
Appendix: A State Representation for Diminishing Rewards406

GIFs of navigation agents can be found at lambdarepresentation.github.io407

and in the supplementary material.408

A Derivation of �R Recursion409

We provide a step-by-step derivation of the �R recursion in Eq. (4.3):410

�⇡

�
(s, s0) = E

" 1X

k=0

�
nt(s0,k)�

k (st+k = s
0)
���st = s

#

= E
"

(st = s
0) +

1X

k=1

�
nt(s0,k)�

k (st+k = s
0)
���st = s

#

(i)
= E

"
(st = s

0) + �
nt(s0,1)�

1X

k=1

�
nt+1(s0,k)�

k�1 (st+k = s
0)
���st = s

#

(ii)
= E

"
(st = s

0) + (st = s
0)��

1X

k=1

�
nt+1(s0,k)�

k�1 (st+k = s
0)

+ �(1� (st = s
0))

1X

k=1

�
nt+1(s0,k)�

k�1 (st+k = s
0)
���st = s

#

= (st = s
0) + (st = s

0)��Est+1⇠p⇡�
⇡

�
(st+1, s

0) + �(1� (st = s
0))Est+1⇠p⇡�

⇡

�
(st+1, s

0)

= (st = s
0)(1 + ��Est+1⇠p⇡�

⇡

�
(st+1, s

0)) + �(1� (st = s
0))Est+1⇠p⇡�

⇡

�
(st+1, s

0),
(A.1)

where (i) is because nt(s0, k) = nt(s0, 1) + nt+1(s0, k) and (ii) is because411

�
nt(s0,1) = �

(st=s
0) = (st = s

0)�+ (1� (st = s
0)).

B Theoretical Analysis412

Here, we provide proofs for the theoretical results in the main text.413

Lemma 3.1 (Bellman Impossibility). Given a reward function of the form Eq. (3.1),414

it is impossible to define a Bellman equation solely using the resulting value function415

and immediate reward.416

Proof. We have417

V
⇡(s) = E

" 1X

k=0

�
k
r�(st+k, k)

��st = s

#

= r̄TE
" 1X

k=0

�
k
�
nt(st+k,k)1(st+k)

��st = s

#

= r̄T [1(st)� (1 + ��Ep⇡ [�
⇡

�
(st+1)]) + �(1� 1(st))� Ep⇡ [�

⇡

�
(st+1)]]

= r̄(st) + �Ep⇡ [V
⇡(st+1)]+�(�� 1)r̄(st)Ep⇡ [�

⇡

�
(st+1, st)]

13

lambdarepresentation.github.io


The additional term in red cannot be eliminated, and is generated by the elementwise418

product by the one-hot vector 1(st), which prevents the associated inner products419

between r̄ and �⇡

�
(st+1) from producing V

⇡(st+1).420

The following establishes G⇡

�
as a contraction.421

Lemma B.1 (Contraction). Let G⇡

�
be the operator as defined in Definition 4.2 for422

some stationary policy ⇡. Then for any two matrices �,�0
2 R|S|⇥|S|,423

|G
⇡

�
�(s, s0)� G

⇡

�
�0(s, s0)|  �|�(s, s0)� �0(s, s0)|.

Proof. We have424

|(G⇡

�
�� G

⇡

�
�0)s,s0 | = |(I � (11T + ��P

⇡�) + �(11T
� I)� P

⇡�

� I � (11T + ��P
⇡�0)� �(11T

� I)� P
⇡�0)s,s0 |

= |(I � ��P
⇡(�� �0) + �(11T

� I)� P
⇡(�� �0))s,s0 |

= |((I � �11T + 11T
� I)� �P

⇡(�� �0))s,s0 |
(i)

 |(�P ⇡(�� �0))s,s0 |

= �|(P ⇡(�� �0))s,s0 |

 �|(�� �0)s,s0 |,

where (i) comes from using �  1 and simplifying.425

Note that we can actually get a tighter contraction factor of �� for s = s
0. Given426

this contractive property, we can prove its convergence with the use of the following427

lemma.428

Lemma B.2 (Max �R). The maximum possible value of �⇡

�
(s, s0) is429

(s = s
0) + (1� (s = s

0))�

1� ��
.

Proof. For s = s
0,430

�⇡

�
(s, s) = 1 + ��Est+1⇠p⇡(·|st)�

⇡

�
(st+1, s).

This is just the standard SR recursion with discount factor ��, so the maximum is431

1X

k=0

(��)k =
1

1� ��
. (B.1)

For s 6= s
0, (st = s

0) = 0, so432

�⇡

�
(s, s0) = �Est+1⇠p⇡(·|st)�

⇡

�
(st+1, s

0).

Observe that �⇡

�
(s, s) � �⇡

�
(s, s0) for s

0
6= s, so the maximum is attained for433

st+1 = s
0. We can then use the result for s = s

0 to get434

�⇡

�
(s, s0) = �

✓
1

1� ��

◆
. (B.2)

Combining Eq. (B.1) and Eq. (B.2) yields the desired result.435

14



Proposition 4.1 (Convergence). Under the conditions assumed above, set �(0) =436

(1� �)I . For k = 1, 2, . . . , suppose that �(k+1) = G
⇡

�
�(k). Then437

|(�(k)
� �⇡

�
)s,s0 | 

�
k+1

1� ��
.

Proof. Using the notation Xs,s0 = X(s, s0) for a matrix X:438

|(�(k)
� �⇡

�
)s,s0 | = |(Gk

�
�(0)
� G

k

�
�⇡

�
)s,s0 |

= |(Gk

�
�(0)
� �⇡

�
)s,s0 |

(i)

 �
k
|(�(0)

� �⇡

�
)s,s0 |

(ii)
= �

k�⇡

�
(s, s0)

(iii)


�
k+1

1� ��

(B.3)

where (i) is due to Lemma B.1, (ii) is because �(0)(s, s0) = 0 for s 6= s
0, and (iii)439

is due to Lemma B.2.440

Lemma B.3 (Subadditivity). For any s 2 S, policy ⇡, � 2 [0, 1), and disjoint441

measurable sets A,B ✓ S ,442

�⇡

�
(s, A [ B) < �⇡

�
(s, A) + �⇡

�
(s, B).

Proof. Note that for disjoint sets A,B, we have nt(A[B, k) = nt(A, k)+nt(B, k).443

Hence, conditioned on some policy ⇡ and st = s,444

�
nt(A[B,k)P(st+k 2 A [ B) = �

nt(A,k)
�
nt(B,k)P(st+k 2 A) + �

nt(A,k)
�
nt(B,k)P(st+k 2 B)

 �
nt(A,k)P(st+k 2 A) + �

nt(B,k)P(st+k 2 B),

where the first line follows from P(st+k 2 A [ B) = P(st+k 2 A) + P(st+k 2 B).445

Equality holds over all A,B, t, k if and only if � = 1. Summing over k yields the446

result.447

B.1 Proof of Theorem 5.1448

We first prove two results, which rely throughout on the fact that ��(s, a, s0) 
1

1���
449

for all s, a, s0, which follows from Lemma B.2. For simplicity, we also assume450

throughout that all rewards are non-negative, but this assumption can easily be451

dropped by taking absolute values of rewards. The proofs presented here borrow452

ideas from those of [16].453

Lemma B.4. Let {Mj}
n

j=1 ✓M and M 2M be a set of tasks in an environment M454

with diminishing rate � and let Q⇡
⇤
j denote the action-value function of an optimal455

policy of Mj when executed in M . Given estimates Q̃⇡j such that kQ⇡
⇤
j �Q̃

⇡jk1  ✏456

for all j, define457

⇡(s) 2 argmax
a

max
j

Q̃
⇡j(s, a).

Then,458

Q
⇡(s, a) � max

j

Q
⇡
⇤
j (s, a)�

1

1� �

✓
2✏+

�(1� �)r(s, a)

1� ��

◆
,

15



where r denotes the reward function of M .459

Proof. Define Q̃max(s, a) := maxj Q̃⇡j(s, a) and Qmax(s, a) := maxj Q
⇡
⇤
j (s, a). Let460

T
⌫ denote the Bellman operator of a policy ⌫ in task M . For all (s, a) 2 S ⇥A and461

all j,462

T
⇡

i
Q̃max(s, a) = r(s, a) + �

X

s0

p(s0|s, a)
⇣
(�� 1)ri(s, a)�

⇡(s0, ⇡(s0), s) + Q̃max(s
0
, ⇡(s0))

⌘

= r(s, a) + �

X

s0

p(s0|s, a)
⇣
(�� 1)ri(s, a)�

⇡(s0, ⇡(s0), s) + max
b

Q̃max(s
0
, b)
⌘

� r(s, a) + �

X

s0

p(s0|s, a)
⇣
(�� 1)ri(s, a)�

⇡(s0, ⇡(s0), s) + max
b

Qmax(s
0
, b)
⌘
� �✏

� r(s, a) + �

X

s0

p(s0|s, a)
�
(�� 1)ri(s, a)�

⇡(s0, ⇡(s0), s) +Qmax(s
0
, ⇡

⇤
j
(s0))

�
� �✏

� r(s, a) + �

X

s0

p(s0|s, a)
⇣
(�� 1)ri(s, a)�

⇡(s0, ⇡(s0), s) +Q
⇡
⇤
j

i
(s0, ⇡⇤

j
(s0))

⌘
� �✏

= r(s, a) + �

X

s0

p(s0|s, a)
⇣
(�� 1)ri(s, a)�

⇡
⇤
j (s0, ⇡⇤

j
(s0), s) +Q

⇡
⇤
j

i
(s0, ⇡⇤

j
(s0))

⌘
� �✏

+ �(�� 1)r(s, a)
X

s0

p(s0|s, a)
�
�⇡(s0, ⇡(s0), s)� �⇡

⇤
j (s0, ⇡⇤

j
(s0), s)

�

� T
⇡
⇤
j

i
Q

⇡
⇤
j

i
(s, a)� �✏�

�(1� �)r(s, a)

1� ��

= Q
⇡
⇤
j

i
(s, a)� �✏�

�(1� �)r(s, a)

1� ��
.

This holds for any j, so463

T
⇡
Q̃max(s, a) � max

j

Q
⇡
⇤
j

i
(s, a)� �✏�

�(1� �)r(s, a)

1� ��

= Qmax(s, a)� �✏�
�(1� �)r(s, a)

1� ��

� Q̃max(s, a)� ✏� �✏�
�(1� �)r(s, a)

1� ��
.

Next, note that for any c 2 R,464

T
⇡(Q̃max(s, a) + c) = T

⇡
Q̃max(s, a) + �

X

s0

p(s0|s, a)c

= T
⇡
Q̃max(s, a) + �c.

16



Putting everything together, and using the fact that T ⌫ is monotonic and contractive,465

Q
⇡

i
(s, a) = lim

k!1
(T ⇡)kQ̃max(s, a)

� lim
k!1

"
Q̃max(s, a)�

✓
✏(1 + �)�

�(1� �)r(s, a)

1� ��

◆ kX

j=0

�
j

#

� Q̃max(s, a)�
1

1� �

✓
✏(1 + �)�

�(1� �)r(s, a)

1� ��

◆

� Qmax(s, a)� ✏�
1

1� �

✓
✏(1 + �)�

�(1� �)r(s, a)

1� ��

◆

� Q
⇡
⇤
j (s, a)�

1

1� �

✓
2✏+

�(1� �)r(s, a)

1� ��

◆
.

This holds for every j, hence the result.466

Lemma B.5. Let ⌫ be any policy, �, �̂ 2 [0, 1], and Q� denote a value function with467

respecting to diminishing rate �. Then,468

kQ
⌫

�
�Q

⌫

�̂
k1 

|�� �̂|krk1

1� �
.

Proof. The proof follows from the definition of Q: for every (s, a) 2 S ⇥A,469

|Q
⌫

�
(s, a)�Q

⌫

�̂
(s, a)| =

�����E⇡

" 1X

k=0

�
k

⇣
�
nt(st+k,k) � �̂

nt(st+k,k)
⌘
r(st+k)

���st = s, at = a

#�����

 E⇡

" 1X

k=0

�
k

����nt(st+k,k) � �̂
nt(st+k,k)

��� r(st+k)
���st = s, at = a

#

= E⇡

2

4
1X

k=0

�
k
r(st+k)

����� �̂

���
nt(st+k,k)�1X

j=0

�
nt(st+k,k)�1�j

�̂
j

���st = s, at = a

3

5

 |�� �̂|E⇡

" 1X

k=0

�
k
r(st+k)

���st = s, at = a

#


|�� �̂|krk1

1� �
.

470

Theorem 5.1 (GPI). Let {Mj}
n

j=1 ✓ M and M 2 M be a set of tasks in an471

environment M and let Q⇡
⇤
j denote the action-value function of an optimal policy of472

Mj when executed in M . Assume that the agent uses diminishing rate �̂ that may473

differ from the true environment diminishing rate �. Given estimates Q̃⇡j such that474

kQ
⇡
⇤
j � Q̃

⇡jk1  ✏ for all j, define475

⇡(s) 2 argmax
a

max
j

Q̃
⇡j(s, a).

Then,476

Q
⇡(s, a) � max

j

Q
⇡
⇤
j (s, a)�

1

1� �

✓
2✏+ |�� �̂|krk1 +

�(1� �)r(s, a)

1� ��

◆
.

17



Proof. Let Q� denote a value function with respect to diminishing constant �. We477

wish to bound478

max
j

Q
⇡
⇤
j

�̂
(s, a)�Q

⇡

�
(s, a),

i.e., the value of the GPI policy with respect to the true � compared to the maximum479

value of the constituent policies ⇡⇤
j

used for GPI, which were used assuming �̂. By480

the triangle inequality,481

max
j

Q
⇡
⇤
j

�̂
(s, a)�Q

⇡

�
(s, a)  max

j

Q
⇡
⇤
j

�
(s, a)�Q

⇡

�
(s, a) + |max

j

Q
⇡
⇤
j

�
(s, a)�max

j

Q
⇡
⇤
j

�̂
(s, a)|

 max
j

Q
⇡
⇤
j

�
(s, a)�Q

⇡

�
(s, a)

| {z }
(1)

+max
j

|Q
⇡
⇤
j

�
(s, a)�Q

⇡
⇤
j

�̂
(s, a)|

| {z }
(2)

.

We bound (1) by Lemma B.4 and (2) by Lemma B.5 (noting that krk1  krk1) to482

get the result.483

B.2 An Extension of Theorem 5.1484

Inspired by [17], we prove an extension of Theorem 5.1:485

Theorem B.1. Let M 2M be a task in an environment M with true diminishing486

constant �. Suppose we perform GPI assuming a diminishing constant �̂:487

Let {Mj}
n

j=1 and Mi be tasks in M and let Q
⇡
⇤
j

i
denote the action-488

value function of an optimal policy of Mj when executed in Mi.489

Given estimates Q̃⇡j

i
such that kQ

⇡
⇤
j

i
� Q̃

⇡j

i
k1  ✏ for all j, define490

⇡(s) 2 argmax
a
maxj Q̃

⇡j

i
(s, a).491

Let Q⇡

�̂
and Q

⇡
⇤

�
denote the action-value functions of ⇡ and the M -optimal policy ⇡⇤

492

when executed in M , respectively. Then,493

kQ
⇡
⇤

�
�Q

⇡

�̂
k1 

2

1� �

✓
1

2
|�� �̂|krk1 + ✏+ kr � rik1 +min

j

kri � rjk1

◆
+

1� �

1� ��
C,

where C is a positive constant not depending on �:494

C = �
2kr � rik1 + 2minj kri � rjk1 +min (krk1, krik1) + min (krik1, kr1k1, . . . , krnk1)

1� �
.

Note that when � = 1, we recover Proposition 1 of [17] with an additional term495

quantifying error incurred by �̂ 6= �. The proof relies on two other technical lemmas,496

presented below.497

Lemma B.6.

kQ
⇡
⇤
�Q

⇡
⇤
i

i
k1 

kr � rik1

1� �
+ �(1� �)

min (krk1, krik1) + kr � rik1

(1� �)(1� ��)
.

18



Proof. Define �i := kQ⇡
⇤
�Q

⇡
⇤
i

i
k1. For any (s, a) 2 S ⇥A,498

|Q
⇡
⇤
(s, a)�Q

⇡
⇤
i

i
(s, a)| =

���r(s, a) + �

X

s0

p(s0|s, a)
�
(�� 1)r(s, a)�⇡

⇤
(s0, ⇡⇤(s0), s) +Q

⇡
⇤
(s0, ⇡⇤(s0)

�

� ri(s, a)� �

X

s0

p(s0|s, a)
⇣
(�� 1)ri(s, a)�

⇡
⇤
i (s0, ⇡⇤

i
(s0), s) +Q

⇡
⇤
i

i
(s0, ⇡⇤

i
(s0)
⌘ ���

 |r(s, a)� ri(s, a)|+ �

X

s0

p(s0|s, a)|Q⇡
⇤
(s, a)�Q

⇡
⇤
i

i
(s, a)|

+ �(�� 1)
X

s0

p(s0|s, a)
��r(s, a)�⇡

⇤
(s0, ⇡⇤(s0), s)� ri(s, a)�

⇡
⇤
i (s0, ⇡⇤

i
(s0), s)

��

 kr � rik1 + ��i + �(1� �)kr�⇡
⇤
� ri�

⇡
⇤
i k1.

The third term decomposes as499

kr�⇡
⇤
� ri�

⇡
⇤
i k1  kr�

⇡
⇤
� r�⇡

⇤
i k1 + kr�⇡

⇤
i � ri�

⇡
⇤
i k1


krk1 + kr � rik1

1� ��
.

We could equivalently use the following decomposition:500

kr�⇡
⇤
� ri�

⇡
⇤
i k1  kr�

⇡
⇤
� ri�

⇡
⇤
k1 + kri�

⇡
⇤
� ri�

⇡
⇤
i k1


krik1 + kr � rik1

1� ��
,

and so501

kr�⇡
⇤
� ri�

⇡
⇤
i k1 

min (krk1, krik1) + kr � rik1

1� ��
.

The inequalities above hold for all s, a and so502

�i  kr � rik1 + ��i + �(1� �)
min (krk1, krik1) + kr � rik1

1� ��

=) �i 
kr � rik1

1� �
+ �(1� �)

min (krk1, krik1) + kr � rik1

(1� �)(1� ��)
.

Hence the result.503

Lemma B.7. For any policy ⇡,504

kQ
⇡

i
�Q

⇡
k1 

kr � rik1

1� �
+ �(1� �)

kr � rik1

(1� �)(1� ��)
.

19



Proof. Write �i := kQ⇡

i
� Q

⇡
k1. Proceeding as in the previous lemma, for all505

(s, a) 2 S ⇥A, we have506

|Q
⇡

i
(s, a)�Q

⇡(s, a)| =
���ri(s, a) + �

X

s0

p(s0|s, a) ((�� 1)ri(s, a)�
⇡(s0, ⇡(s0), s) +Q

⇡

i
(s0, ⇡(s0)))

� r(s, a)� �

X

s0

p(s0|s, a) ((�� 1)r(s, a)�⇡(s0, ⇡(s0), s) +Q
⇡(s0, ⇡(s0)))

 |r(s, a)� ri(s, a)|+ �

X

s0

p(s0|s, a)(1� �)|r(s, a)� ri(s, a)|�
⇡(s0, ⇡(s0), s)

+ �

X

s0

p(s0|s, a)|Q⇡

i
(s0, ⇡(s0))�Q

⇡(s0, ⇡(s0))|

 kr � rik1 + �(1� �)kr � rik1
1

1� ��
+ ��0

i

=) �0
i
 kr � rik1 +

�(1� �)kr � rik1

1� ��
+ ��0

i

=) �0
i

kr � rik1

1� �
+

�(1� �)kr � rik1

(1� �)(1� ��)
.

507

Finally, we prove Theorem B.1:508

Proof of Theorem B.1. By the triangle inequality,509

kQ
⇡
⇤

�
�Q

⇡

�̂
k1  kQ

⇡
⇤

�
�Q

⇡

�
k1 + kQ⇡

�
�Q

⇡

�̂
k1.

By Lemma B.5, the second term is bounded above by510

|�� �̂|krk1

1� �
.

The first term decomposes as follows (dropping the � subscript on all action-value511

functions for clarity):512

kQ
⇡
⇤
�Q

⇡
k1  kQ

⇡
⇤
�Q

⇡
⇤
i

i
k1| {z }

(1)

+ kQ
⇡
⇤
i

i
�Q

⇡

i
k1| {z }

(2)

+ kQ⇡

i
�Q

⇡
k1| {z }

(3)

.

Applying Lemma B.4 to (2) (but with respect to Mi rather than M ), we have that for513

any j,514

Q
⇡
⇤
i

i
(s, a)�Q

⇡

i
(s, a)  Q

⇡
⇤
i

i
(s, a)�Q

⇡
⇤
j

i
(s, a) +

1

1� �

✓
2✏+

�(1� �)ri(s, a)

1� ��

◆

=) kQ
⇡
⇤
i

i
�Q

⇡

i
k1  kQ

⇡
⇤
i

i
�Q

⇡
⇤
j

j
k1| {z }

(2.1)

+ kQ
⇡
⇤
j

j
�Q

⇡
⇤
j

i
k1| {z }

(2.2)

+
1

1� �

✓
2✏+

�(1� �)krik1
1� ��

◆
.

We bound (2.1) using Lemma B.6 and (2.2) using Lemma B.7 (but with respect to515

Mj rather than M ):516

kQ
⇡
⇤
i

i
�Q

⇡
⇤
j

j
k1 + kQ

⇡
⇤
j

j
�Q

⇡
⇤
j

i
k1 

2kri � rjk1

1� �
+ �(1� �)

min (krik1, krjk1) + 2kri � rjk1

(1� �)(1� ��)
.

We then apply Lemma B.6 to (1) and Lemma B.7 to (3) to get the result.

20



C An nth Occupancy Representation517

To generalize the first occupancy representation to account for reward functions of518

this type, it’s natural to consider an N th occupancy representation—that is, one519

which accumulates value only for the first N occupancies of one state s
0 starting520

from another state s:521

Definition C.1 (NR). For an MDP with finite S , the N th-occupancy representation522

(NR) for a policy ⇡ is given by F
⇡
2 [0, N ]|S|⇥|S| such that523

�⇡

(N)(s, s
0) , E⇡

" 1X

k=0

�
t+k (st+k = s

0
,#({j | st+j = s

0
, j 2 [0, k � 1]}) < N)

���st

#
.

(C.1)

Intuitively, such a representation sums the first N (discounted) occupancies of s0524

from time t to t+ k starting from st = s. We can also note that �⇡

(1) is simply the525

FR and �(0)(s, s0) = 0 8s, s0. As with the FR and the SR, we can derive a recursive526

relationship for the NR:527

�⇡

(N)(s, s
0) = (st = s

0)(1 + �E�⇡

(N�1)(st+1, s
0)) + �(1� (st = s

0))E�⇡

(N)(st+1, s
0),

(C.2)

where the expectation is wrt p⇡(st+1|st). Once again, we can confirm that this is528

consistent with the FR by noting that for N = 1, the NR recursion recovers the FR529

recursion. Crucially, we also recover the SR recursion in the limit as N !1:530

lim
N 7!1

�⇡

(N)(s, s
0) = (st = s

0)(1 + �E�⇡

(1)(st+1, s
0)) + �(1� (st = s

0))E�⇡

(1)(st+1, s
0)

= (st = s
0) + �E�⇡

(1)(st+1, s
0).

This is consistent with the intuition that the SR accumulates every (discounted) state531

occupancy in a potentially infinite time horizon of experience. While Definition C.1532

admits a recursive form which is consistent with our intuition, Eq. (C.2) reveals533

an inconvenient intractability: the Bellman target for �⇡

(N) requires the availability534

of �⇡

(N�1). This is a challenge, because it means that if we’d like to learn any NR535

for finite N > 1, the agent also must learn and store �⇡

(1), . . .�
⇡

(N�1). Given these536

challenges, the question of how to learn a tractable general occupancy representation537

remains. From a neuroscientific perspective, a fixed depletion amount is also incon-538

sistent with both behavioral observations and neural imaging [3], which indicate539

instead that utility disappears at a fixed rate in proportion to the current remaining540

utility, rather than in proportion to the original utility. We address these theoretical541

and practical issues in the next section.542

D Further Experimental Details543

D.1 Policy Evaluation544

We perform policy evaluation for the policy shown in Fig. 4.1 on the 6⇥ 6 gridworld545

shown. The discount factor � was set to 0.9 for all experiments, which were run for546

21



H = 10 steps per episode. The error metric was the mean squared error:547

Qerror ,
1

|S||A|

X

s,a

(Q⇡(s, a)� Q̂(s, a))2, (D.1)

where Q
⇡ is the ground truth Q-values and Q̂ is the estimate. Transitions are548

deterministic. For the dynamic programming result, we learned the �R using549

Eq. (4.3) for � 2 {0.5, 1.0} and then measured the resulting values by multiplying550

the resulting �R by the associated reward vector r 2 {�1, 0, 1}36, which was �1 in551

all wall states and +1 at the reward state g. We compared the results to the ground552

truth values. Dynamic programming was run until the maximum Bellman error553

across state-action pairs reduced below 5e-2. For the tabular TD learning result, we554

ran the policy for three episodes starting from every available (non-wall) state in the555

environment, and learned the �R for � 2 {0.5, 1.0} as above, but using the online556

TD update:557

��(st, at) ��(st, at) + ↵�t,

�t = 1(st)� (1 + ����(st+1, at+1)) + �(1� 1(st))� ��(st+1, at+1)� ��(st, at),

where at+1 ⇠ ⇡(· | st+1). The learned Q-values were then computed in the same558

way as the dynamic programming case and compared to the ground truth. For the559

�F result, we first learned Laplacian eigenfunction base features as described in560

[24] from a uniform exploration policy and normalized them to the range [0, 1]. We561

parameterized the base feature network as a 2-layer MLP with ReLU activations562

and 16 units in the hidden layer. We then used the base features to learn the �Fs563

as in the tabular case, but with the �F network parameterized as a three-layer MLP564

with 16 units in each of the hidden layers and ReLU activations. All networks were565

optimized using Adam with a learning rate of 3e-4. The tabular and neural network566

experiments were repeated for three random seeds, the former was run for 1,500567

episodes and the latter for 2,000.568

D.2 Policy Learning569

We ran the experiments for Fig. 5.2 in a version of the TwoRooms environment570

from the NeuroNav benchmark [21] with reward modified to decay with a specified571

�true = 0.5 and discount factor � = 0.95. The initial rewards in the top right572

goal and the lower room goal locations were 5 and the top left goal had initial573

reward 10. The observations in the neural network experiment were one-hot state574

indicators. The tabular Q� experiments run the algorithm in Algorithm 1 for 500575

episodes for � 2 {0.0, 0.5, 1.0}, with �true set to 0.5, repeated for three random576

seeds. Experiments used a constant step size ↵ = 0.1. There were five possible577

actions: up, right, down, left, and stay. The recurrent A2C agents were based on578

the implementation from the BSuite library [30] and were run for 7,500 episodes of579

maximum length H = 100 with � = 0.99 using the Adam optimizer with learning580

rate 3e-4. The experiment was repeated for three random seeds. The RNN was an581

LSTM with 128 hidden units and three output heads: one for the policy, one for the582

value function, and one for the �F. The base features were one-hot representations583

of the current state, 121-dimensional in this case.584

22



Algorithm 1: Online Tabular Q�-Learning Update

1: Require: Current �R-values �(t)
� 2 R|S|⇥|A|⇥|S|, current reward vector r(t), observed

(st, at, st+1) tuple
2: Compute Q�-values: Q(t)

�  (�(t)
� )Tr(t)

3: Select greedy action: at+1  argmaxa2A Q
(t)
� (st+1, a)

4: Update ��:

�(t+1)
� (st, at) �(t)

� (st, at) + ↵�
(t)
, where

�
(t) = 1(st)� (1 + ���(t)

� (st+1, at+1)) + �(1� 1(st))� �(t)
� (st+1, at+1)� �(t)

� (st, at).

5: Return updated �(t+1)
�

D.3 Tabular GPI585

The agent is assumed to be given or have previously acquired four policies586

{⇡0, ⇡1, ⇡2, ⇡3} individually optimized to reach rewards located in each of the four587

rooms of the environment. There are three reward locations {g0, g1, g2} scattered588

across the rooms, each with its own initial reward r̄ = [5, 10, 5] and all with � = 0.5.589

At the beginning of each episode, an initial state s0 is sampled uniformly from the590

set of available states. An episode terminates either when the maximum reward591

remaining in any of the goal states is less than 0.1 or when the maximum number592

of steps H = 40 is reached. Empty states carry a reward of 0, encountering a wall593

gives a reward of �1, and the discount factor is set to � = 0.97.594

For each of the four policies, we learn �Rs with � equal to 0, 0.5, and 1.0 using595

standard dynamic programming (Bellman error curves plotted in ??), and record the596

returns obtained while performing GPE+GPI with each of these representations over597

the course of 50 episodes. Bellman error curves for the �Rs are In the left panel of598

Fig. 5.3, we can indeed see that using the correct � (0.5) nets the highest returns.599

Example trajectories for each of �R are shown in the remaining panels.600

D.4 Pixel-Based GPI601

In this case, the base policies ⇧ were identical to those used in the tabular GPI602

experiments. First, we collected a dataset consisting of 340 observation trajectories603

(o0, o1, . . . , oH�1) 2 O
H with H = 19 from each policy, totalling 6, 460 observa-604

tions. Raw observations were 128⇥ 128⇥ 3 and were converted to grayscale. The605

previous seven observations were stacked and used to train a Laplacian eigenfunction606

base feature network in the same way as [24]. For observations less than seven607

steps from the start of an episode, the remaining frames were filled in as all black608

observations (i.e., zeros). The network consisted of four convolutional layers with609

32 3⇥ 3 filters with strides (2, 2, 2, 1), each followed by a ReLU nonlinearity. This610

was then flattened and passed through a Layer Norm layer [31] and a tanh non-611

linearity before three fully fully connected layers, the first two with 64 units each612

and ReLU nonlinearities and the final, output layer with 50 units. The output was613

L2-normalized as in [24]. This network � : O7
7! RD (with D = 50) was trained on614

the stacked observations for 10 epochs using the Adam optimizer and learning rate615

23



Figure D.1: Learning curves for �F policy evaluation. Results are averaged over three runs, with
shading indicating one unit of standard error.

1e-4 with batch size B = 64. To perform policy evaluation, the resulting features,616

evaluated on the dataset of stacked observations were collected into their own dataset617

of (st, at+1, st+1, at+1) tuples, where st , ot�6:t. The “states” were normalized to618

be between 0 and 1, and a vector w was fit to the actual associated rewards via619

linear regression on the complete dataset. The �F network was then trained using a620

form of neural fitted Q-iteration [FQI; 32] modified for policy evaluation with �Fs621

(Algorithm 2). The architecture for the �F network was identical to the base feature622

network, with the exception that the hidden size of the fully connected layers was623

128 and the output dimension was D|A| = 250. FQI was run for K = 20 outer loop624

iterations, with each inner loop supervised learning setting run for L = 100 epochs625

on the current dataset. Supervised learning was done using Adam with learning rate626

3e-4 and batch size B = 64. Given the trained networks, GPI proceeded as in the627

tabular case, i.e.,628

at = argmax
a2A

max
⇡2⇧

wT
'
⇡

✓
(st, a). (D.2)

50 episodes were run from random starting locations for H = 50 steps and the629

returns measured. Learning curves for the base features and for �F fitting are shown630

in Fig. D.1. The �F curve measures the mean squared error as in Eq. (D.1).631

The feature visualizations were created by performing PCA to reduce the average632

�F representations for observations at each state in the environment to 2D. Each633

point in the scatter plot represents the reduced representation on the xy plane, and is634

colored according to the �-conditioned value of the underlying state.635

D.5 Continuous Control636

�-SAC See Appendix H for details.637

D.6 Learning the �O with FB638

Training the �O with the FB parameterization proceeds in much the same way as639

in [12], but adjusted for a different norm and non-Markovian environment. We640

summarize the learning procedure in Algorithm 3. The loss function L is derived in641

Appendix G, with the addition of the following regularizer:642

kEs⇠⇢B!(s)B!(s)
>
� Ik

2
.

24



Algorithm 2: Fitted Q�-Iteration

1: Require: Dataset of base features {�(s) 2 RD
}s2S , decay rate �, discount factor �, reward

feature vector w 2 RD, batch size B, learning rate ↵

2: Initialize �F '✓ parameters ✓(1) (we drop the subscript � and superscript ⇡ for concision)
3: for k = 1 . . . ,K do
4: // Stage 1: Construct dataset
5: D  ?
6: for (s, a) 2 S ⇥A do
7: for (s0, a0) 2 S ⇥A do

8: D  D[

8
><

>:

0

B@(s, a),wT [�(s)� (1 + ��'̄✓(k)(s0, a0)) + �(1� �(s))� '̄✓(k)(s0, a0)]| {z }
,y(s,a)

1

CA

9
>=

>;

9: end for
10: end for
11: // Stage 2: Supervised learning
12: Randomly initialize ✓0

13: for ` = 1, . . . , L do
14: Randomly shuffle D

15: for {((s, a), y)}Bb=1 2 D do
16: ✓`  ✓`�1 � ↵r✓

1
2B

PB
b=1

�
yb �wT

'✓`�1(sb, ab)
�2

17: end for
18: end for
19: ✓

(k+1)
 ✓L

20: end for

Figure E.1: A simple grid and several policies.

This regularizer encourages B to be approximately orthonormal, which promotes643

identifiability of F✓ and B! [12].644

E Additional Results645

See surrounding sections.646

F Advantage of the Correct �647

Importantly, for GPE using the �R to work in this setting, the agent must either648

learn or be provided with the updated reward vector r� after each step/encounter649

with a rewarded state. This is because the �R is forward-looking in that it measures650

the (diminished) expected occupancies of states in the future without an explicit651

mechanism for remembering previous visits. For simplicity in this case, we provide652

this vector to the agent at each step—though if we view such a multitask agent as653

25



Algorithm 3: �O FB Learning

1: Require: Probability distribution ⌫ over Rd, randomly initialized networks F✓, B! , learning rate
⌘, mini-batch size B, number of episodes E, number of epochs M , number of time steps per
episode T , number of gradient steps N , regularization coefficient �, Polyak coefficient ↵, initial
diminishing constant �, discount factor �, exploratory policy greediness ✏, temperature ⌧

2: // Stage 1: Unsupervised learning phase
3: D  ?
4: for epoch m = 1, . . . ,M do
5: for episode i = 1 . . . , E do
6: Sample z ⇠ ⌫

7: Observe initial state s1

8: for t = 1, . . . , T do
9: Select at ✏�greedy with respect to F✓(st, a, z)>z

10: Observe reward rt(st) and next state st+1

11: D  D [ {(st, at, rt(st), st+1)}
12: end for
13: end for
14: for n = 1, . . . , N do
15: Sample a minibatch {(sj , aj , rj(sj), sj+1)}j2J ⇢ D of size |J | = B

16: Sample a minibatch {s̃j}j2J ⇢ D of size |J | = B

17: Sample a minibatch {s
0
j}j2J

iid
⇠ µ of size |J | = B

18: Sample a minibatch {zj}j2J
iid
⇠ ⌫ of size |J | = B

19: For every j 2 J , set ⇡zj (·|sj+1) = softmax

�
F✓�(sj+1, ·, zj)>zj/⌧

�

20:

L(✓,!) 
1

2B2

X

j,k2J2

 
F✓(sj , aj , zj)

>
B!(s

0
k)� �

X

a2A
⇡zj (a|sj+1)F✓�(sj+1, a, zj)

>
B!�(s0k)

!2

�
1

B

X

j2J

F✓(sj , aj , zj)
>
B!(sj)

+
�(1� �)

B

X

j2J

µ(sj)F✓(sj , aj , zj)
>
B!(sj)

X

a2A
⇡zj (a|sj+1)F✓�(sj+1, a, zj)

>
B!�(sj)

+ �

0

@ 1

B2

X

j,k2J2

B!(sj)
>
B̄!(s̃k)B̄!(sj)

>
B̄!(s̃k)�

1

B

X

j2J

Bw(sj)
>
B̄!(sj)

1

A

21: Update ✓ and ! via one step of Adam on L

22: Sample a minibatch {(sj , rj(sj), sj+1, rj+1(sj+1))}j2J of size |J | = B from D

23: L�(�) 
1
2B

P
j2J (sj+1 = sj) (rj+1(sj+1)� �rj(sj))

2

24: Update � via one step of Adam on L�

25: end for
26: ✓

�
 ↵✓

� + (1� ↵)✓
27: !

�
 ↵!

� + (1� ↵)!
28: end for
29: // Stage 2: Exploitation phase for a single episode with initial reward r0(s)
30: zR  

P
s2S µ(s)r0(s)B!(s)

31: Observe initial state s1

32: for t = 1, . . . , T do
33: at  argmaxa2A F (st, a, zR)>zR
34: Observe reward rt(s) and next state st+1

35: zR  
P

s2S µ(s)rt(s)B!(s)
36: end for

26



Figure E.2: Visualizing the SR, the �R and the FR. We can see that the �⇡
1 is equivalent to the SR

and �⇡
0 is equivalent to the FR, with intermediate values of � providing a smooth transition between

the two.

simply as a module carrying out the directives of a higher-level module or policy654

within a hierarchical framework as in, e.g., Feudal RL [33], the explicit provision of655

reward information is not unrealistic. Regardless, a natural question in this case is656

whether there is actually any value in using the �R with the corret value of � in this657

setting: If the agent is provided with the correct reward vector, then wouldn’t policy658

evaluation work with any �R?659

27



Figure E.3: Dynamic programming converges more quickly for lower �.

Figure F.1: A 3-state toy environment.

To see that this is not the case, consider the three-state toy MDP shown in Figure660

Fig. F.1, where r̄(s1) = 10, r̄(s2) = 6, r̄(s0) = 0, �(s1) = 0, �(s2) = 1.0, and661

� = 0.99. At time t = 0, the agent starts in s0. Performing policy evaluation with662

�(s1) = �(s2) = 1 (i.e., with the SR) would lead the agent to go left to s1. However,663

the reward would then disappear, and policy evaluation on the second step would664

lead it to then move right to s0 and then s2, where it would stay for the remainder665

of the episode. In contrast, performing PI with the correct values of � would lead666

the agent to go right to s2 and stay there. In the first two timesteps, the first policy667

nets a total reward of 10 + 0 = 10, while the second policy nets 6 + 5.94 = 11.94.668

(The remaining decisions are identical between the two policies.) This is a clear669

example of the benefit of having the correct �, as incorrect value estimation leads to670

suboptimal decisions even when the correct reward vector/function is provided at671

each step.672

G The � Operator673

To learn the �O, we would like to define �⇡

�
(st, ds0) , '

⇡

�
(st, s0)µ(ds0) for some674

base policy µ. However, this would lead to a contradiction:675

�⇡

�
(s, A[B) =

Z

A

'
⇡

�
(s, ds0)µ(ds0) +

Z

B

'
⇡

�
(s, ds0)µ(ds0) = �⇡

�
(s, A) +�⇡

�
(s, B)

for all disjoint A,B, contradicting Lemma B.3.676

For now, we describe how to learn the �O for discrete S, in which case we have677

�⇡

�
(s, s0) = '

⇡

�
(s, s0)µ(s0), i.e., by learning ' we learn a weighted version of �. We678

28



define the following norm, inspired by Touati et al. [24]:679

k�⇡

�
k
2
⇢
, E s⇠⇢

s0⇠µ

"✓
�⇡

�
(s, s0)

µ(s0)

◆2
#
,

where µ is any density on S . In the case of finite S , we let µ be the uniform density.680

We then minimize the Bellman error for �⇡

�
with respect to k · k2

⇢,µ
(dropping the681

sub/superscripts on � and ' for clarity):682

L(�) = k'µ� (I � (11T + ��P
⇡
'µ) + �(11T + I)� P

⇡
'µ)k2

⇢,µ

= Est⇠⇢,s0⇠µ

h⇣
'(st, s

0)�
(st = s

0)

µ(s0)

+ �(1� �)
(st = s

0)

µ(s0)
Est+1⇠p⇡(·|st)�̄(st+1, s

0)� �Est+1⇠p⇡(·|st)'̄(st+1, s
0)
⌘2i

+c
= Est,st+1⇠⇢,s0⇠µ

h
('(st, s

0)� �'̄(st+1, s
0))2
i

� 2Est,st+1⇠⇢

"
X

s0

µ(s0)'(st, s
0)

(st = s
0)

µ(s0)

#

+ 2�(1� �)Est,st+1⇠⇢

"
X

s0

µ(s0)'(st, s
0)'̄(st+1, s

0)µ(s0)
(st = s

0)

µ(s0)

#

+c
= Est,st+1⇠⇢,s0⇠µ

h
('(st, s

0)� �'̄(st+1, s
0))2
i
� 2Est⇠⇢['(st, st)]

+ 2�(1� �)Est,st+1⇠⇢[µ(st)'(st, st)'̄(st+1, st)],

Note that we recover the SM loss when � = 1. Also, an interesting interpretation is683

that when the agent can never return to its previous state (i.e., '(st+1, st) = 0), then684

we also recover the SM loss, regardless of �. In this way, the above loss appears to685

“correct” for repeated state visits so that the measure only reflects the first visit.686

L(�) = Est,at,st+1⇠⇢,s0⇠µ

h�
F (st, at, z)

>
B(s0)� �F̄ (st+1, ⇡z(st+1), z)

>
B̄(s0)

�2i

� 2Est,at⇠⇢

⇥
F (st, at, z)

>
B(st)

⇤

+ 2�(1� �)Est,at,st+1⇠⇢

⇥
µ(st)F (st, at, z)

>
B(st)F̄ (st+1, ⇡z(st+1), z)

>
B̄(st)

⇤

(G.1)

Even though the �O is not a measure, we can use the above loss to the continuous687

case, pretending as though we could take the Radon-Nikodym derivative �(s,ds0)
µ(ds0) .688

G.1 Experimental Results with the FB Parameterization689

To show that knowing the correct value of � leads to improved performance, we690

trained �O with the FB parameterization on the FourRooms task of Fig. 5.3, but691

with each episode initialized at a random start state and with two random goal692

states. Average per-epoch reward is shown in Fig. G.2. We tested performance693

29



Hyperparameter Value
M 100
E 100
N 25
B 128
T 50
� 0.99
↵ 0.95
⌘ 0.001
⌧ 200
✏ 1

Table 1: �O-FB hyperparameters.

Figure G.1: Performance of the �O-FB with two values of �. Results averaged over six seeds and
10 episodes per seed. Error bars indicate standard error.

with �true,�agent 2 {0.5, 1.0}, where �true denotes the true environment diminishing694

rate and �agent denotes the diminishing rate that the agent uses. For the purpose of695

illustration, we do not allow the agent to learn �. We see in Fig. G.2 that using the696

correct � leads to significantly increased performance. In particular, the left plot697

shows that assuming � = 1, i.e., using the SR, in a diminishing environment can698

lead to highly suboptimal performance.699

Hyperparameters used are given in Table 1 (notation as in Algorithm 3).700

G.2 �O and the Marginal Value Theorem701

To study whether the agent’s behavior is similar to behavior predicted by the MVT,702

we use a very simple task with constant starting state and vary the distance between703

rewards (see Fig. G.1(a)). When an agent is in a reward state, we define an704

MVT-optimal leaving time as follows (similar to that of [8] but accounting for the705

non-stationarity of the reward).706

Let R denote the average per-episode reward received by a trained agent, r(st)707

denote the reward received at time t in a given episode, Rt =
P

t

u=0 r(su) denote the708

total reward received until time t in the episode, and let T be episode length. Then,709

on average, the agent should leave its current reward state at time t if the next reward710

that it would receive by staying in st, i.e., �r(st), is less than711

R�Rt

T
.

30



Figure G.2: Analysis of MVT-like behavior of �O-FB. a) Three environments with equal start state
and structure but different distances between reward states. b) Difference between the agent’s leave
times and MVT-predicted leave times for � = 0.99, with discounting taken into account. The agent
on average behaves similar to the discounted MVT. c) Difference between the agent’s leave times and
MVT-predicted leave times for � = 1.0, i.e., with no discounting taken into account. The agent on
average behaves similar to the MVT.

In other words, the agent should leave a reward state when its incoming reward falls712

below the diminished average per-step reward of the environment. We compute R713

by averaging reward received by a trained agent over many episodes.714

Previous studies have trained agents that assume stationary reward to perform715

foraging tasks, even though the reward in these tasks is non-stationary. These agents716

can still achieve good performance and MVT-like behavior [8]. However, because717

they target the standard RL objective718

E⇡

" 1X

k=0

�
k
r(st+k)

���st = s

#
,

which requires � < 1 for convergence, optimal behavior is recovered only with719

respect to the discounted MVT, in which R (and in our case, Rt) weights rewards by720

powers of � [8].721

In Fig. G.1(b-c) we perform a similar analysis to that of [8] and show that, on722

average over multiple distances between rewards, �O-FB performs similarly to the723

discounted MVT for � = 0.99 and the standard MVT for � = 1.0. An advantage724

of the �O is that it is finite for � = 1.0 provided that � < 1. Hence, as opposed725

to previous work, we can recover the standard MVT without the need to adjust for726

discounting.727

Hyperparameters used are given in Table 1 (notation as in Algorithm 3).728

H SAC729

Mitigating Value Overestimation One well-known challenge in deep RL is that the use730

of function approximation to compute values is prone to overestimation. Standard731

approaches to mitigate this issue typically do so by using two value functions and732

either taking the minimum mini2{1,2} Q
⇡

i
(s, a) to form the Bellman target for a given733

(s, a) pair [34] or combining them in other ways [35]. However, creating multiple734

networks is expensive in both computation and memory. Instead, we hypothesized735

that it might be possible to address this issue by using �-based values. To test this736

idea, we modified the Soft Actor-Critic [SAC; 36] algorithm to compute �Fs-based737

values by augmenting the soft value target TsoftQ = rt + �EVsoft(st+1), where738

31



Vsoft(st+1) is given by the expression739

Eat+1⇠⇡(·|st+1)

h
Q̄(st+1, at+1) + (�� 1)wT(�(st, at)� '�(st+1, at+1))

� ↵ log ⇡(at+1 | st+1)
i

A derivation as well as pseudocode for the modified loss is provided in Appendix D.5.740

Observe that for � = 1, we recover the standard SAC value target, corresponding to741

an assumed stationary reward. We apply this modified SAC algorithm, which we742

term �-SAC to feature-based Mujoco continuous control tasks within OpenAI Gym743

[37]. We found that concatenating the raw state and action observations �̃t = [st, at]744

and normalizing them to [0, 1] make effective regressors to the reward. That is, we745

compute base features as746

�
b

t
=

�̃
b

t
�minb �̃

b

t

maxb �̃b

t �minb �̃
b

t

,

where b indexes (st, at) within a batch. Let X 2 [0, 1]B⇥D be the concatenated747

matrix of features for a batch, where D = dim(S) + dim(A). Then,748

wt =
�
X

T
X
��1

X
Tr,

where here r denotes the vector of rewards from the batch. In addition to using749

a fixed � value, ideally we’d like an agent to adaptively update � to achieve the750

best balance of optimism and pessimism in its value estimates. Following [38],751

we frame this decision as a multi-armed bandit problem, discretizing � into three752

possible values {0, 0.5, 1.0} representing the arms of the bandit. At the start of each753

episode, a random value of � is sampled from these arms and used in the value754

function update. The probability of each arm is updated using the Exponentially755

Weighted Average Forecasting algorithm [39], which modulates the probabilities756

in proportion to a feedback score. As in [38], we use the difference in cumulative757

(undiscounted) reward between the current episode ` and the previous one ` � 1758

as this feedback signal: R` � R`�1. That is, the probability of selecting a given759

value of � increases if performance is improving and decreases if it’s decreasing.760

We use identical settings for the bandit algorithm as in [38]. We call this variant761

�-SAC. We plot the results for SAC with two critics (as is standard), SAC with one762

critic, SAC with a single critic trained with �F-based values (“x-SAC” denotes SAC763

trained with a fixed � = x), and �-SAC trained on the HalfCheetah-v2 Mujoco764

environment. This task was found by [38] to support “optimistic” value estimates765

in that even without pessimism to reduce overestimation it was possible to perform766

well. Consistent with this, we found that single-critic SAC matched the performance767

of standard SAC, as did 1-SAC (which amounts to training a standard value function768

with the auxiliary task of SF prediction). Fixing lower values of � performed poorly,769

indicating that over-pessimism is harmful in this environment. However, �-SAC770

eventually manages to learn to set � = 1 and matches the final performance of the771

best fixed algorithms. We consider these results to be very preliminary, and hope to772

perform more experiments on other environments. We also believe �-SAC could be773

improved by using the difference between the current episode’s total reward and the774

average of the total rewards from previous episodes R` � (` � 1)�1
P

`�1
i=1 Ri as a775

32



Figure H.1: �-SAC adaptively identifies the optimal �. Rewards are measure on the HalfCheetah
task averaged over three random seeds, with shading indicating one unit of standard error.

more stable feedback signal for the bandit. There is also non-stationarity in the base776

features due to the per-batch normalization, which could also likely be improved.777

Hyperparameters are described in Table 2.778

Hyperparameter Value
Collection Steps 1000
Random Action Steps 10000
Network Hidden Layers 256:256
Learning Rate 3⇥ 10�4

Optimizer Adam
Replay Buffer Size 1⇥ 106

Action Limit [�1, 1]
Exponential Moving Avg. Parameters 5⇥ 10�3

(Critic Update:Environment Step) Ratio 1
(Policy Update:Environment Step) Ratio 1
Has Target Policy? No
Expected Entropy Target �dim(A)
Policy Log-Variance Limits [�20, 2]
Bandit Learning Rate⇤ 0.1
� Options⇤ {0, 0.5, 1.0}

Table 2: Hyperparameters for SAC Mujoco experiments. ⇤Only applicable to �-SAC

I Replenishing Rewards779

We list below a few candidate reward replenishment schemes, which are visualized780

in Fig. I.1.781

Time elapsed rewards
r(s, t) = �

n(s,t)/m(s,t)
r̄(s),

where m(s, t) is the time elapsed since the last visit to state s:782

m(s, t) , t�max{j|st+j = s, 0  j  t� 1}.

33



Due to the max term in m(s, t), the corresponding representation783

E⇡

" 1X

k=0

�
k
�
n(s,t)/m(s,t) (st+k = s

0)
���st = s

#

does not admit a closed-form recursion. However, we empirically tested a version of784

this type of reward with Q�-learning in the TwoRooms environment, modified so that785

the exponent on � is n(s, t)/(0.1m(s, t)). This was done so that reward replenishes786

at a slow rate, reducing the deviation from the standard diminishing setting. Episode787

length was capped at H = 100. All other settings are identical to the Q� experiment788

described in Appendix D. Results are presented in Fig. I.2 and a GIF is included in789

the supplementary material.790

Eligibility trace rewards

r(s, t) =

 
1� (1� �d)

t�1X

j=0

�
t�j

r
(st+j = s)

!
r̄(s),

where �d,�r 2 [0, 1] are diminishment and replenishment constants, respectively.791

Denoting the corresponding representation by ⌦⇡, i.e.,792

⌦⇡(s, s0) = E
" 1X

k=0

�
k

 
1� (1� �d)

kX

j=0

�
k�j

r
(st+j = s

0)

!
(st+k = s

0)

�����st = s

#
,

we obtain the following recursion:793

⌦⇡(s, s0) = (s = s
0) (�d � ��r(1� �d)Est+1⇠p⇡(·|s)M

⇡

��r
(st+1, s

0)

+ �Est+1⇠p⇡(·|s)⌦
⇡(st+1, s

0),

where M⇡

��r
denotes the successor representation of ⇡ with discount factor ��r. This794

representation could be learned by alternating TD learning between ⌦⇡ and M
⇡

��r
.795

We leave this to future work.796

Total time rewards
r(s, t) = �

n(s,t)
d

�
n(s,t)�t

r
r̄(s),

where �d,�r 2 [0, 1] are diminishment and replenishment constants, respectively.797

The corresponding representation is798

P
⇡(s, s0) = E

" 1X

k=0

�
k
�
nt(s0,k)
d

�
k�nt(s0,k)
r

(st+k = s
0)

�����st = s

#
,

which satisfies the following recursion:799

P
⇡(s, s0) = (s = s

0) + �(�d (s = s
0) + 1

� (s = s
0))(�r(1� (s = s

0)) + (s = s
0))Est+1⇠p⇡(·|s)P

⇡(st+1, s
0).

While neither the reward nor the representation are guaranteed to be finite, P ⇡ could800

be learned via TD updates capped at a suitable upper bound.801

34



Figure I.1: Visualizing three different replenishment schemes. For all schemes, r̄(s) = 1 and
visits to s are at t = 2, 5. (Left) The time elapsed reward with � = 0.5; (Middle) The eligibility trace
reward with �r = �d = 0.5; (Right) The total time reward with �d = 0.5,�r = 0.9.

Figure I.2: Performance on TwoRooms with replenishing rewards. Return is averaged over five
runs, with shading indicating one unit of standard error.

J � vs. �802

We now briefly discuss the interaction between the temporal discount factor �803

commonly used in RL and the diminishing utility rate �. The key distinction804

between the two is that all rewards decay in value every time step with respect to805

�, regardless of whether a state is visited or not. With �, however, decay is specific806

to each state (or (s, a) pair) and only occurs when the agent visits that state. Thus,807

� decays reward in a global manner which is independent of the agent’s behavior,808

and � decays reward in a local manner which dependent on the agent’s behavior. In809

combination, they have the beneficial effect of accelerating convergence in dynamic810

programming (??). This indicates the potential for the use of higher discount factors811

in practice, as paired with a decay factor �, similar (or faster) convergence rates812

could be observed even as agents are able to act with a longer effective temporal813

horizon.814

K Compute Resources815

The �F-based experiments shown were run on a single NVIDIA GeForce GTX816

1080 GPU. The recurrent A2C experiments took roughly 30 minutes, base feature817

learning for policy composition took approximately 45 minutes, �F learning for818

policy composition took approximately 10 hours, and the SAC experiments took819

35



approximately 8 hours per run. The �F training required roughly 30GB of memory820

due to the size of the dataset. All experiments in Section 6 and Appendix G were821

run on a single RTX5000 GPU and each training and evaluation run took about 30822

minutes. All other experiments were run on a 2020 MacBook Air laptop 1.1 GHz823

Quad-Core Intel Core i5 CPU and took less than one hour to train.824

L Broader Impact Statement825

We consider this work to be primarily of a theoretical nature pertaining to sequential826

decision-making primarily in the context of natural intelligence. While it may have827

applications for more efficient training of artificial RL agents, it is hard to predict828

long-term societal impacts.829

36



References305

[1] Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision under risk.306

Econometrica, 47(2):263–292, 1979.307

[2] Matthew Rabin. Risk aversion and expected-utility theory: a calibration theorem. Econometrica,308

68(5):1281–1292, 2000. doi: 10.2307/2999450.309

[3] Alex Pine, Ben Seymour, Jonathan P Roiser, Peter Bossaerts, Karl J Friston, H Valerie Curran,310

and Raymond J Dolan. Encoding of marginal utility across time in the human brain. Journal of311

Neuroscience, 29(30):9575–9581, 2009.312

[4] Martin L. Puterman. Markov decision processes: discrete stochastic dynamic programming.313

John Wiley and Sons, 2010.314

[5] Hermann Heinrich Gossen and Rudolph C Blitz. The laws of human relations and the rules of315

human action derived therefrom. Mit Press Cambridge, MA, 1983.316

[6] Kenneth J Arrow. The theory of risk-bearing: small and great risks. Journal of risk and317

uncertainty, 12:103–111, 1996.318

[7] John W Pratt. Risk aversion in the small and in the large. In Uncertainty in economics, pages319

59–79. Elsevier, 1978.320

[8] Nathan Wispinski, Andrew Butcher, Kory Wallace Mathewson, Craig S Chapman, Matthew321

Botvinick, and Patrick M. Pilarski. Adaptive patch foraging in deep reinforcement learning322

agents. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https:323

//openreview.net/forum?id=a0T3nOP9sB.324

[9] Sergey Shuvaev, Sarah Starosta, Duda Kvitsiani, Adam Kepecs, and Alexei Koulakov. R-325

learning in actor-critic model offers a biologically relevant mechanism for sequential decision-326

making. Advances in neural information processing systems, 33:18872–18882, 2020.327

[10] Peter Dayan. Improving generalization for temporal difference learning: The successor repre-328

sentation. Neural Computation, 5(4):613–624, 1993. doi: 10.1162/neco.1993.5.4.613.329

[11] Ted Moskovitz, Spencer R Wilson, and Maneesh Sahani. A first-occupancy representation for330

reinforcement learning. In International Conference on Learning Representations, 2022. URL331

https://openreview.net/forum?id=JBAZe2yN6Ub.332

[12] Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. Advances333

in Neural Information Processing Systems, 34:13–23, 2021.334

[13] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT335

Press, second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.336

html.337

[14] Kimberly L Stachenfeld, Matthew M Botvinick, and Samuel J Gershman. The hippocampus as338

a predictive map. Nature neuroscience, 20(11):1643–1653, 2017.339

[15] Andre Barreto, Shaobo Hou, Diana Borsa, David Silver, and Doina Precup. Fast reinforcement340

learning with generalized policy updates. Proceedings of the National Academy of Sciences,341

117(48):30079–30087, 2020. ISSN 0027-8424. doi: 10.1073/pnas.1907370117. URL https:342

//www.pnas.org/content/117/48/30079.343

[16] André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,344

and David Silver. Successor features for transfer in reinforcement learning. Advances in neural345

information processing systems, 30, 2017.346

[17] André Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel347

Mankowitz, Augustin Žídek, and Rémi Munos. Transfer in deep reinforcement learning using348

successor features and generalised policy improvement, 2019.349

[18] Léonard Blier and Yann Ollivier. The description length of deep learning models. Advances in350

Neural Information Processing Systems, 31, 2018.351

10

https://openreview.net/forum?id=a0T3nOP9sB
https://openreview.net/forum?id=a0T3nOP9sB
https://openreview.net/forum?id=a0T3nOP9sB
https://openreview.net/forum?id=JBAZe2yN6Ub
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://www.pnas.org/content/117/48/30079
https://www.pnas.org/content/117/48/30079
https://www.pnas.org/content/117/48/30079


[19] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.352

[20] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,353

Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-354

ment learning. In International conference on machine learning, pages 1928–1937. PMLR,355

2016.356

[21] Arthur Juliani, Samuel Barnett, Brandon Davis, Margaret Sereno, and Ida Momennejad. Neuro-357

nav: a library for neurally-plausible reinforcement learning. arXiv preprint arXiv:2206.03312,358

2022.359

[22] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9360

(8):1735–1780, 1997.361

[23] Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A362

framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112363

(1):181–211, 1999. URL https://www.sciencedirect.com/science/article/pii/364

S0004370299000521.365

[24] Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does zero-shot reinforcement learning366

exist? In The Eleventh International Conference on Learning Representations, 2023. URL367

https://openreview.net/forum?id=MYEap_OcQI.368

[25] Benjamin Y Hayden, John M Pearson, and Michael L Platt. Neuronal basis of sequential369

foraging decisions in a patchy environment. Nature neuroscience, 14(7):933–939, 2011.370

[26] Tehrim Yoon, Robert B Geary, Alaa A Ahmed, and Reza Shadmehr. Control of movement vigor371

and decision making during foraging. Proceedings of the National Academy of Sciences, 115372

(44):E10476–E10485, 2018.373

[27] Anthony S Gabay and Matthew AJ Apps. Foraging optimally in social neuroscience: computa-374

tions and methodological considerations. Social Cognitive and Affective Neuroscience, 16(8):375

782–794, 2021.376

[28] Eric L. Charnov. Optimal foraging, the marginal value theorem. Theoretical Population Biology,377

9(2):129–136, 1976. ISSN 0040-5809.378

[29] Peter Nonacs. State dependent behavior and the marginal value theorem. Behavioral Ecology,379

12(1):71–83, 2001.380

[30] Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva,381

Katrina McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, et al. Behaviour suite for382

reinforcement learning. arXiv preprint arXiv:1908.03568, 2019.383

[31] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint384

arXiv:1607.06450, 2016.385

[32] Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural386

reinforcement learning method. In Machine Learning: ECML 2005: 16th European Conference387

on Machine Learning, Porto, Portugal, October 3-7, 2005. Proceedings 16, pages 317–328.388

Springer, 2005.389

[33] Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. Advances in neural390

information processing systems, 5, 1992.391

[34] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in392

actor-critic methods. In Proceedings of the 35th International Conference on Machine Learning,393

ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, 2018.394

[35] Ted Moskovitz, Michael Arbel, Ferenc Huszar, and Arthur Gretton. Efficient wasserstein natural395

gradients for reinforcement learning, 2020.396

[36] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy397

maximum entropy deep reinforcement learning with a stochastic actor, 2018.398

11

https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://openreview.net/forum?id=MYEap_OcQI


[37] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,399

and Wojciech Zaremba. Openai gym, 2016.400

[38] Ted Moskovitz, Jack Parker-Holder, Aldo Pacchiano, Michael Arbel, and Michael Jordan. Tacti-401

cal optimism and pessimism for deep reinforcement learning. Advances in Neural Information402

Processing Systems, 34:12849–12863, 2021.403

[39] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university404

press, 2006.405

12


	Introduction
	Preliminaries
	Diminishing Marginal Utility
	The  Representation
	Continuous State Spaces

	Policy Evaluation, Learning, and Composition under DMU
	Policy Evaluation
	Policy Learning
	Policy Composition

	Understanding Natural Behavior
	Conclusion
	Derivation of R Recursion
	Theoretical Analysis
	Proof of thm:lambdagpi
	An Extension of thm:lambdagpi

	An nth Occupancy Representation
	Further Experimental Details
	Policy Evaluation
	Policy Learning
	Tabular GPI
	Pixel-Based GPI
	Continuous Control
	Learning the O with FB

	Additional Results
	Advantage of the Correct 
	The  Operator
	Experimental Results with the FB Parameterization
	O and the Marginal Value Theorem

	SAC
	Replenishing Rewards
	 vs. 
	Compute Resources
	Broader Impact Statement

