
Debiasing Pretrained Generative Models by Uniformly
Sampling Semantic Attributes

Walter Gerych1 ∗ , Kevin Hickey1, Luke Buquicchio1, Kavin Chandrasekaran1, Abdulaziz Alajaji2,
Elke Rundensteiner1, Emmanuel Agu1

1Worcester Polytechnic Institute, Worcester, MA
2King Saud University, Riyadh, Saudi Arabia

Abstract

Generative models are being increasingly used in science and industry applications.
Unfortunately, they often perpetuate the biases present in their training sets, such
as societal biases causing certain groups to be underrepresented in the data. For
instance, image generators may overwhelmingly produce images of white people
due to few non-white samples in their training data. It is imperative to debias
generative models so they synthesize an equal number of instances for each group,
while not requiring retraining of the model to avoid prohibitive expense. We
thus propose a distribution mapping module that produces samples from a fair
noise distribution, such that the pretrained generative model produces semantically
uniform outputs - an equal number of instances for each group - when conditioned
on these samples. This does not involve retraining the generator, nor does it require
any real training data. Experiments on debiasing generators trained on popular
real-world datasets show that our method outperforms state-of-the-art approaches.

1 Introduction

Background. Generative models have become a cornerstone of modern machine learning, allowing
for the synthesis of realistic data for many domains, including images [19, 35], audio [22], and text
[11, 4]. However, even leading generative models often reproduce the biases present in their training
data [13, 26], such as image generation models strongly over-representing white males [24]. As
generative models are increasingly used for data augmentation to train downstream models [5] in
domains from scientific to medical fields [25, 9], biased synthesized data could lead to results that
are skewed or inaccurate. This can exacerbate existing issues such as facial recognition models
performing significantly worse on non-white individuals [29] or healthcare models being much
less accurate for certain minority groups [23]. Further, with the rapid growth of generative models
in commercial applications, the potential financial, legal and ethical costs of biased outputs are
significant. Thus, it is imperative to develop methods that mitigate bias in generative models to ensure
that their outputs are fair and equitable by generating a roughly equal number of samples of each
group. We call such outputs semantically uniform, and the attribute that they are uniform over - such
as gender or race - the semantic attribute.

State-of-the-art. Existing methods for addressing bias in generative models often train a new model
from scratch [27, 37, 2], though this is computationally expensive, requires significant labeled data,
and wastes resources already previously spent training the existing (biased) generative model. Latent
attribute editing methods modify the samples in the latent space of generative models to produce
controlled changes in the output, and could potentially be used to correct for bias [17]. However, this
requires making limiting assumptions such as that semantic attributes correspond to linear directions

∗Corresponding author: wgerych@wpi.edu

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Worcester Polytechnic Institute

Pretrained
Unconditional

Generator

Standard Noise Distribution

Freq Semantic Attribute

White

High Level Goal

Fair Noise Distribution

Asian Black
Native

American Pacific

Islander

Freq

White Asian Black
Native

American Pacific

Islander

Semantic Attribute

Figure 1: A generator conditioned on a fair noise distribution yields outputs that are uniform over a
semantic attribute (i.e. race).

in the latent space [17, 38, 6, 33, 39, 8]. While some recent advances have been made in uniformly
sampling the output space of a pretrained model [15, 16], they can fail to yield uniform samples over
semantic attributes [15]. For example, they will make an image generator’s output uniform over a
manifold in the pixel space, but may still overproduce images of white individuals as the output won’t
be uniform over the semantic attribute of race.

Problem statement. Recently, numerous pretrained generative models and classifiers have been
released for a variety of domains. For instance, there are publicly available generators for images of
faces [19] followed by classifiers that predict attributes such as race and age of faces [36]. Here, we
assume access to a pretrained generative model Gθ that maps a noise space Z to a feature space X ,
and a pretrained classifier Cϕ that maps X to a discrete semantic attribute space Y . Additionally, as
error rates are often reported for released models, we assume that the class-conditional errors; i.e., the
probability that an instance actually belongs to group j given that the classifier incorrectly predicted
group i, is known. Our goal is to model a distribution Q such that for z ∼ Q, Gθ(z) produces samples
that are uniform over the attribute space Y , using only predictions from Cϕ to guide the output of
Gθ. For instance, if there are five discrete semantic groups in Y , Gθ will produce an equal number
of instances belonging to each group when conditioned on draws from Q. We call Q a fair noise
distribution; see Figure 1 for an example.

Challenges. Our task of producing samples that are semantically uniform has three major hurdles:

1. Expensive retraining: It is often prohibitively expensive to retrain large generative models in terms
of computational resources and time.

2. Inaccessible training data: The data used to train a released generator is typically unavailable;
either due to being proprietary or simply too large of a volume for most practitioners to utilize.
Thus, we do not have adequate data available to tune the generator or classifier.

3. Inaccurate classifier: As we do not have any samples of real data available, we must rely on the
possibly imperfect semantic attribute classifier Cϕ to provide labels. However, since classifiers
may produce inaccurate predictions - especially on underrepresented groups of Y , this can cause
incorrect estimations of the number of instances for each group.

Proposed approach. We propose to train a distribution mapper network Mω : Z → Z that
transforms draws from a standard noise distribution into draws from a fair noise distribution, such that
once noise samples are transformed by Mω they condition the generator to produce a roughly equal
number of instances for each semantic group in Y . We achieve this by first constructing a dataset of
instances from Z that follow a fair noise distribution, which allows us to estimate the true distribution
of the semantic attribute given an imperfect classifier. Using our proposed strategy, noise samples are
collected such that the pretrained classifier’s (corrected) distribution is uniform. Then, we use this
fair noise dataset to train Mω to inexpensively sample new instances from the fair noise distribution.
The output of Mω serves as input to the pretrained generator, which yields samples that are uniform
over the space of the semantic attribute. Importantly, this approach does not require retraining the
main generative model, thus incurring minimal costs. Our method works without requiring any real
training data. Relying only on a pretrained generator and classifier pair, we circumvent the need to
acquire any real data (labeled or otherwise) even using only an imperfect classifier.

Contributions. In this work, we:

2

• Show how to construct a fair noise dataset that produces semantically uniform synthetic outputs
when passed through a generator, assuming an accurate classifier is available.

• Design a method to correct for the error incurred by an imperfect classifier, to construct a dataset
of samples that come from a fair noise distribution.

• Propose an approach for training a distribution mapping network to sample from a fair noise
distribution on-the-fly.

• Demonstrate the utility of our approach on a range of real-world datasets and released generators.

2 Problem Definition

Assume we are given a pretrained generative model Gθ that maps a latent space Z to a feature
space X . In general, we assume that Z is of a lower dimensionality than X . Additionally, we
assume we are given a pretrained classifier Cϕ that maps X to a semantic attribute space Y , where
Y is the set of group (class) labels. Thus, Y = {Y1, Y2, . . . , YN}, where Yi is the label of the
ith group. When not otherwise ambiguous, we will refer to group Yi as group i. Let y and ŷ be
the random variables indicating the true semantic attribute label and the predicted label from Cϕ

respectively. Let E be the prediction-conditional error rates of Cϕ, with E being a left stochastic
matrix such that Ei,j = P (y = i|ŷ = j). Let Cϕ be a better-than-random classifier, i.e., for N
groups, P (y = i|ŷ = i) > 1

N for all groups i. Thus, E is by definition a diagonally dominant matrix.
As it is typical for developers to report the error rates of their classifiers, we assume that E is known.
While these error rates are typically reported for the classifier’s training distribution, we can correct
E to apply to the generated distribution under a label shift assumption [40]. See the Appendix for
details on this and for the proofs of the upcoming theorems. Lastly, let C ′ denote an ideal perfect
classifier that always correctly predicts y with zero error. C ′ is hypothetical and unavailable to us.

Our goal here is to sample from a Fair Noise Distribution, defined as follows:

Definition 1 (Fair Noise Distribution). For a generative model Gθ : Z → X , a distribution Q over Z
is a Fair Noise Distribution with respect to Y if for z ∼ Q, C ′(Gθ(z)) ∼ Unif(Y), where Unif(Y)
is the uniform distribution over the groups in Y .

Intuitively, a distribution Q is a Fair Noise Distribution if Gθ produces samples that are uniform over
the semantic space Y when conditioned on Q. For example, if Gθ synthesizes images of people and
Y is the set of races, then Q is a Fair Noise Distribution if conditioning on it makes Gθ produce a
roughly equal number of images of people from each race.

More realistically, we want to find a Q that is easy to sample from and produces reasonable variance
from the generator. That is, it does not yield only one unique example of each group, which would
otherwise make the problem trivial. Notably, we assume that we do not have any real training data
(i.e., no real samples from X). Also, we do not aim to retrain Gθ, i.e., not change the parameters θ of
Gθ. Additionally, we do not make any assumptions on the differentiability of Gθ or Cϕ.

3 Methodology

Our approach for sampling from a Fair Noise Distribution Q hinges on training a distribution mapping
function Mω such that Mω(z) ∼ fQ, where z is a draw from the original conditioning distribution
of Gθ. The functional form of Mω has many options; for instance, Mω can be a GAN generator [12],
a VAE [21], a DDPM [14], or a normalizing flow model [34, 7]. No matter which form is chosen, we
will need a dataset of samples drawn from Q to train Mω .

3.1 Collecting Fair Samples Using Imperfect Classifiers

A naive method for collecting a dataset of samples distributed according to a Fair Noise Distribution
Q is given in Algorithm 1. The basic approach is to continuously sample z from the noise distribution,
collect the generator’s output for each draw, and use the classifier to determine the value of the
semantic attribute corresponding to each noise draw. As a result, samples of z corresponding to each
group are saved to dataset DQ until DQ has S number of samples for each y ∈ Y . This procedure
results in samples of noise that once passed through Gθ will be uniform across the semantic attribute

3

Algorithm 1 Naively collect data from Q
1: procedure NAIVE_Q_DATASET(Gθ, Cϕ, S) ▷ Colect from Q by trusting Cϕ

2: Input: Pretrained generator Gθ and classifier Cϕ, number of samples S for each attribute
3: Output: Dataset with S samples for each y ∈ Y
4: Q_dataset← dict() ▷ Initialize empty dictionary for the dataset
5: for group ∈ Y do
6: Q_dataset[group] = [] ▷ Initialize every group as empty array
7: end for
8: while ∃ key ∈ Q_dataset.keys s.t. length(Q_dataset[key]) < S do
9: z ∼ Pnoise ▷ Sample noise

10: group = Cϕ(Gθ(z)) ▷ Get the predicted group of Gθ(z)
11: if length(Q_dataset[class]) < S then
12: Q_dataset[class].append(z) ▷ If < S samples for that class, add z to the dataset
13: end if
14: end while
15: return Q_dataset ▷ Return dataset with S samples for each group in Y
16: end procedure

space according to Cϕ; i.e., for z ∼ DQ, Cϕ(Gθ(z)) ∼ Unif(Y). However, this will only yield
samples from a Fair Noise Distribution in the case where Cϕ is a perfect classifier (such that E is
the identity matrix). If Cϕ is an imperfect classifier then the distribution may not be truly fair. For
instance, if Cϕ often incorrectly predicts group j as group i, then instances with attributes matching
group i may be more prevalent than those for group j.

Fortunately, we can utilize knowledge from the prediction-conditional error rates E to sample a
dataset of noise that will yield more semantically uniform generated instances despite the noisy
predictions of Cϕ. To achieve this, we use a weighted sample of datapoints predicted for each group.
Let Pz|Cϕ=i be a distribution over Z such that the imperfect classifier’s prediction of generated
samples arising from this distribution are all of group i; Cϕ(Gθ(z)) = i for z ∼ Pz|Cϕ=i. In addition,

let Qλ =
∑|Y|

i=1 λiPz|Cϕ=i, such that λi > 0 ∀ i and
∑|Y|

i=1 λi = 1.

We can in many instances find values of λ = {λ1, λ2, . . . , λ|Y|} such that Qλ is a Fair Noise
Distribution, as stated in Lemma 1:

Lemma 1. Let 1|Y| be the vector of length |Y| such that every element is 1. Let cone(E) =
{
∑

aiE:,i|ai ∈ R≥0} be the finite convex cone generated by the columns of the prediction-conditional
error matrix. If 1|Y| ∈ cone(E), then ∃ λ such that Qλ is a Fair Noise Distribution.

Additionally, we can show that in the case where y is binary and Cϕ is better-than-random, we can
always find λ such that samples drawn from Qλ will definitely yield generated samples that are
uniform over the semantic attributes, as shown by the following lemma.

Lemma 2. Let |Y| = 2 and let Cϕ be better-than-random, such that the diagonal elements of E are
each greater than 1

2 . Then, ∃ λ such that Qλ is a Fair Noise Distribution.

The proof of Lemma 2 comes from showing that ⟨1, 1⟩ is always in the finite convex cone generated
by Cϕ’s prediction-conditional error matrix, with Lemma 1 implying that this property guarantees
that Qλ will yield samples that produce semantically uniform generated instances.

Even in the cases where we cannot guarantee that there exists an ideal λ, we can still find values for
λ that will yield a distribution that is as close as possible to a uniform distribution over the semantic
space, with the difference from uniformity measured by KL divergence. For this, let us define a
Minimally-Unfair Noise Distribution.

Definition 2 (Minimally-Unfair Noise Distribution). For a generative model Gθ : Z → X ,
a distribution Qλ =

∑|Y|
i=1 λiPz|Cϕ=i, λ = {λ1, λ2, . . . , λ|Y|}, λi ∈ R≥0,

∑|Y|
i=1 λi = 1,

is a Minimally-Unfair Noise Distribution over Z with respect to Y if for z ∼ Qλ, λ =
argmin

λ
KL{C ′(Gθ(z))||Unif(Y)}.

4

Algorithm 2 Collecting a dataset of samples from Qλ

1: procedure WEIGHTED_Q_DATASET({Dz|Cϕ=i}
|Y|
i=1, S)

2: Input: Dz|Cϕ=i for i from 1 → |Y|: Dataset of noise samples that produce generated
instances which Cϕ classifies as group i; S: number of instances we wish to sample from Qλ

3: Output: Dataset with S samples from Qλ

4: λ← argmaxH(Pλ
E)

5: Q_dataset = [] ▷ Initialize the Qλ as an empty array
6: for m← 1 to S do
7: r ← random_int(λ) ▷ get random int (1 to |Y|) with probability proportional to λ
8: z ∼ Dz|Cϕ=r

9: Q_dataset.append(z)
10: end for
11: return Q_dataset ▷ Return dataset with S samples from Qλ

12: end procedure

Intuitively, Qλ is a Minimally-Unfair Noise Distribution if the values of λ yield generated samples
with minimal divergence from a semantically uniform distribution, under the constraint that Qλ is
a convex combination of the Pz|Cϕ=i’s. This constraint is required so that we can sample from Qλ

using a weighted sampling technique based off of our imperfect classifier Cϕ.

Fortunately, we can easily find the values of λ that will yield a Minimally-Unfair Noise Distribution.
Before deriving the procedure for this, let us define the distribution Pλ

E as the normalized weighted
sum of the columns of E, where each column i is weighted according to a corresponding λi:

Definition 3 (Pλ
E). Define Pλ

E =
∑|Y|

i=1 λiE:,i as a distribution over Y determined by prediction-
conditional error matrix E and λ = {λ1, λ2, . . . , λ|Y|}, λi ∈ R≥0,

∑|Y|
i=1 λi = 1.

Next, we note that finding the values for λ that maximize the entropy of Pλ
E is equivalent to finding

the λ for which the divergence between Pλ
E and Unif(Y) is minimized. This is stated formally in the

following Proposition.
Proposition 1. If λ∗ = argmax

λ
H(Pλ

E) where H is entropy, then for the same λ∗ it is true that

λ∗ = argmin
λ

KL{Pλ
E ||Unif(Y)}.

Before stating the theorem that directly implies a strategy for learning λ for which Qλ is Minimally-
Unfair, all that is left to do is to link Pλ

E with the distribution of C ′(Gθ(z)):

Proposition 2. If z ∼ Qλ, then it is true that C ′(Gθ(z)) ∼ Pλ
E .

Proposition 2 states that for a given λ the distribution of the perfect classifier C ′ given samples of the
generator conditioned on draws from Qλ will be distributed according to Pλ

E . Now, we state Theorem
1 which directly implies our sampling strategy.
Theorem 1. If λ∗ = argmax

λ
H(Pλ

E), then Qλ∗ is a Minimally-Unfair Noise Distribution. When

Cϕ = C ′ or 1|Y| ∈ cone(E), then Qλ∗ is also a Fair Noise Distribution.

Theorem 1 follows from the preceding Propositions. To see how Theorem 1 implies a strategy
for sampling from a Minimally-Unfair Noise Distribution, recall that Qλ is defined as the mixture
of distributions of each Pz|Cϕ=i for i from 1 → |Y| with λi as the ith mixture weight, where
Pz|Cϕ=i is the distribution of z’s that yield generated samples that the noisy classifier predicts as
group i. The above theorem states that the mixture of these distributions with mixture weights
λ that produce maximum entropy for Pλ

E will yield a mixture distribution Qλ that is worse-case
Minimally-Unfair and, when possible, will be a perfect Fair Noise Distribution. Thus, to sample
from Qλ all that is needed is to 1) construct datasets Dz|Cϕ=i for i from 1 → |Y| such that if
z ∈ Dz|Cϕ=i then Cϕ(Gθ(z)) = i (i.e., these datasets serve as proxies for Pz|Cϕ=i); 2) find λ such
that H(Pλ

E) is maximized; and 3) perform a weighted sampling from each Dz|Cϕ=i proportional
to its corresponding λi. Note that the datasets Dz|Cϕ=i can be formed by an approach similar to

5

Worcester Polytechnic Institute

Methodology

1

Noise/Latent
Distribution

Distribution
Mapper

Pretrained
Unconditional

Generator

Perfect
Classifier

Semantic Attribute

Freq
Fair Noise

Distribution

Figure 2: Distribution Mapper Mω turns a standard noise distribution into a Fair Noise Distribution.

Algorithm 1. The algorithm returns a dictionary with keys being the elements of Y , and the values
of each key returned from that procedure form the corresponding required datasets (i.e., Dz|Cϕ=i).
A pseudo-code implementation of our approach for constructing a dataset of noise samples from a
Minimally-Unfair Noise Distribution Qλ is given in Algorithm 2.

3.2 Training the Distribution Mapper

Let DQλ be a dataset of noise samples from the space Z distributed according to Qλ, such that
DQλ is obtained as described in the previous subsection (i.e., DQλ comes from Algorithm 1 in the
case where the error rates E are unknown or Cϕ can be assumed to be an ideal classifier, or from
Algorithm 2 otherwise). Now, we train a distribution mapper Mω : Z → Z such that if v ∼ Pnoise

then Mω(v) ∼ Qλ, where Pnoise is an easy-to-sample-from noise distribution such as a multivariate
Gaussian, or whatever noise distribution was used as input when training Gθ. As previously stated,
the functional form of Mω and the procedure used to train it is flexible. There is a wide class of
generative models and training strategies that could be employed [3]. We chose to model Mω as a
GAN generator and find the parameters of Mω using adversarial training. Thus, we train Mω as such:

max
ρ

min
ω

L(Mω, Fρ) = Ez∼DQλ

[
log

(
Fρ(z)

)]
− Ev∼Pnoise

[
log

(
1− Fρ(Mω(v))

)]
,

where Fρ is a discriminator network.

Note that z is a multivariate vector, where the ordering of the elements of the vector are arbitrary
(i.e., there is likely no spacial relationship in z). Thus, the inductive bias of convolutional filters used
in many leading GANs [20, 19, 32] is not appropriate in this case. Rather, we suggest to train the
distribution mapper using a GAN architecture designed for tabular data; notably, CTGAN which has
shown to perform well on data where a sequential or spacial inductive bias is not appropriate [43].

After training Mω we can sample an arbitrary amount of samples from Q without applying Algorithm
1 or Algorithm 2, as Mω(v) ∼ Qλ for v ∼ Pnoise. Importantly, C ′(Gθ(Mω(v))) ∼ Unif(Y) when
Qλ is a Fair Noise Distribution, and will otherwise have minimum divergence from Unif(Y) under
the constraints given in Definition 2. Notably, we achieve this with no samples of real data, an
imperfect classifier, and without fine-tuning Gθ. Instead, the only training needed is for Mω, which
in general should require much less complexity (and thus much less cost) than Gθ. Figure 2 shows
the Distribution Mapper paired with the pretrained generator Gθ.

4 Experiments

We now experimentally evaluate our approach. Details such as hyperparameter choice and architec-
tures are available in the appendix. Code for our method is available in the supplemental material.

We compare our approach on a range of generators: VAE [21], DCGAN [32], Progressive GAN [19],
and a Latent Diffusion Model (LDM) [35].

4.1 Compared Methods

Latent Editing (2019). We apply the commonly used latent editing [17, 38, 6, 33, 39, 8] approach to
the task of constructing a dataset with an equal number of instances from each group in Y . While
some work uses non-linear directions when editing [1], using linear directions has been shown to
work as well in practice [17, 8]. Thus, for each group y ∈ Y , we fit a linear classifier Ky on noise
samples from Pnoise, with the goal of separating noise instances that are mapped to group y from
those mapped to all other groups. After training these classifiers, we can sample a noise instance
belonging to a group with the following procedure: First, sample z ∼ Pnoise; if Ky(z) = y then

6

Circles Squares
Attribute

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
D

en
si

ty

Sampling With and Without Error Correction
 Sampling (With Error Correction)

Naive Sampling (No Error Correction)

(a) Effect of bias correction; 0.5 (dashed line) is ideal.

Circles Squares
Attribute

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
en

si
ty

Distribution of Attributes After Bias Correction

Distribution Mapping (Ours)
Latent Editing (Biased Classifier)
Latent Editing (Ground Truth Classifier)
MaGENT
Polarity Sampling (Antimodes)
Polarity Sampling (Modes)
Shifted Semantic Distribution
Vanilla Generator

(b) Comparison of methods; 0.5 (dashed line) is ideal.

Figure 3: a) Effects of applying our bias correction when constructing Fair Noise dataset; b) compari-
son of methods on the Shapes dataset.

return z, otherwise perform latent editing on z until Ky(znew) = y. The editing approach is given by
znew = zprevious + ϵ · ηy, where ηy is the normal vector to Ky’s decision boundary and ϵ is a step
size. We set ϵ = 0.1 in our experiments.

MaGNET (2022). This method was recently proposed to uniformly sample the manifold of pretrained
generative models [15], using a sampling strategy that leverages the Jacobian of the generative model.
The authors argue that while this does not guarantee an equal distribution for each group, MaGNET
should increase the frequency of disadvantaged groups by sampling more often from low-density
regions of the generative manifold.

Polarity Sampling (2022). An extension of MaGNET, Polarity Sampling allows for more controlled
sampling over the generative manifold [16]. Sampling is controlled by a parameter ρ where as ρ goes
to −∞ modes are sampled from increasingly often, antimodes are sampled from more as ρ→∞,
and the original generative distribution is sampled from for ρ = 0. We thus compare against two
Polarity Sampling settings; Polarity Mode Sampling where ρ = −2, and Polarity Antimode Sampling
where ρ = 2. By a similar argument used for MaGNET, sampling from antimodes may result in
minority groups being more represented.

Shifted Semantic Distribution (2021). This method provides a training-free approach for debiasing
pretrained generative models [42]. The key idea is to fit Gaussian mixture models on the latent space,
where these mixtures are fit on regions that correspond to unique values of the semantic attribute.
However, unlike our approach, Shifted Semantic Distribution assumes that each attribute class can be
uniquely identified by a hyperplane in the noise space.

Standard Generator. We compare against unmodified pretrained generators used as initially intended.
This is a baseline which other methods should outperform.

4.2 Uniformly Sampling From Shapes Dataset

We first evaluate our approach on a dataset of synthetic images. Each image is of either a circle or
a square, where the shape has a random size, color, and position in the image. We use the object’s
shape as the semantic attribute; thus, Y = {‘Circle’, ‘Square’}. This dataset was first used by
Jing et al. [18]. We utilize the VAE Jing et al. compared against in the same work as our generator.

Testing Classifier Bias Correction Approach. We demonstrate the utility of correcting for a biased
classifier when constructing a dataset of Fair Noise samples. To that end, we compare the distribution
of each group when we trust the biased classifier Cϕ (Algorithm 1) to the distribution found when
using our proposed biased correction approach (Algorithm 2). We use a linear classifier trained to
distinguish images of squares from circles as our biased classifier Cϕ. This classifier is implemented
using Scikit-learn’s LinearSVC classifier [31]. As a ground truth, we utilize a deep convolutional
network classifier that achieves approximately perfect accuracy on the task of distinguishing squares
from circles. Thus, this network acts as C ′.

7

Figure 3 a) shows the distribution of shapes in the Fair Noise Dataset with error correction (Algorithm
2) and without applying our bias correction approach (Algorithm 1). As |Y| = 2 for this experiment,
the best case is when the density of each group is 0.5. Clearly, our bias correction approach yields
a dataset that is much closer to being uniform over the semantic attribute. This implies the need to
correct for inaccurate classifiers when constructing Fair Noise Datasets.

Comparative Study on Shapes Dataset. We next test our proposed Distribution Mapping approach
(Section 3.2) against the compared methods. For our approach, we train Mω as a CTGAN [43]
trained on the corrected Fair Noise Distribution obtained in the previous experiment. As the compared
Latent Editing method also requires a classifier as a ground truth for training each of its linear models
Ky , we compare against two versions of the method: 1) Latent Editing (Biased Classifier) using the
biased Cθ as a ground truth, and 2) Latent Editing (Perfect Classifier) which uses the ground-truth,
effectively perfect convolutional network discussed above. Note that from our problem definition,
this perfect classifier would usually be unavailable to us.

As Figure 3 b) shows, our approach clearly results in the most uniform distribution out of all compared
methods. Additionally, the Latent Editing approach performs much worse when using the biased
classifier. As expected, Polarity Antimode Sampling does indeed increase the frequency of the
minority class (Circles). Interestingly, MaGNET also increases the frequency of the minority class,
but is roughly as far from uniform as is the distribution of the original generator; MaGNET flips the
distribution and under-represents what was previously the majority class.

4.3 Age Bias in Face Image Generator

In this next experiment, we evaluate our proposed method’s ability to debias a generative model
that produces images of people’s faces. Specifically, the generative model is a DCGAN [32] that
we pretrain on a grayscale version of the UTKFace dataset [44]. For this experiment, the semantic
attribute is Age. The age of each individual in UTKFace is given as a label. As our approach
assumes the semantic attribute Y is discrete, we bin the ages in increments of 10 years such that
Y = {‘ ≤ 9′, ‘10-19′, . . . , ‘90-99+′}. We train a deep convolutional network as the ground truth
classifier (used for evaluation), and use a corresponding classifier with a quarter of the feature maps
as the biased classifier.

Evaluating Bias Correction Approach With Large Number of Classes. We repeat the bias
correction experiment we performed on the Shapes data again for the UTKFace Generator. While
the previous experiment required only two classes, we now have ten classes (one for each age bin).
Despite this increase, Figure 4 a) shows that performing the bias correction we propose in Algorithm 2
yields a much more uniform Fair Noise training dataset than results from trusting the biased classifier.

Comparative Study on Reducing Age Bias. We evaluate all methods on the UTKFace Generator,
with the goal of making the output images uniform over Age (i.e., generate an equal number of images
of people belonging to each age group). Figure 4 b) clearly shows that our approach (orange line)
produces a much more uniform distribution over ages than the compared method, though it does
generate images for the 10-19 bin too infrequently. While approaches such as Polarity Antimode
Sampling and MaGNET are somewhat less biased away from generating images of young people,
they fail to generate many samples for older individuals. Note that for the Latent Editing approach
the we fit a linear regressor (guided by the ground truth) on the latent space rather than a classifier, as
age is more naturally a continuous attribute.

4.4 Uniformly Sampling Over Race in Progressive GAN

We apply our approach to debias a pretrained Progressive GAN [19]; specifically, the PyTorch
[30] version of the ‘celebAHQ-256’ model 2. We use the Race of the individual in each im-
age as the semantic attribute, and use the MTCNN classifier from the DeepFace [36] package
to classify race. Matching the classes available in DeepFace, our semantic attribute space is
Y = {‘Asian’, ‘Indian’, ‘White’, ‘Middle Eastern’, ‘Latino Hispanic’, ‘Black’}. The Pro-
gressive GAN strongly favors generating white individuals, likely because its training images were of
predominantly white celebrities. Here, we consider the classifier to be accurate.

2see https://pytorch.org/hub/facebookresearch_pytorch-gan-zoo_pgan/

8

https://pytorch.org/hub/facebookresearch_pytorch-gan-zoo_pgan/

9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99+
Age Group

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
en

si
ty

Sampling With And Without Error Correction
Naive Sampling (No Error Correction)

 Sampling (With Error Correction)

(a) Effect of bias correction; 0.1 (dashed line) is
ideal.

9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99+
Age Group

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
en

si
ty

Distribution Of Ages Resulting From Compared Methods
Distribution
Mapping (Ours)
Latent Editing
MaGNET
Polarity Sampling (Antimodes)

Polarity Sampling (Modes)
Shifted Semantic Distribution
Standard DCGAN

(b) Comparison of methods; 0.1 (dashed line) is
ideal.

Figure 4: a) Our biased correction approach yields better Fair Noise Distributions; b) comparison of
methods on correcting for age bias in the UTKFace DCGAN.

Distribution
Mapping (Ours)

Latent Editing MaGNET Polarity Sampling
(Antimodes)

Polarity Sampling
(Modes)

Shifted Semantic
Distribution

Standard
Progressive GAN

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

K
L

D
iv

er
ge

nc
e

0.41

0.62
0.56

0.49
0.57 0.60

0.68

KL Divergence From Uniform Of Each Approach For The CelebHQ Progressive GAN

Figure 5: KL Divergence between the distribution over the semantic space for the output of each
method (lower is better).

Comparative Study of Debiasing Progressive GAN. For each method, we report the KL divergence
between a uniform distribution and the classifier’s output on the samples generated from the method
in Figure 5. Note that unlike in the previous experiments, for this metric lower is better. Our
approach has the lowest KL divergence, indicating it produces a more equal number of images of
people from each race than any compared method. We note that despite this we still observe an
over-representation of images of white individuals in the samples produced by our (and all other)
approaches (see Appendix). This indicates that most regions of the latent space are likely associated
with semantic attribute, and unless the distribution mapper very closely matches its Fair Noise training
distribution, white persons will still be over-represented. Still, our approach results in a distribution
that is most fair out of all compared methods. As we observed previously, sampling antimodes with
Polarity Sampling produces next-best results; likely because it explicitly draws from low-probability
regions of the latent space, which correspond to non-white individuals.

4.5 Uniformly Sampling Age in Latent Diffusion Model

Although our focus is primrily on models that map from low dimensional latent space to a higher
dimensional feature space, we also evaluate our approach on a latent diffusion model 3 [35] that was
trained on the Celeba-HQ dataset [19]. For this experiment we chose Age as the semantic attribute,
and debias according to the following age categories: { ≤ 29, 30-49, ≥ 50 }. We utilize a pretrained
ViT age classifier 4 to provide feedback for the semantic attribute. Since our approach requires
each latent code to be mapped to a single output image, we utilized the DDIM [41] sampler for the
diffusion model to yield a deterministic diffusion process. We used a DDIM diffusion model to train
the Mapper network as well.

4.5.1 Comparative Study on Debiasing Latent DDPM.

We report the KL divergence from uniform for the semantic distribution of each compared method
in Table 1. Note that we exclude MaGNET and Polarity Sampling from this experiment, due to

3We utilized this model: https://huggingface.co/CompVis/ldm-celebahq-256
4https://huggingface.co/nateraw/vit-age-classifier

9

https://huggingface.co/CompVis/ldm-celebahq-256
https://huggingface.co/nateraw/vit-age-classifier

Distribution Mapping
(Ours)

Latent
Editing

Vanilla
Latent Diffusion

KL Divergence From
Uniform Distribution

For Semantic Attribute “Age"
(Lower is Better)

0.130 0.525 0.411

Table 1: Comparative study on debiasing the Age attribute for a pretrained LDM.

the difficulty of obtaining the Jacobian determinant required by these methods. Results show that
our approach yields significantly better scores than the other compared method, indicating that our
approach can potentially be useful for debiasing Diffusion models as well.

5 Broader Impact And Limitations

The goal of this work, reconditioning generative models to not reproduce the biased distribution of
their training set but rather produce one that treats each group equitably, is driven by the desire to
mitigate the effects that systemic biases have on generative models increasingly used in real world
applications. This has the potential for beneficial societal impact by counteracting the harmful effects
of such systemic biases that lead these models to be unfair to underrepresented groups. However,
the potential negative impacts of advancing generative modeling should not go unconsidered. Such
models have already been used for some harmful applications such as Deep Fakes [28]. It is important
to stress that while our approach aims to mitigate the effects of bias in existing models, it is not a
fix-all nor an excuse to train models on knowingly biased data. When possible, it is essential to
collect fair and equitable training datasets, and to take measures to ensure that the models we train
are fair without the need for post-hoc corrections.

Limitations. Currently, our approach assumes that the semantic space Y is discrete. We plan to
extend this work to handle continuous attributes, such as skin tone, in future work. Additionally,
while the conditional distribution P (x|y) should be roughly equal before and after applying our
method if the classifier Cϕ is accurate, in the case of a biased classifier the conditional distribution
may change. Correcting for potential distribution shift is likewise future work.

6 Conclusion

This is the first method to correct a pretrained biased generative model (i.e., one that strongly favors
generating images of white people over all other races) given only the generator and a potentially-
biased classifier. We propose a sampling strategy to construct a fair training set using the biased
classifier in a way that corrects for its bias, and a Distribution Mapping module that uses this training
set to learn how to sample noise instances that produce fair outputs when used as input to the
generative model. Notably, we are able to debias the generative model without retraining the model
or utilizing any real data. Our results indicate that our approach produces outputs that are much fairer
than existing methods. This work may inspire more research on Distribution Mapping techniques to
recondition generative models by transforming their standard latent distributions into distributions
that yield more favorable behavior.

7 Acknowledgments

This material is based on research sponsored by DARPA under agreement number FA8750-18-2-0077.
The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of DARPA or the U.S. Government.

Results in this paper were obtained in part using a high-performance computing system acquired
through NSF MRI grant DMS-1337943 to WPI. We thank the members of WPI’s DAISY Research lab
and the WPI WASH research group for their insightful feedback and support during the development
of this work.

10

References
[1] T. Aoshima and T. Matsubara. Deep Curvilinear Editing: Commutative and Nonlinear Image

Manipulation for Pretrained Deep Generative Model, Mar. 2023. arXiv:2211.14573 [cs].

[2] S. Bhat, J. Jiang, O. Pooladzandi, and G. Pottie. De-Biasing Generative Models using Counter-
factual Methods, Feb. 2023. arXiv:2207.01575 [cs].

[3] S. Bond-Taylor, A. Leach, Y. Long, and C. G. Willcocks. Deep Generative Modelling: A
Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive
Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):7327–7347,
Nov. 2022.

[4] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei.
Language Models are Few-Shot Learners, July 2020. arXiv:2005.14165 [cs].

[5] K. Cong and M. Zhou. Face Dataset Augmentation with Generative Adversarial Network.
Journal of Physics: Conference Series, 2218(1):012035, Mar. 2022. Publisher: IOP Publishing.

[6] E. Denton, B. Hutchinson, M. Mitchell, T. Gebru, and A. Zaldivar. Image Counterfactual
Sensitivity Analysis for Detecting Unintended Bias, Oct. 2020. arXiv:1906.06439 [cs, stat].

[7] L. Dinh, D. Krueger, and Y. Bengio. NICE: Non-linear Independent Components Estimation,
Apr. 2015. arXiv:1410.8516 [cs].

[8] P. Doubinsky, N. Audebert, M. Crucianu, and H. Le Borgne. Multi-attribute balanced sampling
for disentangled GAN controls. Pattern Recognition Letters, 162:56–62, Oct. 2022.

[9] S. Festag, J. Denzler, and C. Spreckelsen. Generative adversarial networks for biomedical time
series forecasting and imputation. Journal of Biomedical Informatics, 129:104058, May 2022.

[10] S. Garg, Y. Wu, S. Balakrishnan, and Z. Lipton. A Unified View of Label Shift Estimation.
In Advances in Neural Information Processing Systems, volume 33, pages 3290–3300. Curran
Associates, Inc., 2020.

[11] S. Gong, M. Li, J. Feng, Z. Wu, and L. Kong. DiffuSeq: Sequence to Sequence Text Generation
with Diffusion Models. In International Conference on Learning Representations, Feb. 2023.

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative Adversarial Nets. In Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014.

[13] H. Guo, L. Zhu, and K. Huang. Are GANs Biased? Evaluating GAN-Generated Facial Images
via Crowdsourcing. In NeurIPS 2022 Workshop on Human Evaluation of Generative Models.,
2022.

[14] J. Ho, A. Jain, and P. Abbeel. Denoising Diffusion Probabilistic Models. In Advances in Neural
Information Processing Systems, volume 33, pages 6840–6851. Curran Associates, Inc., 2020.

[15] A. I. Humayun, R. Balestriero, and R. Baraniuk. MaGNET: Uniform Sampling from Deep
Generative Network Manifolds Without Retraining. In International Conference on Learning
Representations, Jan. 2022.

[16] A. I. Humayun, R. Balestriero, and R. Baraniuk. Polarity Sampling: Quality and Diversity
Control of Pre-Trained Generative Networks via Singular Values. In 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 10631–10640, New Orleans, LA,
USA, June 2022. IEEE.

[17] A. Jahanian*, L. Chai*, and P. Isola. On the "steerability" of generative adversarial networks.
In International Conference on Learning Representations, volume International Conference on
Learning Representations. International Conference on Learning Representations, Dec. 2019.

11

[18] L. Jing, J. Zbontar, and y. lecun. Implicit Rank-Minimizing Autoencoder. In Advances in
Neural Information Processing Systems, volume 33, pages 14736–14746, 2020.

[19] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive Frowing Of GANs For Improved
Quality, Stability, And Variation. In International Conference on Learning Representations,
2018.

[20] T. Karras, M. Aittala, S. Laine, E. Härkönen, J. Hellsten, J. Lehtinen, and T. Aila. Alias-Free
Generative Adversarial Networks. In Advances in Neural Information Processing Systems,
volume 34, pages 852–863. Curran Associates, Inc., 2021.

[21] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes, 2013. arXiv:1312.6114 [cs,
stat].

[22] K. Kumar, R. Kumar, T. de Boissiere, L. Gestin, W. Z. Teoh, J. Sotelo, A. de Brébisson,
Y. Bengio, and A. C. Courville. MelGAN: Generative Adversarial Networks for Conditional
Waveform Synthesis. In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

[23] H. Ledford. Millions of black people affected by racial bias in health-care algorithms. Nature,
574(7780):608–609, Oct. 2019.

[24] A. S. Luccioni, C. Akiki, M. Mitchell, and Y. Jernite. Stable Bias: Analyzing Societal Repre-
sentations in Diffusion Models, Mar. 2023. arXiv:2303.11408 [cs].

[25] M. Luo, J. Cao, X. Ma, X. Zhang, and R. He. FA-GAN: Face Augmentation GAN for
Deformation-Invariant Face Recognition. IEEE Transactions on Information Forensics and
Security, 16:2341–2355, 2021. Conference Name: IEEE Transactions on Information Forensics
and Security.

[26] V. H. Maluleke, N. Thakkar, T. Brooks, E. Weber, T. Darrell, A. A. Efros, A. Kanazawa, and
D. Guillory. Studying Bias in GANs through the Lens of Race, Sept. 2022. arXiv:2209.02836
[cs].

[27] M. Mehrab Tanjim, R. Sinha, K. K. Singh, S. Mahadevan, D. Arbour, M. Sinha, and G. W.
Cottrell. Generating and Controlling Diversity in Image Search. In 2022 IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), pages 3908–3916, Waikoloa, HI,
USA, Jan. 2022. IEEE.

[28] Y. Mirsky and W. Lee. The Creation and Detection of Deepfakes: A Survey. ACM Computing
Surveys, 54(1):1–41, Jan. 2022.

[29] M. Orcutt. Are Face Recognition Systems Accurate? Depends on Your Race., 2016.

[30] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in PyTorch. In NIPS 2017 Autodiff Workshop.
NIPS 2017 Autodiff Workshop, 2017.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research, 12(85):2825–2830, 2011.

[32] A. Radford, L. Metz, and S. Chintala. Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks, Jan. 2016. arXiv:1511.06434 [cs].

[33] H. Rangwani, K. R. Mopuri, and R. V. Babu. Class balancing GAN with a classifier in the loop.
In Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, pages
1618–1627. PMLR, Dec. 2021. ISSN: 2640-3498.

[34] D. Rezende and S. Mohamed. Variational Inference with Normalizing Flows. In Proceedings of
the 32nd International Conference on Machine Learning, pages 1530–1538. PMLR, June 2015.
ISSN: 1938-7228.

12

[35] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-Resolution Image
Synthesis with Latent Diffusion Models, Apr. 2022. arXiv:2112.10752 [cs].

[36] S. I. Serengil and A. Ozpinar. HyperExtended LightFace: A Facial Attribute Analysis Frame-
work. In 2021 International Conference on Engineering and Emerging Technologies (ICEET),
pages 1–4, Oct. 2021. ISSN: 2409-2983.

[37] X. Shao, K. Stelzner, and K. Kersting. Right for the Right Latent Factors: Debiasing Generative
Models via Disentanglement, Feb. 2022. arXiv:2202.00391 [cs].

[38] Y. Shen, J. Gu, X. Tang, and B. Zhou. Interpreting the Latent Space of GANs for Semantic Face
Editing. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 9240–9249, Seattle, WA, USA, June 2020. IEEE.

[39] Y. Shen, C. Yang, X. Tang, and B. Zhou. InterFaceGAN: Interpreting the Disentangled Face
Representation Learned by GANs, Oct. 2020. arXiv:2005.09635 [cs, eess].

[40] T. Sipka, M. Sulc, and J. Matas. The Hitchhiker’s Guide to Prior-Shift Adaptation. In 2022
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pages 2031–2039,
Waikoloa, HI, USA, Jan. 2022. IEEE.

[41] J. Song, C. Meng, and S. Ermon. Denoising Diffusion Implicit Models, Oct. 2022.
arXiv:2010.02502 [cs].

[42] S. Tan, Y. Shen, and B. Zhou. Improving the Fairness of Deep Generative Models without
Retraining, Mar. 2021. arXiv:2012.04842 [cs].

[43] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni. Modeling Tabular data
using Conditional GAN. In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

[44] Z. Zhang, Y. Song, and H. Qi. Age Progression/Regression by Conditional Adversarial Autoen-
coder. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
4352–4360, July 2017. ISSN: 1063-6919.

13

A Appendix

A.1 Calculating E for The Generated Distribution

The error rates reported for a classifier Cϕ are typically reported on the distribution on the distribution
of fit’s training data, Ptraining. However, the distribution PGθ

of the generative model

Gθ may differ from the training distribution. Additionally, rather than reporting P (y|ŷ), often times
the error rates are given in a confusion matrix Cŷ|y where Cŷ|y[i, j] = P (ŷ|y). Thankfully, we can
construct the error rate matrix E for the generative distribution PGθ

under the simplifying assumption
that the difference between PGθ

and Ptraining can be explained as a label shift [10, 40].

By Bayes’ Theorem, we know that

P (y|ŷ) = P (ŷ|y)P (y)

P (ŷ)
.

Under the label shift assumption, P (ŷ|y) stays the same between Ptraining and PGθ
. Additionally,

P (y) can be calculated for PGθ
under label shift [10, 40]. Lastly, P (ŷ) can be approximated for PGθ

by finding the proportion predicted for each class on a large sample from the generative model. Thus,
E can be calculated as:

E = Cŷ|y
PGθ

(y)

PGθ
(ŷ)

.

A.2 Distribution of Races Generated By Progressive GAN

We show the two best performing methods’ distributions on Progressive GAN, along with the
distribution of the unmodified ProgressiveGAN, over the Race attribute.

asian black indian latino hispanic middle eastern white
Race

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
en

si
ty

Distribution Of Races Resulting From Compared Methods
Distribution
Mapping (Ours)
Polarity Sampling (Antimode)
Standard Progressive GAN

Figure 6: Distribution of our approach, Polarity Antimode Sampling (next best), and the standard
generator.

A.3 Comparison Of Generated Faces From LDM Model

A comparison of a bath of random faces from the original LDM is shown in Figure 7, while Figure 8
shows a batch from the LDM when our Distribution Mapping method is applied.

A.4 Implementation Details

Ground Truth Shape Classifier

--
Layer (type) Output Shape

14

Figure 7: Random sample of generated faces from the original LDM model (no Distribution Mapping
or fail sampling applied).

Figure 8: Random sample of generated faces from the LDM model after our Distribution Mapping
approach.

15

==
Conv2d-1 [-1, 32, 16, 16]

ReLU-2 [-1, 32, 16, 16]
Conv2d-3 [-1, 64, 8, 8]

ReLU-4 [-1, 64, 8, 8]
Conv2d-5 [-1, 128, 4, 4]

ReLU-6 [-1, 128, 4, 4]
Conv2d-7 [-1, 256, 2, 2]

ReLU-8 [-1, 256, 2, 2]
Conv2d-9 [-1, 2, 1, 1]

==

Encoder for Shapes VAE

--
Layer (type) Output Shape

==
Conv2d-1 [-1, 32, 16, 16]

ReLU-2 [-1, 32, 16, 16]
Conv2d-3 [-1, 64, 8, 8]

ReLU-4 [-1, 64, 8, 8]
Conv2d-5 [-1, 128, 4, 4]

ReLU-6 [-1, 128, 4, 4]
Conv2d-7 [-1, 256, 2, 2]

ReLU-8 [-1, 256, 2, 2]
Conv2d-9 [-1, code_dim, 1, 1]

==

Decoder for Shapes VAE

--
Layer (type) Output Shape

==
ConvTranspose2d-1 [-1, 256, 2, 2]

ReLU-2 [-1, 256, 2, 2]
ConvTranspose2d-3 [-1, 128, 8, 8]

ReLU-4 [-1, 128, 8, 8]
ConvTranspose2d-5 [-1, 64, 16, 16]

ReLU-6 [-1, 64, 16, 16]
ConvTranspose2d-7 [-1, 32, 32, 32]

ReLU-8 [-1, 32, 32, 32]
ConvTranspose2d-9 [-1, 3, 64, 64]

Sigmoid-10 [-1, 3, 64, 64]
==

Biased Age Classifier (Note: Target value was normalized age, made binary after)

--
Layer (type) Output Shape

==
Conv2d-1 [-1, 2, 32, 32]

BatchNorm2d-2 [-1, 2, 32, 32]
LeakyReLU-3 [-1, 2, 32, 32]

Dropout-4 [-1, 2, 32, 32]
Conv2d-5 [-1, 4, 16, 16]

BatchNorm2d-6 [-1, 4, 16, 16]
LeakyReLU-7 [-1, 4, 16, 16]

Dropout-8 [-1, 4, 16, 16]
Conv2d-9 [-1, 8, 8, 8]

16

BatchNorm2d-10 [-1, 8, 8, 8]
LeakyReLU-11 [-1, 8, 8, 8]

Dropout-12 [-1, 8, 8, 8]
Flatten-13 [-1, 512]
Linear-14 [-1, 64]

LeakyReLU-15 [-1, 64]
Linear-16 [-1, 1]

Sigmoid-17 [-1, 1]
==

Ground Truth Age Classifier (Note: Target value was normalized age; made binary after)

--
Layer (type) Output Shape

==
Conv2d-1 [-1, 8, 32, 32]

BatchNorm2d-2 [-1, 8, 32, 32]
LeakyReLU-3 [-1, 8, 32, 32]

Dropout-4 [-1, 8, 32, 32]
Conv2d-5 [-1, 16, 16, 16]

BatchNorm2d-6 [-1, 16, 16, 16]
LeakyReLU-7 [-1, 16, 16, 16]

Dropout-8 [-1, 16, 16, 16]
Conv2d-9 [-1, 32, 8, 8]

BatchNorm2d-10 [-1, 32, 8, 8]
LeakyReLU-11 [-1, 32, 8, 8]

Dropout-12 [-1, 32, 8, 8]
Flatten-13 [-1, 2048]
Linear-14 [-1, 64]

LeakyReLU-15 [-1, 64]
Linear-16 [-1, 1]

Sigmoid-17 [-1, 1]
==

The distribution mapper used default architecture of SDV’s CTGAN 5 version 0.6.0, except for in the
ProgressiveGAN experiment where embedding_dim =512, generator_dim =(512,512) were
passed as arguments.

For the networks we trained, we utilized the Adam optimizer with learning rate between 0.002 and
0.0001.

The linear classifier utilized Scikit-Learn’s LinearSVC (for latent editing) and RidgeClassifier for the
biased Shapes classifier.

A.5 Proof of Lemma 1

Proof. First, note that if 1|Y| ∈ cone(E), then likewise 1
Y 1|Y| ∈ cone(E).

Let z′ ∼ Pz|Cϕ=i; i.e., z is a draw from the distribution of noise such that the classifiers prediction of
the generated sample corresponding to z′ is group i.

Let (C ′ ◦ Gθ)∗Pz|Cϕ=i be the pushforward distribution of the perfect classifier C ′’s output when
conditioned on the generator’s output of draws from Pz|Cϕ=i. Then,

(C ′ ◦Gθ)∗Pz|Cϕ=i = [Pr(y = 1|Cθ = i), P r(y = 2|Cθ = i), . . . , P r(y = N |Cθ = i)]

= E:,i

Thus,
5https://sdv.dev/SDV/user_guides/single_table/ctgan.html#

how-to-modify-the-ctgan-hyperparameters

17

https://sdv.dev/SDV/user_guides/single_table/ctgan.html#how-to-modify-the-ctgan-hyperparameters
https://sdv.dev/SDV/user_guides/single_table/ctgan.html#how-to-modify-the-ctgan-hyperparameters

cone({(C ′ ◦Gθ)∗Pz|Cϕ=i, . . . , (C
′ ◦Gθ)∗Pz|Cϕ=|Y|}) = cone(E)

Therefor, following from above,

1

Y
1|Y| ∈ cone({(C ′ ◦Gθ)∗Pz|Cϕ=i, . . . , (C

′ ◦Gθ)∗Pz|Cϕ=|Y|})

This means that ∃λ1, λ2, . . . , λ|Y such that the following holds:

λ1(C
′ ◦Gθ)∗Pz|Cϕ=i + · · ·+ λ|Y|(C

′ ◦Gθ)∗Pz|Cϕ=|Y| = [
1

|Y|
, . . . ,

1

|Y|
]

= Unif(Y)

This is equivalent to saying that:

C ′(Gθ(z)) ∼ Unif(Y)

for z ∼
∑|Y|

i=1 λiPz|Cϕ=i = Qλ. Thus, by definition Qλ is a Fair Noise Distribution.

A.6 Proof of Lemma 2

Proof. Note that the sign of the coefficient of the cross product E:,1 × E:,2 is P (y = 1|ŷ =
1)P (y = 2|ŷ = 2) − P (y = 1|ŷ = 2)P (y = 2|ŷ = 1). Also note that E:,1 × [0.5, 0.5] is
0.5P (y = 1|ŷ = 1)− 0.5P (y = 2|ŷ = 1).

Additionally,

P (y = 1|ŷ = 1)P (y = 2|ŷ = 2) > P (y = 1|ŷ = 1)0.5

> 0

and

0 < P (y = 1|ŷ = 2)P (y = 2|ŷ = 1)

< 0.5P (y = 2|ŷ = 1)

Thus, the coefficient of E:,1 ×E:,2 is greater than E:,1 × [0.5, 0.5], while there signs are equal. This
implies that [0.5, 0.5] is in between E:,1 and E:,2. Thus, [0.5, 0.5] ∈ cone(E). The rest of the proof
follows directly from Lemma 1.

A.7 Proof of Proposition 1

Proof. Note that Pλ
E has density [

∑
i λiPr(y = 1|ŷ = i), . . . ,

∑
i λiPr(y = N |ŷ = i)]. For ease

of notation let us refer to
∑

i λiPr(y = m|ŷ = i) as rλm.

Then,

KL{Pλ
E ||Unif(Y)} =

∑
m

rλm log
(rλm
u

)
=

∑
m

(
rλm log(rλm)− rλm log(

1

|Y|
)
)

=
∑
m

rλm log(rλm)−
∑
m

rλm log(
1

|Y|
)

18

Note that log
(

1
N

)
is constant for each term in the second summation. Thus,

=
∑
m

rλm log(rλm)− log
(1

N

)∑
rλm

=
∑
m

rλm log(rλm)− log
(1

N

)
,

As log
(

1
N

)
does not depend on rλm,

argmin
λ

KL{Pλ
E ||Unif(Y)} = argmin

λ

∑
m

rλm log(rλm)

= argmin
λ
−H(Pλ

E)

= argmax
λ

H(Pλ
E)

A.8 Proof of Proposition 2

Proof.

(C ′ ◦Gθ)∗Pz|Cϕ=i =[Pr(y = 1|Cθ = i), P r(y = 2|Cθ = i), . . . , P r(y = N |Cθ = i)]

=⇒
∑
i

λi(C
′ ◦Gθ)∗Pz|Cϕ=i =[

∑
i

λPr(y = 1|Cθ = i),
∑
i

Pr(y = 2|Cθ = i),

. . .,
∑
i

λPr(y = N |Cθ = i)]

=⇒ PE = Qλ

A.9 Proof of Theorem 1

The first statement follows directly from Proposition 1 and Proposition 2.

If Cϕ = C ′ , then { E:,1

|E:,1| , . . . ,
E:,|Y|
|E:,|Y||

} forms a standard basis of R|Y|, and therefor 1|Y| is in cone(E).

Thus, Qλ∗ is a Fair Noise Distribution by Lemma 1.

19

	Introduction
	Problem Definition
	Methodology
	Collecting Fair Samples Using Imperfect Classifiers
	Training the Distribution Mapper

	Experiments
	Compared Methods
	Uniformly Sampling From Shapes Dataset
	Age Bias in Face Image Generator
	Uniformly Sampling Over Race in Progressive GAN
	Uniformly Sampling Age in Latent Diffusion Model
	Comparative Study on Debiasing Latent DDPM.

	Broader Impact And Limitations
	Conclusion
	Acknowledgments
	Appendix
	Calculating E for The Generated Distribution
	Distribution of Races Generated By Progressive GAN
	Comparison Of Generated Faces From LDM Model
	Implementation Details
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 1

