇xGc[ρ, x](z) = ∇xf1(z, x)

∇2
xGc(ρ, x) =

∫
∇2

xf1(z, x)dρ(z) +

∫
∇2

xf2(z, x)dρ̄(z) + β Id .

Note that ∇2
xGc is invertible by Assumption 1, which states that f1 and f2 have positive-definite Hessians.936

Inverting this term and evaluating at x = b(ρ) gives the first variation:937

δρb[ρ](z) = −
[
β Id +

∫
∇2

xf1(z, b(ρ))dρ(z) +

∫
∇2

xf2(z, b(ρ))dρ̄(z)

]−1

∇xf1(z, b(ρ)).

The lower bound on Q(ρ) also follows thanks to Assumption 1.938

Proposition 21. Let α, β > 0 and assume Assumptions 1-4 hold with the parameters satisfying αλ̃ > Λ1. Fix939

ρ0, ρ1 ∈ P(Rd). Along any geodesic (ρs)s∈[0,1] ∈ P2(Rd) connecting ρ0 to ρ1, we have for all s ∈ [0, 1]940

d2

ds2
Gb(ρs) ≤ −λbW1(ρ0, ρ1)

2 , λb := αλ̃− Λ1, . (26)

As a result, the functional Gb : P2(Rd) → [−∞,+∞] is uniformly displacement concave with constant λb > 0.941
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Proof. Consider any ρ0, ρ1 ∈ P2(Rd). Then any W2-geodesic (ρs)s∈[0,1] connecting ρ0 with ρ1 solves the942

following system of geodesic equations:943 {
∂sρs + div (ρsvs) = 0 ,

∂s(ρsvs) + div (ρsvs ⊗ vs) = 0 ,
(27)

where ρs : Rd → R and vs : Rd 7→ Rd . The first derivative of Gb along geodesics can be computed explicitly944

as945

d

ds
Gb(ρs) =

∫
∇zf1(z, b(ρs)) · vs(z)ρs(z)dz −

d

ds
P (ρs)

+

〈[∫
∇xf1(z, x)dρs(z) +

∫
∇xf2(z, x)dρ̄(z) + β(x− x0)

]∣∣∣∣
x=b(ρs)

,
d

ds
b(ρs)

〉
.

The left-hand side of the inner product is zero by definition of the best response b(ρs) to ρs, see (25). Therefore946

d

ds
Gb(ρs) =

∫
∇zf1(z, b(ρs)) · vs(z)ρs(z)dz −

d

ds
P (ρs) .

Differentiating a second time, using (27) and integration by parts, we obtain947

d2

ds2
Gb(ρs) = L1(ρs) + L2(ρs)−

d2

ds2
P (ρs) ,

where948

L1(ρs) :=

∫
∇2

zf1(z, b(ρs)) · (vs ⊗ vs) ρsdz =

∫ 〈
vs, ∇2

zf1(z, b(ρs)) · vs
〉
ρsdz ,

L2(ρs) :=

∫
d

ds
b(ρs) · ∇x∇zf1(z, b(ρs)) · vs(z) ρs(z)dz .

From (16), we have that
d2

ds2
P̃ (ρs) ≥ αλ̃W2(ρ0, ρ1)

2 ,

and thanks to Assumption 4949

we have950

L1(s) ≤ Λ1W2(ρ0, ρ1)
2.

This leaves L2 to bound; we first consider the term d
ds
b(ρs):951

d

ds
b(ρs) =

∫
δρb[ρs](z̃)∂sρs(dz̃) = −

∫
δρb[ρs](z̃)div (ρsvs) dz̃

=

∫
∇zδρb[ρs](z̃) · vs(z̃)dρs(z̃).

Defining u(ρs) ∈ Rd by952

u(ρs) :=

∫
∇x∇zf1(z, b(ρs)) · vs(z)dρs(z) ,

using the results from Lemma 20 for ∇zδρb[ρs], Assumption 1 and the fact that Q(ρ) is constant in z and x, we953

have954

L2(ρs) = −
∫∫ [

Q(ρs)
−1∇x∇zf1(z̃, b(ρs)) · vs(z̃)

]
· ∇x∇zf1(z, b(ρs)) · vs(z) dρs(z)dρs(z̃)

= −
〈
u(ρs), Q(ρs)

−1u(ρs)
〉
≤ 0

Combining all terms together, we have that955

d2

ds2
Gb(ρs) ≤ −

(
αλ̃− Λ1

)
W2(ρ0, ρ1)

2 .

956

Remark 9. Under some additional assumptions on the functions f1 and f2, we can obtain an improved957

convergence rate. In particular, assume that for all z, x ∈ Rd,958

• there exists a constant Λ2 ≥ λ2 ≥ 0 such that ∇2
xf2(z, x) ⪯ Λ2 Id;959
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• there exists a constant σ ≥ 0 such that ∥∇x∇zf1(z, x)∥ ≥ σ.960

Then we have −Q(ρs)
−1 ⪯ −1/(β + Λ1 + Λ2) Id. Using Lemma 20, we then obtain a stronger bound on L2961

as follows:962

L2(ρs) ≤ − 1

β + Λ1 + Λ2
∥u(ρs)∥2 ≤ − 1

β + Λ1 + Λ2

∫
∥∇x∇zf1(z, b(ρs))∥2 dρs(z)

∫
∥vs(z)∥2 dρs(z)

≤ − σ2

β + Λ1 + Λ2
W2(ρ0, ρ1)

2.

This means we can improve the convergence rate in (26) to λb := αλ̃+ σ2

β+Λ1+Λ2
− Λ1.963

Proposition 22 (Ground state). Let Assumptions 1-4 hold for αλ̃ > Λ1 ≥ 0 and β > 0. Then there exists964

a unique maximizer ρ∗ for the functional Gb over P(Rd), and it satisfies ρ∗ ∈ P2(Rd) ∩ L1(Rd) and ρ∗ is965

absolutely continuous with respect to ρ̃.966

Proof. Uniqueness of the maximizer (if it exists) is guaranteed by the uniform concavity provided by Lemma 21.967

To show existence of a maximizer, we use the direct method in the calculus of variations, requiring the968

following key properties for Gb: (1) boundedness from above, (2) upper semi-continuity, and (3) tightness969

of any minimizing sequence. To show (1), note that ∇2
z(f1(z, x) + α log ρ̃(z)) ⪯ −(αλ̃ − Λ1) Id for all970

z, x ∈ Rd × Rd by Assumptions 2 and 4, and so971

f1(z, x) + α log ρ̃(z) ≤ c0(x)−
(αλ̃− Λ1)

4
|z|2 ∀(z, x) ∈ Rd × Rd (28)

with c0(x) := f1(0, x) + α log ρ̃(0) + 1

αλ̃−Λ1
∥∇z [f1(0, x) + α log ρ̃(0)] ∥2. Therefore,972

Gb(ρ) =

∫
[f1(z, b(ρ)) + α log ρ̃(z)] dρ(z) +

∫
f2(z, b(ρ))dρ̄(z) +

β

2
∥b(ρ)− x0∥2

− α

∫
ρ log ρ−

∫
ρW ∗ ρ

≤ c0(b(ρ)) +

∫
f2(z, b(ρ))dρ̄(z) +

β

2
∥b(ρ)− x0∥2 .

To estimate each of the remaining terms on the right-hand side, denote R := ∥x0∥2 + 2(a1+a2)
β

and recall that973

∥b(ρ)∥ ≤ R for any ρ ∈ P(Rd) thanks to Lemma 18. By continuity of f1 and log ρ̃, there exists a constant974

c1 ∈ R such that975

sup
x∈BR(0)

c0(x) = sup
x∈BR(0)

[
f1(0, x) + α log ρ̃(0) +

1

αλ̃− Λ1

|∇z [f1(0, x) + α log ρ̃(0)] |2
]
≤ c1 . (29)

The second term is controlled by c2 thanks to Assumption 4. And the third term can be bounded directly to976

obtain977

Gb(ρ) ≤ c1 + c2 + β(R2 + ∥x0∥2) .
This concludes the proof of (1). Statement (2) was shown in Lemma 19. Then we obtain a minimizing sequence978

(ρn) ∈ P(Rd) which is in the closed unit ball ofC0(Rd)∗ and so the Banach-Anaoglu theorem [Rud91, Theorem979

3.15] there exists a limit ρ∗ in the Radon measures and a subsequence (not relabeled) such that ρn
∗
⇀ ρ∗. In fact,980

ρ∗ is absolutely continuous with respect to ρ̃ as otherwise Gb(ρ∗) = −∞, which contradicts that Gb(·) > −∞981

somewhere. We conclude that ρ∗ ∈ L1(Rd) since ρ̃ ∈ L1(Rd) by Assumption 2. To ensure ρ∗ ∈ P(Rd),982

we require (3) tightness of the minimizing sequence (ρn). By Markov’s inequality [Gho02] it is sufficient to983

establish a uniform bound on the second moments:984 ∫
∥z∥2dρn(z) < C ∀n ∈ N . (30)

To see this we proceed in a similar way as in the proof of Proposition 10. Defining985

K(ρ) := −
∫

[f1(z, b(ρ)) + α log ρ̃(z)] dρ(z) + α

∫
ρ log ρ dz +

1

2

∫
ρW ∗ ρ dz ,

we have K(ρ) = −Gb(ρ) +
∫
f2(z, b(ρ))dρ̄(z) +

β
2
∥b(ρ)− x0∥2. Then using again the bound on b(ρ) from986

Lemma 18,987

K(ρ) ≤ −Gb(ρ) + sup
x∈BR(0)

∫
f2(z, x)dρ̄(z) + β

(
R2 + ∥x0∥2

)
≤ −Gb(ρ) + c2 + β

(
R2 + ∥x0∥2

)
,
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where the last inequality is thanks to Assumption 4. Hence, using the estimates (28) and (29) from above, and988

noting that the sequence (ρn) is minimizing (−Gb), we have989

(αλ̃− Λ1)

4

∫
∥z∥2 dρn(z) ≤ c0(b(ρn))−

∫
[f1(z, b(ρn)) + α log ρ̃(z)] dρn(z)

≤ c1 +K(ρn) ≤ c1 −Gb(ρn) + c2 + β
(
R2 + ∥x0∥2

)
≤ c1 −Gb(ρ1) + c2 + β

(
R2 + ∥x0∥2

)
<∞ .

which uniformly bounds the second moments of (ρn). This concludes the proof for the estimate (30) and also990

ensures that ρ∗ ∈ P2(Rd).991

Corollary 23. Any maximizer ρ∗ of Gb is a steady state for equation (4) according to Definition 9, and satisfies992

supp (ρ∗) = supp (ρ̃).993

Proof. To show that ρ∗ is a steady state we can follow exactly the same argument as in the proof of Corollary 12,994

just replacing − 1
α

∫
f1(z, x)µ∗(x) with + 1

α

∫
f1(z, b(ρ∗). It remains to show that supp (ρ∗) = supp (ρ̃). As995

ρ∗ is a maximizer, it is in particular a critical point, and therefore satisfies that δρGb[ρ∗](z) is constant on all996

connected components of supp (ρ∗). Thanks to Lemma 17, this means there exists a constant c[ρ∗] (which may997

be different on different components of supp (ρ∗)) such that998

f1(z, b(ρ∗))− α log

(
ρ∗(z)

ρ̃(z)

)
−W ∗ ρ∗(z) = c[ρ∗] on supp (ρ∗) .

Rearranging, we obtain (for a possible different constant c[ρ∗] ̸= 0)999

ρ∗(z) = c[ρ∗]ρ̃(z) exp

[
1

α
(f1(z, b(ρ∗))−W ∗ ρ∗(z))

]
on supp (ρ∗) . (31)

Firstly, note that supp (ρ∗) ⊂ supp (ρ̃) since ρ∗ is absolutely continuous with respect to ρ̃. Secondly, note1000

that exp 1
α
f1(z, b(ρ∗)) ≥ 1 for all z ∈ Rd since f1 ≥ 0. Finally, we claim that exp

(
− 1

α
W ∗ ρ∗(z)

)
> 0 for1001

all z ∈ Rd. In other words, we claim that W ∗ ρ∗(z) < ∞ for all z ∈ Rd. This follows by exactly the same1002

argument as in Corollary 12, see equation (19). We conclude that supp (ρ∗) = supp (ρ̃).1003

Remark 10. If we have in addition that ρ̃ ∈ L∞(Rd) and f1(·, x) ∈ L∞(Rd) for all x ∈ Rd, then the1004

maximizer ρ∗ of Gb is in L∞(Rd) as well. This follows directly by bounding the right-hand side of (31).1005

With the above preliminary results, we can now show the HWI inequality, which implies again a Talagrand-type1006

inequality and a generalized logarithmic Sobolev inequality.1007

Proposition 24 (HWI inequalities). Define the dissipation functional1008

Db(γ) :=

∫∫
|δρGb[ρ](z)|2dρ(z) .

Assume α, β > 0 such that αλ̃ > Λ1 + σ2, and let λb as defined in (26). Denote by ρ∗ the unique maximizer of1009

Gb.1010

(HWI) Let ρ0, ρ1 ∈ P2(Rd) such that Gb(ρ0), Gb(ρ1), Db(ρ0) <∞. Then1011

Gb(ρ0)−Gb(ρ1) ≤W (ρ0, ρ1)
√
Db(ρ0)−

λb

2
W2(ρ0, ρ1)

2 (32)

(logSob) Any ρ ∈ P2(Rd) such that G(ρ), Db(ρ) <∞ satisfies1012

Db(ρ) ≥ 2λbGa(ρ|ρ∗) . (33)

(Talagrand) For any ρ ∈ P2(Rd) such that Gb(ρ) <∞, we have1013

W2(ρ, ρ∗)
2 ≤ 2

λb
Gb(ρ | ρ∗) . (34)

Proof. The proof for this result follows analogously to the arguments presented in the proofs of Proposition 13,1014

Corollary 14 and Corollary 15, using the preliminary results established in Proposition 21 and Proposition 22.1015

Proof of Theorem 2. Following the same approach as in the proof of Theorem 1, the results in Theorem 21016

immediately follow by combining Proposition 22, Corollary 23 and Proposition 24 applied to solutions of the1017

PDE (4).1018
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D Proof of Theorem 31019

The proof for this theorem uses similar strategies as that of Theorem 2, but is simpler due to the evolution
reducing to an ODE rather than a PDE. Recall that for any x ∈ Rd the best response r(x)(·) ∈ P(Rd) in (5) is
defined as

r(x) := argmin
ρ̂∈P

−Gc(ρ̂, x) .

1020

Lemma 25. Let Assumptions 3 and 4 hold. Then for each x ∈ Rd there exists a unique maximizer ρ∗ := r(x)1021

solving argmaxρ̂∈P2
Gc(ρ̂, x).1022

Proof. Equivalently, consider the minimization problem for F (ρ) = −
∫
f1(z, x) dρ(z) + αKL(ρ | ρ̃) +1023

1
2

∫
ρW ∗ ρ with some fixed x. Note that we can rewrite F (ρ) as1024

F (ρ) =

∫
ρ log ρ dz +

∫
V (z)dρ(z) +

1

2

∫
ρW ∗ ρ

where V (z) := −(f1(z, x) + α log ρ̃(z)) is convex by Assumption 4. Together with Assumption 3, we can1025

directly apply the uniqueness and existence result from [CMV03, Theorem 2.1 (i)].1026

The best response function r(x) is supported on the whole of Rd thanks to the diffusion term
∫
ρ log ρ in Gc,1027

and there exists a function c : Rd 7→ R such that r(x)(z) solves the Euler-Lagrange equation1028

δρGc[ρ, x](z) := α log ρ(x)−(f1(z, x)+α log ρ̃(z))+(W ∗ρ)(z) = c(x) for all (z, x) ∈ Rd×Rd . (35)

Lemma 26. Let r(x) as defined in (5). If r ∈ C1(Rd;P(Rd)), then we have ∇xGd(x) =1029

(∇xGc(ρ, x))|ρ=r(x).1030

Proof. We start by computing ∇xGd(x). We have1031

∇xGd(x) = ∇x (Gc(r(x), x)) =

∫
δρ[Gc(ρ, x)]|ρ=r(x)(z)∇xr(x)(z)dz + (∇xGc(ρ, x))|ρ=r(x)

= c(x)∇x

∫
r(x)(z)dz + (∇xGc(ρ, x))|ρ=r(x) = (∇xGc(ρ, x))|ρ=r(x) ,

where we used that r(x) solves the Euler-Lagrange equation (35) and that r(x) ∈ P(Rd) for any x ∈ Rd so1032

that
∫
r(x)(z)dz is independent of x.1033

Remark 11. By showing suitable bounds on the second derivative of Gd(x), the regularity assumption on r(x)1034

can be removed following the approach in [Liu+21].1035

Lemma 27. Let Assumption 1 hold. Then Gd : Rd → R ∪ {+∞} is strongly convex with constant λd :=1036

λ1 + λ2 + β > 0.1037

Proof. The energy Gc(ρ, x) is strongly convex in x due to our assumptions on f1, f2, and the regularizing term1038

∥x− x0∥22. This means that for any ρ ∈ P ,1039

Gc(ρ, x) ≥ Gc(ρ, x
′) +∇xGc(ρ, x

′)⊤(x− x′) +
λd

2

∥∥x− x′
∥∥2

2
.

Selecting ρ = r(x′), we have1040

Gc(r(x
′), x) ≥ Gc(r(x

′), x′) +∇xGc(r(x
′), x′)⊤(x− x′) +

λd

2

∥∥x− x′
∥∥2

2
.

Since Gc(r(x
′), x) ≤ Gc(r(x), x) by definition of r(x), we obtain the required convexity condition:1041

Gd(x) = Gc(r(x), x) ≥ Gc(r(x
′), x′) +∇xGc(r(x

′), x′)⊤(x− x′) +
λd

2

∥∥x− x′
∥∥2

2
.

1042

Proof of Theorem 3. For any reference measure ρ0 ∈ P , we have1043

Gd(x) ≥ Gc(ρ0, x) ≥ −αKL(ρ0 | ρ̃)−
1

2

∫
ρ0W ∗ ρ0 +

β

2
∥x− x0∥2
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and therefore,Gd is coercive. Together with the strong convexity provided by Lemma 27, we obtain the existence1044

of a unique minimizer x∞ ∈ Rd. Convergence in norm now immediately follows also using Lemma 27: for1045

solutions x(t) to (5), we have1046

1

2

d

dt
∥x(t)− x∞∥2 = − (Gd(x(t))−Gd(x∞)) · (x(t)− x∞) ≤ −λd∥x(t)− x∞∥2 .

A similar result holds for convergence in entropy using the Polyák-Łojasiewicz convexity inequality1047

1

2
∥∇Gd(x)∥22 ≥ λd(Gd(x)−Gd(x∞)) ,

which is itself a direct consequence of strong convexity provided in Lemma 27. Then1048

d

dt
(Gd(x(t))−Gd(x∞)) = ∇xGd(x(t)) · ẋ(t) = −∥∇xGd(x(t))∥2 ≤ −2λd (Gd(x(t))−Gd(x∞)) ,

and so the result in Theorem 3 follows.1049

E Additional Simulation Results1050

We simulate a number of additional scenarios to illustrate extensions beyond the setting with provable guarantees1051

and in the settings for which we have results but no numerical implementations in the main paper. First, we1052

simulate the aligned objectives setting in one dimension, corresponding to (3). Then we consider two settings1053

which are not covered in our theory: (1) the previously-fixed distribution ρ̄ is also time varying, and (2) the1054

algorithm does not have access to the full distributions of ρ and ρ̄ and samples from them to update. Lastly, we1055

illustrate a classifier with the population attributes in two dimensions, which requires a different finite-volume1056

implementation [CCH15, Section 2.2] than the one dimension version of the PDE due to flux in two dimensions.1057

E.1 Aligned Objectives1058

Here we show numerical simulation results for the aligned objectives case, where the population and distribution1059

have the same cost function. In this setting, the dynamics are of the form1060

∂tρ = div (ρ∇zδρGa[ρ, µ])

= div

(
ρ∇z

(∫
f1(z, x)dµ(x) + α log(ρ/ρ̃) +W ∗ ρ

))
d

dt
x = −∇x

(∫
f1(z, x)dρ(z) +

∫
f2(z, x)dρ̄(z) +

β

2
∥x− x0∥2

)
where f1 and f2 are as defined in section 4.1, and W = 1

20
(1 + z)−1, a consensus kernel. Note that W does1061

not satisfy Assumption 3, but we still observe convergence in the simulation. This is expected; in other works1062

such as [CMV03], the assumptions on W are relaxed and convergence results proven given sufficient convexity1063

of other terms. The regularizer ρ̃ is set to ρ0, which models a penalty for the effort required of individuals to1064

alter their attributes. The coefficient weights are α = 0.1 and β = 1, with discretization parameters dz = 0.1,1065

dt = 0.01.1066

Figure 4: The dynamics include a consensus kernel, which draws neighbors in z-space closer together.
We see that the population moves to make the classifier performer better, as the two distributions
become more easily separable by the linear classifier.

In Figure 4, we observe the strategic distribution separating itself from the stationary distribution, improving1067

the performance of the classifier and also improving the performance of the population itself. The strategic1068

distribution and classifier appear to be stationary by time t = 40.1069
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E.2 Multiple Dynamical Populations1070

We also want to understand the dynamics when both populations are strategic and respond to the classifier. In1071

this example, we numerically simulate this and in future work we hope to prove additional results regarding1072

convergence. This corresponds to modeling the previously-fixed distribution ρ̄ as time-dependent; let this1073

distribution be τ ∈ P2. We consider the case where ρ is competitive with x and τ is aligned with x, with1074

dynamics given by1075

∂tρ = −div (ρ∇z (f1(z, x)− α log(ρ/ρ̃)−W ∗ ρ))
∂tτ = div (τ∇z (f2(z, x) + α log(τ/τ̃) +W ∗ τ))
d

dt
x = −∇x

(∫
f1(z, x)dρ(z) +

∫
f2(z, x)dτ(z) +

β

2
∥x− x0∥2

)
.

We use W = 0 and f1, f2 as in section 4.1 and the same discretization parameters as in Section E.1. In Figure 5,

Figure 5: The population ρ aims to be classified with the τ population, while the classifier moves to
delineate between the two. We observe that τ adjusts to improve the performance of the classifier
while ρ competes against it. The distributions are plotted at time t = 0, corresponding to ρ̃ and τ̃ ,
and time t = 20, corresponding to ρ and τ .

1076
we observe that the τ population moves to the right, assisting the classifier in maintaining accurate scoring.1077

In contrast, ρ also moves to the right, rendering the right tail to be classified incorrectly, which is desirable1078

for individuals in the ρ population but not desirable for the classifier. While we leave analyzing the long-term1079

behavior mathematically for future work, the distributions and classifier appear to converge by time t = 20.1080

E.3 Sampled Gradients1081

In real-world applications of classifiers, the algorithm may not know the exact distribution of the population,1082

relying on sampling to estimate it. In this section we explore the effects of the classifier updating based on an1083

approximated gradient, which is computed by sampling the true underlying distributions ρ and ρ̄. We use the1084

same parameters for the population dynamics as in section 4.1, and for the classifier we use the approximate1085

gradient1086

∇xL(z, xt) ≈
n∑

i=1

∇xf1(zi, xt) +∇xf2(z̄i, xt) + β(xt − x0), zi ∼ ρt, z̄i ∼ ρ̄t .

First, we simulate the dynamics with the classifier and the strategic population updating at the same rate, using1087

α = 0.05, β = 1, and the same consensus kernel as used previously, with the same discretization parameters as1088

in E.1. In Figure 6, we observe no visual difference between the two results with n = 4 versus n = 40 samples,1089

which suggests that not many samples are needed to estimate the gradient.1090

Next, we consider the setting where the classifier is best-responding to the strategic population.1091

Unlike the first setting, we observe in Figure 7 a noticeable difference between the evolution of ρt with n = 41092

versus n = 40 samples. This is not surprising because optimizing with a very poor estimate of the cost function1093

at each time step would cause xt to vary wildly, and this method fails to take advantage of correct "average"1094

behavior that gradient descent provides.1095

E.4 Two-dimensional Distributions1096

In practice, individuals may alter more that one of their attributes in response to an algorithm, for example, both1097

cancelling a credit card and also reporting a different income in an effort to change a credit score. We model this1098
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Figure 6: When the classifier is updating at the same rate as the population, we do not see a significant
change in the evolution of both species, suggesting that as long as the gradient estimate for the
classifier is correct on average, the estimate itself does not need to be particularly accurate.

Figure 7: When the classifier is best-responding to the population, we observe that using n = 4
samples leads to different behavior for both the classifier and the population, compared with a more
accurate estimate using n = 40 samples.

case with z ∈ R2 and x ∈ R2, and simulate the results for the setting where the classifier and the population1099

are evolving at the same rate. While this setting is not covered in our theory, it interpolates between the two1100

timescale extremes.1101

We consider the following classifier:1102

f1(z, x) =
1

2

(
1− 1

1 + expx⊤z

)
f2(z, x) =

1

2

(
1

1 + expx⊤z

) (36)

with W = 0. Again, the reference distribution ρ̃ corresponds to the initial shape of the distribution, instituting1103

a penalty for deviating from the initial distribution. We use α = 0.5 and β = 1 for the penalty weights, run1104

for t = 4 with dt = 0.005 and dx = dy = 0.2 for the discretization. In this case, the strategic population is1105

competing with the classifier, with dynamics given by1106

∂tρ = −div (ρ∇z (f1(z, x)− α log(ρ/ρ̃)))

d

dt
x = −∇x

(∫
f1(z, x)dρ(z) +

∫
f2(z, x)dρ̄(z) +

β

2
∥x− x0∥2

)
In Figure 8, we observe the strategic population increasing mass toward the region of higher probability of being1107

labeled "1" while the true underlying label is zero, with the probability plotted at time t = 4. This illustrates1108

similar behavior to the one-dimensional case, including the distribution splitting into two modes, which is1109

another example of polarization induced by the classifier. Note that while in this example, x ∈ R2 and we use a1110

linear classifier; we could have x ∈ Rd with d > 2 and different functions for f1 and f2 which yield a nonlinear1111

classifier; our theory in the timescale-separated case holds as long as the convexity and smoothness assumptions1112

on f1 and f2 are satisfied.1113
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Figure 8: We use (36) for the classifier functions, using a Gaussian initial condition and regularizer
for ρ. We see the distribution moving toward the region with higher probability of misclassification.
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