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Abstract

A unifying theme in the design of intelligent agents is to efficiently optimize
a policy based on what prior knowledge of the problem is available and what
actions can be taken to learn more about it. Bandits are a canonical instance of
this task that has been intensely studied in the literature. Most methods, however,
typically rely solely on an agent’s experimentation in a single environment (or
multiple closely related environments). In this paper, we relax this assumption
and consider the design of bandit algorithms from a combination of batch data
and qualitative assumptions about the relatedness across different environments,
represented in the form of causal models. In particular, we show that it is possible to
exploit invariances across environments, wherever they may occur in the underlying
causal model, to consistently improve learning. The resulting bandit algorithm
has a sub-linear regret bound with an explicit dependency on a term that captures
how informative related environments are for the task at hand; and may have
substantially lower regret than experimentation-only bandit instances.

1 Introduction

Multi-armed bandits (MABs) constitute one of the most widely used frameworks for modeling
decision-making under uncertainty. In this framework, an agent repeatedly takes actions in an
environment with the goal of optimizing a desired objective, such as efficiently inferring the action
with highest reward or maximizing cumulative rewards in the long run [34]. As in most reinforcement
learning problems, there is a substantial amount of exploration involved while the agent learns about
reward distributions under different available actions. This process can be costly in many applications;
from an ethical perspective, for example, physicians may not risk compromising their patient’s health
with unknown treatments. It is therefore important to be efficient with experimentation while learning
an optimal policy. In the literature, structured bandit instances can help navigate the exploration-
exploitation trade-off effectively, for example with assumptions on the functional association between
action and reward that facilitate estimation such as linear bandits [1, 15, 19] and causal bandits
[23, 36, 28, 27, 24, 26, 12, 29, 7].

An alternative approach to alleviate the cost of active experimentation is to consider leveraging
prior data or prior experimentation in related environments to inform an agent’s decision-making,
which leads to the hybrid learning paradigm. The expectation (or rather hope) is that informative
prior data or prior experimentation can serve to narrow down reward distributions and warm start
the MAB so as to converge to optimal actions faster and ultimately achieve higher cumulative
reward. Current methods can be categorized into multi-task learning [41, 40, 13] and meta-learning
[10, 42, 4, 20, 33, 30]. The former aims to solve a prescribed set of related bandit tasks with shared
structure, e.g. multiple player scenarios with similar reward distributions. The latter considers an
arbitrary number of bandit problems whose parameters are sampled i.i.d. from a meta-prior that
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can be inferred as the agent experiments across the different related tasks1. However, both families
of methods assume a relatively restricted class of potential changes across environments and rely
explicitly on agent experimentation across all environments for learning. If discrepancies across
environments are more general, naively leveraging prior data does not necessarily lead to more
informative reward distributions or efficiency improvements in a new environment.

X W Y

Z
SZ

Figure 1: Diagram encoding
causal structure and differences
across environments.

As a concrete example, consider a learning scenario in which his-
torical data is available for the design of a clinical trial2 aiming
to determine the optimal level of a hypertension treatment X for
Alzheimer’s disease Y 3. Alzheimer’s aetiology is complex but it
is well established that a patient’s age Z and blood pressure W
contribute to the development of the disease, and so do a num-
ber of (typically) unobserved factors, e.g., physical activity levels,
socio-economic status, diet patterns, etc. [37] (encoded with a
bi-directed dashed edge). Such data can be useful but has to be
handled with care, especially if we suspect the clinical trial popula-
tion to differ in several aspects from that recorded in historical data. We would expect, for example,
age distributions P pzq to differ. Fig. 1 graphically describes this scenario. A naive approach, ig-
noring the differences across populations, can be sub-optimal. Take an instance where variables
X,Z,W, Y, U P t0, 1u; their values are decided by functions: X Ð U,W Ð X,Y Ð Z ‘ pW ¨Uq;
‘ represents the exclusive-or operator; U is independently distributed in t0, 1u but older individuals
are historically over-represented P pZ “ 1q “ 0.6 in comparison to the clinical trial population
P pZ “ 1q “ 0.4. Historical data suggests that the better policy involves a lower dosage X “ 0, as
ErY | dopX “ 0qs “ 0.6 ą 0.5 “ ErY | dopX “ 1qs, which is the opposite of what is optimal for
the clinical trial population.

This example shows that differences across environments may be complex, subtle, and non-trivially
influence optimal decision-making. Even when one is able to perfectly estimate reward distributions
from historical data, the induced policy can still be sub-optimal depending on the location and
magnitude of the changes expected across environments. In general, reward distributions will not
straightforwardly extrapolate across different environments. In this paper, we attempt to capture
this (structural) uncertainty through a causal lens. In the causality literature, this problem appears
under the rubric of transportability theory [32, 3, 11]; several criteria, algorithms, and estimation
methods have been developed for identifying when and how a causal effect can be computed across
environments. Our task, in the bandit setting, is to define a learning agent that optimally exploits
prior data with knowledge of the potential discrepancies across domains, for any given graph. Prior
work [43] has considered specific instances, i.e. environments defined by the Bow and Instrumental
Variables graphs, but a general approach applicable to arbitrary graphs and arbitrary differences
across environments is still missing. Our approach is Bayesian, and involves posterior sampling
of reward distributions defined by a parameterization informed by the underlying causal structure.
Our contribution is to develop a novel bandit algorithm that achieves sub-linear cumulative regret
with an explicit dependency on the entropy of an inferred prior, a quantity that implicitly captures
the relatedness between environments. The significance of this result is that it guarantees consistent
improvements on performance over methods not leveraging prior data. To the best of our knowledge,
this is one of the first general attempts to consistently use prior data from related environments in
general decision-making scenarios in which causal dependencies can be established.

1.1 Preliminaries

We use capital and small letters to denote random variables and their values respectively, e.g. X and
x, and bold capital and small letters to denote sets of variables and their values, e.g. X and x. The
domain of variable X is indicated with ΩX .

A environment’s data generating mechanism is described by a structural causal model (SCM)
[31, Definition 7.1.1]. A SCM M is a tuple xV ,U ,F , P pUqy, where V is a set of endogenous
(observed) variables, U is a set of exogenous latent variables, and F “ tfV uV PV is a set of functions

1A more extensive review of related work is given in Appendix A.
2[17] refer to adaptive clinical trials as the “chief practical motivation [for the design of bandit algorithms]”.
3For this example, Y a measured biomarker of Alzheimer’s disease that acts as a designated reward variable

to be maximized.
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such that fV determines values of V taking as argument variables PaV Ď V and UV Ď U , i.e.
V Ð fV pPaV ,UV q. Values of U are drawn from an exogenous distribution P puq. We assume
the model to be recursive, i.e. that there are no cyclic dependencies among the variables, such as to
define a distribution P pV q over endogenous variables V . An intervention or action by an agent on a
subset X Ă V , denoted by dopxq, is an operation that fixed values of X to constants x, replacing
the functions tfX : X P Xu that would normally determine their values. Let Mx denote the model
induced by action dopxq. Accordingly, Mx induces a corresponding interventional distribution over
V , denoted P pVxq :“ P pV | dopxqq. We will consistently use X,Y P V as designated action and
reward variables, respectively.

Causal graphs G “ pV , Eq describe the functional associations in an underlying SCM M . In
particular, we draw a directed edge between two variables V Ñ W P E if V appears as an
argument of fW in M , and a bi-directed dashed edge between two variables V L9999K W P E
if UV X UW ‰ H, i.e. V and W share an unobserved confounder. We will use standard family
conventions for graphical relationships, e.g. parents papXqG :“ YXPXpapXqG of a set of nodes
X Ď V are all nodes in G with directed edges into elements of X . Its capitalized version Pa includes
the argument as well, e.g. PapXqG :“ papXqG

Ť

X . We will make use a special clustering of the
nodes in V called c-components [39]: two nodes are in the same c-component C Ď V if and only if
they are connected by a bi-directed path. c-components form a partition over exogenous variables: a
c-component C Ď V is said to cover an exogenous variable U if U P

Ť

V PC UV . We denote with
CU the c-component covering U . As an example, the diagram in Fig. 1 has c-components tX,Y u,
tW u, and tZu; and CUXY

“ tX,Y u, CUW
“ tW u, and CUZ

“ tZu. We refer the reader to [31,
Chapter 7] for a more detailed review of SCMs.

2 Bandits with Transportability

From the agent’s perspective, the point of departure with respect to conventional bandit instances is
that in addition to the ability to take actions in a deployment environment π˚, the agent has access to
data from one or more related environments πa, πb, . . . , each characterized by SCMs Ma,M b, . . . .
We assume that all environments have the same scope, i.e. the same sets V and U , but may differ
in any other aspect. In the transportability literature [3, 32], such structural differences between
environments are called domain discrepancies and can be encoded in selection diagrams.
Definition 1 (Domain Discrepancy). Let πa and πb be two domains with SCMs Ma and M b. There
exists a domain discrepancy between πa and πb if fa

V ‰ f b
V or P apUV q ‰ P bpUV q for some V P V .

Definition 2 (Selection diagram). Given domain discrepancy set ∆a,b :“ tV P V : fa
V ‰

f b
V or P apUV q ‰ P bpUV qu between two domains πa and πb and a causal graph Ga “ pV , Eq, let
S “ tSV : V P ∆a,bu be called selection nodes. The graph Ga,b “ pV Y S, E Y tSV Ñ V uSV PSq

is called selection diagram.

Selection nodes indicate where structural discrepancies between two environments might take
place. The absence of a selection node pointing to a variable represents the assumption that the
causal mechanism responsible for assigning values to that variable is identical in both environments.
In the clinical trial example, Fig. 1 shows a selection diagram comparing historical and clinical
trial environments, denoted π˚, πa respectively; the presence of selection node SZ indicates a
potential difference in the assignment of Z, i.e., either f˚

Z ‰ fa
Z and / or P˚puW q ‰ P apuW q.

On the other hand, the absence of e.g. selection node SY indicates the assumption f˚
Y “ fa

Y and
P˚puY q “ P apuY q. With this formalism, the task is to leverage data from related environments in a
consistent and efficient manner.
Definition 3 (Bandits with Transportability). Let π˚ denote the deployment environment in which the
agent acts. Given samples from P apV q, P bpV q, . . . and selection diagrams G˚,a,G˚,b, . . . , in each
round t “ 1, . . . , T the agent takes an action xptq and observes a sample from P˚pVxptq q, adjusting
its actions to minimize (expected) cumulative regret in π˚,

EP˚RT :“
T

ÿ

t“1

EP˚Yx̃ ´ EP˚Yxptq , (1)

that compares the optimal intervention x̃ “ arg maxxPΩX
EP˚Yx with the agent’s chosen intervention

in each round.
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Quantities such as EP˚Yx or P˚pyxq are called transportability queries and their estimation with
prior data, underlying structural assumptions and their use within active experimentation schemes
will be the focus of this paper.

2.1 Informative priors for bandits

Before experimentation takes place there is a degree of unidentifiability of reward distributions P˚pyxq

depending on causal assumptions and discrepancies between environments. For instance, revisiting the
clinical trial example, if age distributions are allowed to vary arbitrarily across environments, values
of P˚pyxq will similarly vary and thus involve a degree of uncertainty4. This unidentifiability feature
is relevant even without major discrepancies across domains as P˚pyxq may still be unidentifiable in
the presence of unobserved confounders. The Bow graph in Fig. 2 (ignoring the selection node) is a
common example.

Ga,˚

X Y

SX

Figure 2: Bow graph and posterior reward density.

One may be tempted to conclude that prior data
is rarely useful. However, even under multiple
discrepancies across environments, causal effects
P˚pyxq are rarely completely unconstrained. In
general, causal effects lie in a non-trivial interval
ra, bs, 0 ă a ď b ă 1. For instance, for the graph
Ga,˚ in Fig. 2 P˚pyxq can be shown to be contained
in rP apx, yq, P apx, yq ` 1 ´ P apxqs. In particular,
with a probabilistic or Bayesian interpretation of un-
known quantities in a SCM, that is with an explicit
probability measure over SCMs M P MpG˚q5, one
can define a distribution of reward probabilities P˚pyxq (or expected rewards) that honestly captures
prior uncertainty in their values. For example, given prior samples v̄a “ tva

pjq
: j “ 1, . . . , 500u

independently drawn from a source distribution P apV q (and a particular prior model over SCMs, to
be discussed in Sec. 2.2), a posterior density over EP˚Yx can be evaluated and sampled from, see
Fig. 2 for an illustration, where theoretical bounds are shown with vertical lines.

From this perspective, the problem of doing inference on reward distributions given prior data and
knowledge of structural discrepancies can be formulated as an optimization problem, that is, evaluate,

PM„MpG˚q

´

EPM
rYxs | v̄

¯

, such that @V R ∆˚,i : f˚
V “ f i

V , Pπ˚ puV q “ PπipuV q, (2)

where v̄ :“ tv̄a, v̄b, . . . u, v̄i “ tvi
pjq

: j “ 1, . . . , niu is a set of ni independent samples from
P ipV q. In words, the task is to evaluate a distribution over expected rewards under intervention over
all deployment domains π˚ compatible with our knowledge prior to experimenting in π˚.

It remains a question, however, how to define a model and parameterization of SCMs. Remember that
only prior data and selection diagrams are assumed to be available to the researcher; any choices on the
distribution of exogenous variables P pUq or functional form of deterministic structural assignments
F represent untestable assumptions that are difficult to justify in practice. Going forward we will
restrict ourselves to SCMs with discrete endogenous variables (while exogenous variables may be
arbitrarily defined, e.g. continuously-valued with arbitrary probability density functions).

2.2 General parameterization of reward distributions

Systems of discrete observables have the distinctiveness of involving a finite number of probabilities
of the form P˚pyxq, i.e. one for each combination px, yq. Reward distributions P˚pyxq in any
underlying SCM M , however complex P pUq and F may be, can logically be equivalently expressed
by a corresponding discrete SCM N in which P pUq is discrete and F is a discrete mapping between
finite spaces [44, 6]. This observation is interesting because it allows us to consistently and uniquely
parameterize P pUq and F , without untestable choices on their form6.

4Formally, we say there exists multiple SCMs M1,M2 P M with functional dependencies defined by G˚,
consistent with prior data and selection diagrams, such that PM1pyxq ‰ PM2pyxq.

5MpG˚
q stands for the set of SCMs whose functional dependencies are given by G˚.

6A similar reasoning does not apply for continuous endogenous variables that would require continuous
exogenous variables and therefore a (untestable) choice of parametric family for all variables.
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Algorithm 1 Thompson Sampling with Transportability (tTS)

Input: Selection diagrams tG ˚ ˚, a,G˚,b, . . . u, prior data v̄ :“ pv̄a, v̄b, . . . q,
decision variable X , reward variable Y , horizon T .
for rounds t “ 1, 2, . . . , T do

Approximate P pξ,θ | v̄,vxp1q , . . . ,vxpt´1q q

Sample ξptq,θptq „ P pξ,θ | v̄,vxp1q , . . . ,vxpt´1q q

xptq Ð argmaxx EP˚

“

Yx | ξptq,θptq
‰

Take action xptq and observe vxptq in π˚

end for

Corollary 1 (Proposition 2.7. [44]). For any causal graph G, let M be an arbitrary SCM compatible
with G. For any sets Y ,X Ă V , the interventional distribution P pyxq could be parameterized as

ÿ

vztxYyu

ÿ

u“1,...,dU ,
UPU

ź

V PV

1tξ
ppaV ,uV q

V “ vu
ź

UPU

θu, (3)

where θu :“ P pU “ uq defines exogenous probabilities of discrete variables U P U with cardinality
dU “

ś

V PCU

ˇ

ˇΩPapV q

ˇ

ˇ; and each ξ
ppaV ,uV q

V is a deterministic mapping between finite domains
ΩPaV

ˆ ΩUV
ÞÑ ΩV .

For example, P˚pyxq in Fig. 1 can be parameterized by
ÿ

w,z,uz,uw,uxy

1tξ
pw,z,uxyq

Y “ yu1tξ
px,uwq

W “ wu1tξ
puzq

Z “ zuθuxy
θuz

θuw
, (4)

where, assuming X,Y, Z,W are binary, θuz
is a discrete distribution over a finite domain t1, 2u since

|ΩUz
| “ |ΩPapZq| “ |ΩZ | “ 2, θuw

is a distribution over t1, . . . , 4u since |ΩUW
| “ |ΩPapW q| “

|ΩX | ¨ |ΩZ | “ 4, and θuxy
is distribution over t1, . . . , 32u since |ΩUXY

| “ |ΩPapXq| ¨ |ΩPapY q| “

|ΩZ | ¨ |ΩX | ¨ |ΩW | ¨ |ΩZ | ¨ |ΩY | “ 32. Corol. 1 guarantees that for any value of P˚pyxq induced
by an arbitrary SCM M there exists a combination of parameters in Eq. (4) that reaches that exact
same value. In other words, this parameterization is sufficiently expressive to encode any underlying
reward distribution.

Parameters that define reward distributions are specific to the deployment environment π˚. The key
observation, however, is that some of them can be inferred with prior data whenever there exists an
invariance in P pUq or F across environments as there exists a one-to-one relationship between model
parameters and structural features of the underlying SCM. For example, given Fig. 1, the absence of
a selection node into Y implies that both functional assignments and exogenous probabilities of Y
agree across environments, that is ξ˚

Y “ ξaY , θ
˚
uY

“ θauY

7. Both may thus be approximated with prior
data which in turn constraints or informs P˚pyxq even if other parameters in its expression in Eq. (4)
remain unknown. The result is a non-trivial distribution over reward probabilities that may be used to
warm-start bandit algorithms, even before any experimentation takes place.

2.3 Bandit algorithms

To exploit non-trivial parameter distribution given prior data, a bandit algorithm can be designed to
choose actions in proportion to the probability that an intervention leads to highest reward, also known
as posterior or Thompson sampling [38, 2]. Specifically, at a particular round t of experimentation in
the deployment domain π˚, posterior parameter distributions P pξ,θ | v̄,vxp1q , . . . ,vxpt´1q q can be
evaluated to exactly capture uncertainty given both prior and experimental data up to round t. Action
xptq is then chosen according to the one that gives highest reward, i.e. arg maxx EP˚

“

Yx | ξptq,θptq
‰

,
where pξptq,θptqq is an independent draw from its posterior distribution. In other words, the agent

7It will be useful to write ξ “ tξ
ppaV ,uV q

V : V P V ,PaV Ă V ,UV Ă Uu and θ “ tθU : U P Uu to
group all possible functional assignments and exogenous probability parameters, respectively. We will in general
omit environment superscripts on parameters to lighten the notation.

5



performs natural Bayesian updates based on both the data available in source environments and
its own experimentation as interventional samples vxp1q , . . . ,vxpt´1q become available, matching
the intuition of most other Thompson sampling bandits in the literature. The full algorithm, called
Thompson sampling with Transportability (tTS), is given in Alg. 1.

3 Regret guarantees conditional on prior data

We define information-theoretic regret bounds that aim to capture the exploration-exploitation trade-
off for Alg. 1 when prior information allows it to infer parts of the environment before experimentation
takes place.

Performance in MABs is, to a large extent, intimately related with the agent’s uncertainty about which
action is optimal, represented by a random variable X̃ : Ωξ ˆ Ωθ ÞÑ ΩX where Ωξ ˆ Ωθ defines
the space of all models MpG˚q consistent with our knowledge of the deployment environment π˚.
For example, PM„MpG˚qpX̃ “ xq “ PM„MpG˚qpEPM

rYxs ą EPM
rYx1 s,@x1 P ΩXztxuq where

PM„MpG˚q is a probability mass function defined over MpG˚q. It is reasonable to assume that one
would only choose actions with large regret when it can reduce the uncertainty in X̃ substantially.
Following [35, Sec. 5], we define a scalar Γt

8 such that the per-round regret can be bounded by
information gain,

ErYX̃ ´ YXptq | V̄t, v̄s ď Γt

c

IP p¨|V̄t,v̄q

´

X̃;VXptq

¯

, (5)

where V̄t :“ tVXp1q , . . . ,VXpt´1q u denotes the agent’s history of interactions with π˚ up to round
t, and IP pX,Y q :“ DKLpP pX,Y q}P pXqP pY qq denotes the filtered mutual information defined
based on P (where DKL is the Kullback-Leibler divergence). Expectations, unless otherwise stated,
are taken with respect to all random quantities. The following proposition, extended from [35,
Prop. 1], shows that the Bayesian regret of an agent acting according to Alg. 1 is sub-linear with a
dependency on the entropy of the optimal action X̃ .
Proposition 1. Let RT denote the regret incurred by following Thompson sampling (Alg. 1). For any
T P N and Γ ě Γt, then

ErRT | v̄s ď Γ

b

HpX̃ | v̄qT , (6)

where HpX̃ | v̄q is the conditional entropy of X̃ given v̄.

Proofs are given in Appendix C.

This bound is interesting because it cleanly relates the regret with the uncertainty about the optimal
action conditioned on prior data. On one extreme, if data from source environments fully characterizes
the optimal action, the entropy equals 0, and no further experimentation is required; on the other
extreme, if data from source environments have no relationship with the target query, the entropy
equals logp|ΩX |q, and the bound reverts to conventional worst-case guarantees [35]. The entropy
of the optimal action is often not sufficient to capture the information from v̄ as X̃ may still have a
uniform distribution even though posterior distributions over pθ, ξq have tightened. In other words,
there is additional structure among different reward distributions that is not captured by the entropy
of the optimal action. Such a setting can be analyzed with a different assumption on the per round
regret that explicitly considers model parameters pθ, ξq to quantify information gain,

ErYX̃ ´ YXptq | V̄t, v̄s ď Γt

b

IP p¨|V̄t,v̄q pθ, ξ;VXptq q ` ϵt. (7)

where ϵt ą 0 is an additional slack term. Accordingly, the following proposition provides an
alternative bound using a conditional analogue of [25, Prop. 2].
Proposition 2. Let RT denote the regret incurred following the policy defined by Alg. 1. For any
T P N, if Eq. (7) holds with Γ ě Γt for all t,

ErRT | v̄s ď Γ
b

TIP p¨|v̄q pθ, ξ;VXp1q , . . . ,VXpT q q `

T
ÿ

t“1

Erϵts. (8)

8Γt is called the information ratio and quantifies the trade-off between incurring low regret and gaining
information about the optimal action. Γt can always be upper-bounded by |ΩX |{2 [35, Sec. 5]. We provide a
derivation of a bound for Γt for a specific set of environments as an example in Appendix C.3.

6



This proposition shows that if prior data allows the agent to concentrate pθ, ξq around some value,
additional experimentation does not provide much more information and the regret should be small.
In principle, it is possible to get precise per-round regret values by inferring values for Γt and ϵt
through the construction of concentration inequalities for the reward variable, as done by Lu et al. in
[25, Lem. 3]. We adapt this result using conditional information-theoretic quantities in the following
proposition.

Proposition 3. Fix δ ą 0 and choose Γt such that
ˇ

ˇYx ´ ErYx | V̄t, v̄s
ˇ

ˇ ď Γt

2

b

IP p¨|V̄t,v̄qpθ, ξ;Yxq

for all x P ΩX simultaneously with probability greater than 1 ´ δ. Then Alg. 1 chooses actions Xptq

that satisfy

ErYX̃ ´ YXptq | V̄t, v̄s ď Γt

b

IP p¨|V̄t,v̄qpθ, ξ;VXptq q ` δB, (9)

where B ě 0 is such that supy,y1PΩY
y ´ y1 ď B.

4 Posterior approximations

This section describes a tractable algorithm to evaluate posterior distributions of the form P pξ,θ |

v̄,vxp1q , . . . ,vxpt´1q q and its posterior updates when new data is collected. Priors on ξ,θ may be
defined such as to induce tractable conditional distributions that may be used within a Gibbs sampling
framework. The Gibbs sampler starts with some initial value for all latent quantities pU , ξ,θq in our
target expected reward

EP˚ rYxs “
ÿ

yPΩY

yP˚pYx “ yq “
ÿ

vztxu

y
ÿ

u“1,...,dU ,
UPU

ź

V PV zX

1tξ
ppaV ,uV q

V “ vu
ź

UPU

θu, (10)

and samples each one iteratively using their conditional distributions, each parameter conditioned
on the current values of the remaining terms in the parameter vector and the available data [16]. As
mentioned, what data point carries information about which parameters depends on the structural
differences between environments.

Prior. For every V P V ,@paV ,uV , the functional assignment parameters ξ
ppaV ,uV q

V are drawn
uniformly in the discrete domain ΩV . For every U P U , exogenous probabilities θU with dimension
dU “

ś

V PCU

ˇ

ˇΩPapV q

ˇ

ˇ are drawn from a prior Dirichlet distribution (here chosen for conjugacy with
the categorical distribution of U ), θU “ pθ1, . . . , θdU

q „ Dirpα1, . . . , αdU
q, with hyperparameters

α1, . . . , αdU
.

Posterior. In a particular round t, the Gibbs sampler iterates over the following steps.

1. Sample u. We start by sampling a corresponding exogenous latent variable for each observed
sample vpnq P pv̄,vxp1q , . . . ,vxpt´1q q, n “ 1, . . . , t´1`

ř

i ni. Let pū,uxp1q , . . . ,uxpt´1q q denote
the corresponding set of samples of U . Exogenous variables U pnq are mutually independent given
V pnq, ξ,θ and thus we can sample each separately using the conditional

P pupnq | vpnq, ξ,θq 9 P pupnq,vpnq | ξ,θq “
ź

V PV

1tξ
ppa

pnq

V ,u
pnq

V q

V “ vpnqu
ź

UPU

θu. (11)

2. Sample ξ. Similarly, for fixed paV ,uV , parameters ξ
ppaV ,uV q

V are mutually independent
given v̄,vxp1q , . . . ,vxpt´1q , ū,uxp1q , . . . ,uxpt´1q ,θ. As mentioned, each parameter is updated
with the subset of pv̄,vxp1q , . . . ,vxpt´1q , ū,uxp1q , . . . ,uxpt´1q q associated with environments
in which the functional assignment of V is invariant across source and deployment environ-
ments. As they represent a mapping between variables, its conditional distribution is given
by P pξ

ppaV ,uV q

V “ v | v̄,vxp1q , . . . ,vxpt´1q , ū,uxp1q , . . . ,uxpt´1q q “ 1 if there exists a (rel-
evant) sample pvpnq,pa

pnq

V ,u
pnq

V q that fixes the mapping pa
pnq

V ,u
pnq

V ÞÑ vpnq. Otherwise,
P pξ

ppaV ,uV q

V “ v | v̄,vxp1q , . . . ,vxpt´1q , ū,uxp1q , . . . ,uxpt´1q q is sampled uniformly from a
discrete distribution over ΩV .

3. Sample θ. Fix U P U . By conjugacy of Dirichlet distributions with the categorical distribution,
its conditional distribution given all other quantities is given by a Dirichlet distribution θU |
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(a) Ga,˚ (b) Regret without prior data. (c) Regret with prior data.

Figure 3: Performance figures related to Experiment 1.

v̄,vxp1q , . . . ,vxpt´1q , ū,uxp1q , . . . ,uxpt´1q „ Dir pβ1, . . . , βdU
q where βj :“ αj `

ř

n 1tupnq “

uju, and, similarly, n iterates over the samples pū,uxp1q , . . . ,uxpt´1q q associated with the subset
of environments in which exogenous probabilities match the deployment environment.

This procedure eventually forms a Markov chain with the invariant distribution P pu, ξ,θ |

v̄, v̄xp1q , . . . , v̄xpt´1q q. We plug in one of these samples ξ,θ „ P pξ,θ | v̄, v̄xp1q , . . . , v̄xpt´1q q

into Eq. (10) for different x to choose the next action xptq. This sample initializes the chain for
P pu, ξ,θ | v̄, v̄xp1q , . . . , v̄xptq q in round t of Alg. 1.

So far, we have described algorithms, approximations, and regret guarantees that pre-suppose the
correct specification of causal and selection diagrams across multiple domains. Some degree of
misspecification, however, can be tolerated without voiding guarantees on performance improvements.
We discuss more details in Appendix B.1.

5 Experiments

We evaluate the proposed approach on several synthetic scenarios inspired by the literature on
clinical trials and advertising. We compare Thompson sampling with additional data sources (tTS,
Alg. 1) with Thompson sampling with uninformative priors (TS) [38], a KL-UCB [9] algorithm
with uninformative priors (UCB), and as a baseline also include the algorithm that chooses actions
uniformly at random (Uniform)9. For all algorithms, we measure their regrets RT , averaged over
10 repetitions. Details on all data generating mechanisms and a discussion on mis-specification and
limitations of the proposed approach can be found in Appendix D and Appendix B, respectively.

Experiment 1. We start by evaluating the usefulness of prior data by comparing learned distributions
of expected reward with and without access to prior data. We consider a bandit problem with action,
reward and contextual variables X,Y, Z P t0, 1u, respectively, characterized by Fig. 3a in which
1000 prior data samples are given from an environment πa that differs in the causal assignment of Z
in comparison with the deployment environment π˚. Specifically, with this model,

P˚pyxq “
ÿ

z,uz,uxy

1tξ
px,z,uxyq

Y “ yu1tξ
puzq

Z “ zuθuzθuxy , (12)

where pξY , θuxy q are invariant across environments while pξZ , θuz q are specific to the deployment
environment. We start by considering Fig. 3b that gives samples from EP˚ rYxs | vxp1q , . . . ,vxptq

as a function of experimentation rounds t, that is without making use of prior data v̄. Distributions
of expected rewards under action x “ 0 and x “ 1 overlap substantially until round t “ 300 at
which point x “ 1 is inferred to lead to higher expected rewards. Fig. 3c gives a similar plot with the
exception that the left part of the plot gives prior samples EP˚ rYxs | v̄ illustrating the shape of the
expected reward distribution learned from prior data only. In particular, we observe EP˚ rYx“1s | v̄
concentrated in the interval r0.3, 0.9s and EP˚ rYx“0s | v̄ concentrated in the interval r0.1, 0.8s. The

9In contrast to related work, causal bandit algorithms are designed for single environments with multiple
intervention targets, meta-learning bandit algorithms require experimentation in multiple related environments,
while in the setting considered in this paper, data from source environments are given as a batch. Both sets of
methods thus focus on a different class of problems. See Appendix A for more details.
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agent starts experimentation at round t “ 0 with this prior and from then onward expected reward
samples are drawn from EP˚ rYxs | v̄,vxp1q , . . . ,vxptq as a function of experimentation round t. The
bandit algorithm with prior data is remarkably more efficient, being able to determine x “ 1 as the
superior action after only 80 rounds of experimentation. Overall, prior data leads the bandit algorithm
to pull the optimal arm in 99% of time versus 93% of the time without prior data.

Experiment 2. We revisit our introductory example to quantify the benefit of leveraging historical
patient data from various hospitals. In this example, the objective is to infer the optimal level of
hypertension medication X . We are given a choice among 5 different levels, i.e. |ΩX | “ 5, and
wish to increase the probability of the presence of a beneficial biomarker Y , i.e. |ΩY | “ 2, in the
clinical trial population π˚ given that we have prior observational data in a different hospital πa.
The selection diagram describing this causal protocol is given in Fig. 1. Regret comparisons for all
algorithms are given in Fig. 4 (LHS). We observe a significant gain in performance by tTS that
chooses the optimal intervention in 67% of the rounds in contrast with 35% of the rounds for TS, and
28% of the rounds for UCB (and 17% for an algorithm choosing interventions at random).

Figure 4: Performance figures related to Experiment 2.

We use this example also to illustrate empiri-
cally the dependence between regret and prior
entropy shown in Prop. 1 (RHS). For this, we
consider different prior beta distributions for
P˚pW “ 1 | xq, specifically with increasing
standard deviations around the true value of
P˚pW “ 1 | xq for each x P ΩX . A larger
standard deviations implies a less informative
prior and higher entropy of the random vari-
able X̃ that denotes the optimal action. The
entropy of X̃ takes values in the interval r0.2, 1.4s for assumed Beta priors for P˚pW “ 1 | xq with
standard deviations in the interval r0.001, 0.1s. Fig. 4 (RHS) demonstrates empirically the influence
of the entropy of X̃ on the expected cumulative regret given in Prop. 1. In particular, narrower, more
informative priors lead to better regret.

Experiment 3. This example considers an advertiser seeking to optimize which ads to show visitors
on a particular website. For each visitor, we choose one out of a collection of 6 ads X , |ΩX | “ 6,
some of which will be more engaging than others, to ultimately optimize whether a user clicks
Y P t0, 1u. Each ad has some theoretical but unknown click-through-rate P˚pyxq.

Ga,˚

X Y

Z

W

ASA

Figure 5: Performance figures related to Experiment 3.

In this example, we assume access to 500
data points from an ad recommendation sys-
tem used on a different website, i.e. a dif-
ferent environment πa. There, the effect of
an add X on the number of clicks Y is con-
founded by the user’s age A, (here categorized
into old and young such that ΩA “ t0, 1u

and |ΩA| “ 2) and the user’s product pref-
erences level W , which interacts with current
ad-recommendation system through a user’s
browsing history Z and location (not observed and therefore represented with a bi-directed edge be-
tween W and X). Moreover, in this example, the relationship between W and Y is itself confounded
by unobserved factors. The population visiting the website of interest π˚, where the MAB will be
deployed, is known to agree on all causal components with πa except on the distribution of age A.
This causal protocol as well as regret comparisons for this example are shown in Fig. 5. We observe
noticeable improvements in regret with prior data and knowledge of structural differences as tTS
substantially improves over algorithms agnostic of prior data.

6 Conclusions

This paper investigated the problem of improving the efficiency of multi-armed bandits using batch
data from related environments. As source environments might differ, some knowledge of structure
and (potential) discrepancies are necessary to extrapolate consistently. This paper demonstrated
that knowledge of selection diagrams that encode causal influence as well as potential discrepancies
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across source and target environments, without, however, an explicit specification of functional form
and distributions, is sufficient to consistently define an informative prior over reward distributions
using data from arbitrary environments. The resulting algorithm guarantees improvements in regret
in comparison to algorithms agnostic of prior data. To our knowledge, this serves as one of the first
principled approaches to consistently leverage prior data in the context of bandits and we hope it can
pave the way for developing more general transfer learning methods in reinforcement learning.
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Appendix for "Transportability for Bandits with Data from
Different Environments"

This Appendix includes

• Related work in Appendix A.
• Discussion on limitations and analysis of misspecification in Appendix B.
• Proofs in Appendix C.
• Details on the data generating mechanisms Appendix D.
• Details on the Gibbs sampler in Appendix E.

A Related work

In the bandit literature, problems of transfer learning in which existing experience and knowledge
is used to improve the performance of an agent appear under the rubric of multi-task learning and
meta-learning. Typically, in the context of multi-task learning the agent aims to solve a prescribed
set of related bandit tasks with shared structure. For example, [41] consider the setting in which
multiple players interact in an environment with the property that each player has slightly different
associated reward distributions. [40] extend this approach to the Thompson sampling algorithm with
an assumption that reward distribution between players are close but not identical. Similar ideas
can be found in the contextual case in which, e.g. [13] propose to leverage similarities in contexts
for different arms and improve prediction of reward distributions from contexts. In the context of
meta-learning, the agent is designed to work well on an arbitrary number of tasks from a common
environment (i.e. sampled from a prescribed distribution), relying on already completed tasks from
the same environment. For example, [4, 20, 33] assume a hierarchical bandit structure in which
parameters governing multiple bandit instances are sampled i.i.d. from a meta-prior. The authors
demonstrate that updates on the meta-prior from one instance can benefit other instances and that
regret bounds over a sequence of instances can be established. [30] adopt a similar setting to infer
a Lipschitz continuity constant which can be used to derive scale free regret bounds. Others, e.g.
[10, 42], have assumed that structural parameters of each instance can be decomposed into a shared
component and an instance-specific component, and learned with high-dimensional regularization
schemes.

Existing methods adopt a relatively wide range of assumptions on the “relatedness” of different
bandit instances or players that include, as surveyed above, the existence of a meta-distribution across
bandit instances, assumptions on the pairwise similarities in the reward distributions of different
players, assumptions on the decomposition of bandit parameters, and assumptions on the distribution
of contextual variables and their association with rewards. The environment and causal structure
typically remain invariant across bandit instances, and only small and specific set of changes in
distribution are allowed across bandit instances.

The proposed approach aims to tackle a more general setting in which we allow for arbitrary
changes in the causal mechanisms underlying each environment as long as their location can be
established and encoded in selection diagrams, i.e. graphs that describe the difference in structure
across domains without constraining their form. In the causality literature, these analyses fall under
the transportability umbrella. Several authors have demonstrated the power of this approach to
identify causal effects, predict counterfactual distributions and, more generally, make inference across
different environments [3, 11, 32, 5]. In the bandit literature, there is also an extensive literature on
various ways of exploiting knowledge of a causal graph for a single environment, known as causal
bandits [23, 36, 28, 27, 24, 26, 12, 29, 7, 18]. Within this literature the causal graph specifies a
dependency structure between different actions that allows an agent to identify redundant actions and
ultimately more efficient exploration, improving regret bounds by a multiplicative factor. Practical
examples of the use of causal graphs (within decision-making problems) are prevalent in the contexts
of clinical trials, healthcare, and advertising. We note, in particular, the examples in Figs. 2, 3,
4, in [22] that encode the design of case-cohort studies and clinical trials used in the MORGAM
study [14] using causal graphs for the estimation of causal effects. Separately, [21] consider the
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International Stroke Trial and the known causal associations between relevant features for policy
optimization. In the context of advertising, [8] describes the use of causal methods with several
detailed examples. Specifically, Figs. 3, 4, and 6 in [8] show examples of causal graphs that may
be defined for particular computational advertising applications. See also [5] for a bandit algorithm
leveraging the computational advertising graphs in [8], and[36, Sec. 5.2] for similar causal treatments
also in the context of advertising. So far, however, all bandit algorithms exploiting causal knowledge
have been studied in the “single environment” setting without access to prior data. Variations among
existing proposals are due to the class of graphs or the extent of knowledge of the graph, e.g. with
or without knowledge of the full causal graph, with or without unobserved confounding, etc. One
may interpret the proposed approach as extending the causal bandit formalism to problems in which
data from multiple different environments is available prior to an agent experimenting in a target
environment, all of which are, as in the causal bandit literature, described by underlying causal
models.
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(a) P˚
pzq arbitrary. (b) P˚

pzq P r0.2, 0.8s. (c) P˚
pzq P r0.3, 0.7s. (d) P˚

pzq P r0.4, 0.6s.

Figure 6: Prior expected reward distributions under misspecification of Z.

B Limitations and further analysis

Knowledge of structure may detract from the appeal of active experimentation and might limit the
extent to which the proposed approach can be applied. Although in practice several techniques can
be used to alleviate this problem such as causal discovery or considering multiple causal graphs as
potential causal explanations for the phenomenon of interest, significant domain knowledge will in
general be necessary for consistently using prior data. This observation holds for causal bandits more
generally.

B.1 Misspecification

Some degree of misspecification, however, can be handled without voiding guarantees on performance
improvements, especially when the assumed causal graphs and selection diagrams form super-models
for the underlying phenomenon of interest.

Starting with causal graphs: a causal graph G̃a,b defined as a graph pV, Ẽq is said to be a super-model
of a causal graph G “ pV, Eq E Ď Ẽ . For any causal graph G it holds that adding an edge, creating a
new graph G̃, creates a larger set of SCMs MpG̃q that subsumes MpGq, i.e. MpG̃q Ă MpG̃q, and as
a consequence any SCM with non-zero mass under PMpGq also has non-zero mass under PMpG̃q

. This
implies that prior distributions PM„MpG̃q

p EPM
rYxs | v̄ q remain valid whenever the causal graph

G̃ is a super-model of the true underlying graph G as the space of models defined by G is included in
the space of models defined G̃. For example, consider a scenario in which source and target domains
are equal with an underlying causal graph given by G :“ tX Ñ Y u. Prior to experimentation
with knowledge of the graph and source data distribution P px, yq, reward probabilities under agent
intervention can be uniquely computed, i.e. P py | dopxqq “ P py | xq. However, if we are unsure
about the presence of an unobserved confounder between X and Y , we may instead consider a super-
model G :“ tX Ñ Y,X L9999K Y u under which reward probabilities under agent intervention
can be determined to be distributed in the interval rP px, yq, P px, yq ` 1 ´ P pxqs, that, in particular,
includes the true value P py | dopxqq “ P py | xq. Inference based on G̃ instead of G leads to less
informative reward probabilities but remains correct and informative with respect to methods not
leveraging prior data as 0 ď P px, yq ď P py | dopxqq ď P px, yq ` 1 ´ P pxq ď 1.

X Y

ZSZ

Figure 7: Ga,˚

A similar reasoning can be applied to selection diagrams and selec-
tion nodes, as the latter only indicates a potential discrepancy across
domains. A selection diagram G̃a,b defined as a graph pVY S̃, Ẽq is
said to be a super-model of a selection diagram Ga,b “ pV Y S, Eq

if S Ď S̃ and E Ď Ẽ . In words, super-models can have more
edges or selection nodes. If a researcher is unsure of whether a
causal mechanism differs or not, they may still conduct correct
inference by being conservative and assuming that a discrepancy exists. Under these types of mis-
specification, where assumed selection diagrams represent super-models of the underlying data
generating process all claims and propositions hold and we can guarantee to never under-perform
methods that do not consider prior data or their structure. For example, consider a system with
binary variables X,Y, Z P t0, 1u whose causal association and differences across domains are
given by Fig. 7. In reality, target and source environments coincide and, with access to batch
data from the source environment πa, one could uniquely identify expected rewards by computing
EP˚Yx “

ř

y y
ř

z P
apy | x, zqP apzq. However, we suspect some degree of discrepancy in the
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Figure 9: Run time experiments.

causal assignment of Z across environments, and will consider inference of expected rewards under
various degrees of discrepancy, e.g. one may explicitly assume that either P˚pzq is arbitrary or
for example assume P˚pzq P ra, bs. We illustrate various such scenarios in Fig. 6. Each panel,
from right to left increases allows for a greater level of uncertainty that results in a correspondingly
wider distribution of expected reward prior to experimentation. The corresponding regret of bandit
algorithms that incorporate these bounds on Z in P˚ to warm start the distribution of expected regret
prior to experimentation are given in Fig. 8. We observe that the wider the prior the higher the
corresponding regret, which illustrates how degrees of prior knowledge influence regret.

Figure 8: Regret under misspecification.

Using the same reasoning, it holds that if instead the
researcher misses edges or incorrectly assigns priors on
the causal mechanisms to be expected in the target do-
main, prior inference will be incorrect in general. For
example, if distributions of expected reward in Fig. 6
do not cover the true expected reward, then a bandit
algorithm will need to correct for such a biased prior
and we can expect cumulative rewards to be lower than
those of an algorithm that ignores prior data and structure.
The extent to which the corresponding regret of a bandit
algorithm incorrectly making assumptions on structure
and discrepancies across environments will depend on
the underlying causal graph and functional associations
between variables.

Most of the discussion in the main body of this paper has assumed knowledge of a discrepancy
between environments without considering its magnitude, although the previous example shows that
knowledge of bounds or distributions of some of the variables that differ in the target domain can
be incorporated. It is worth noting that other kinds of domain knowledge may be available, such
as in the functional form of an association in the target domain, specific magnitudes of differences
expressed within such a functional form, etc. It would be an interesting task to consider how to use
that information optimally.

B.2 Run time evaluations

Reward distributions P˚pyxq induced by any underlying SCM can be expressed by a corresponding
discrete SCM in which P pUq is discrete and F is a discrete mapping between finite spaces. The
complexity of the corresponding parameterization depends on the underlying selection diagram and
dimensionality of observed variables.

In particular, in a given iteration of the Gibbs sampler, posterior updates are done for each parameter
separately so that computational time is proportional to the parameter count, approximately, which in
turn is determined by the cardinality of variables as well as the structure of the graph. For a fixed graph,
assuming that each update requires a small constant amount of time to compute, we could therefore
establish analytically how computational time scales with the cardinality of variables. For arbitrary
graphs, an analytical result is in general more involved as the parameter count increases differently
depending on the local structure of each variable. As an example for illustration, consider the graph
in Fig. 9a where X is an action variable, Z is a contextual variable, and Y is a reward variable.
Following the parameterization in Corol. 1, the cardinality of parameters is defined as follows:
|θU | “ |ΩX | ¨ |ΩZ | ¨ |ΩY |, |ξX | “ |ΩX | ¨ |ΩZ | ¨ |ΩY |, |ξZ | “ |ΩX |, |ξY | “ |ΩX | ¨ |ΩZ | ¨ |ΩY | ¨ |ΩZ |.
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We would expect run time to increase linearly with the cardinality of variables X,Y and to increase
“slower than quadratically” with the cardinality of Z. Fig. 9b gives run time evaluations of the
proposed bandit algorithm using 1000 rounds of experimentation as a function of the number of
actions. Fig. 9c evaluates the influence of the size of prior data on run time by plotting the time
required for drawing 1000 samples from the prior P p¨ | v̄q with increasing prior data size (in addition
to 1000 samples Gibbs samples that are discarded as burn-in). For both Figs. 9b and 9c we observe
run time to scale approximately linearly with the cardinality of the action space and sample size.
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C Theoretical results

C.1 Preliminaries

Counterfactuals and optimal actions We have defined in Sec. 1.1 the fact that intervening in an
SCM results in a new model that differs in the causal mechanisms subject to interventions. In this
section, we extend this notion to consider models derived from interventions that replace a causal
mechanism with another function, not necessarily a constant. This gives consistent definitions for
counterfactual random variables of the form YX that appear in Sec. 3.

Definition 4 (Intervened model). Let M be an SCM, Û Ď U , X P V , and X̂ : Û Ñ ΩX a function.
Then, MX̂ , called the intervened model of M subject to X̂ , is identical to M, except that the
function fX is replaced with the function X̂ .

Uncertainty in MX̂ is similarly encoded by the distribution P pUq which when averaged over leads
to random variables YX̂ for Y P V that describes the random variable Y under a model MX̂ . This
definition is tightly related to that of potential outcome as define in Sec. 1.1, but the former explicitly
allows for interventions that do not necessarily fix the variable X to a constant value. Probabilities in
this model can be computed using the chain rule

P pYX “ yq “

ż

ΩX

P pYx “ y | X “ xqP pX “ xqdx. (13)

And similarly expectations are given by

EP rYX s “

ż

ΩY

ż

ΩX

yP pYx “ y | X “ xqP pX “ xqdxdy. (14)

In turn, which action is optimal is represented by a random variable X̃ : Ωξ ˆ Ωθ ÞÑ ΩX where
Ωξ ˆ Ωθ defines the space of possible models M :“ Mpξ,θq P MpGπ˚ q that parameterize the
deployment environment π˚. For example, PM„MpGπ˚ qpX̃ “ xq “ PM„MpGπ˚ qpEPM

rYxs ą

EPM
rYx1 s,@x1 P ΩXztxuq where PM„MpGπ˚ q is a probability mass function defined over the space

of possible models MpGπ˚ q.

Information Theory Definitions This section provides a definition of all the information-theoretic
terms used throughout and shows that they can be generalized to mixed quantities that include discrete
and continuous random variables in a consistent manner. For a discrete random variable X P ΩX ,
the Shannon entropy and its conditional counter parts are defined as

HpXq :“ ´
ÿ

xPΩX

P pX “ xq logP pX “ xq,

HpX | Z “ zq :“ ´
ÿ

xPΩX

P pX “ x | Z “ zq logP pX “ x | Z “ zq and,

HpX | Zq :“
ÿ

zPΩZ

HpX | Z “ zqP pZ “ zq.

With a slight abuse of notation, we will define the filtered entropy as

HpX | v̄q :“ ´
ÿ

xPX
P pX “ x | v̄q logP pX “ x | v̄q,

where v̄ is a dataset.

Given two probability measures P and Q, where P is absolutely continuous w.r.t. Q so that the
Radon-Nikodym derivative dP

dQ is well defined, the Kullback-Leibler divergence is

DKLpP }Qq :“

ż

log
dP

dQ
dP,

which allows the standard definition of mutual information:

IP pX;Y q :“ DKLpP pX,Y q}P pXqP pY qq,
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where the subscript P that denotes the probability distribution used is sometimes omitted if unam-
biguous. Equivalently, we can define the mutual information and conditional mutual information
by

IpX;Y q “ HpXq ´ HpX | Y q and IpX;Y | Zq “ HpX | Zq ´ HpX | Y,Zq,

and we will also need the filtered mutual information,

IP p¨|Z“zqpX;Y q :“ DKLpP pX,Y | Z “ zq}P pX | zqP pY | Z “ zqq,

where we will typically evaluate IP p¨|V̄t,v̄qpX;Y q :“ DpP pX,Y | V̄t, v̄q}P pX | V̄t, v̄qP pY |

V̄t, v̄qq where recall V̄t :“ tVXp1q , . . . ,VXpt´1q u denotes the random variables associated with the
agent’s history of interactions with π˚ up to round t. The conditional mutual information is related to
the filtered mutual information by an expectation: ErIP p¨|ZqpX;Y qs “ IpX;Y | Zq, with respect to
P pZq. We will frequently use this fact to show that

ErIP p¨|V̄t,v̄qpX;Y qs “ IP p¨|v̄qpX;Y | V̄tq,

where the expectation is taken with respect to P pV̄t | v̄q. Perhaps the most important property of
mutual information will be the chain rule,

IpX;Z1, . . . , Zmq “ IpX;Z1q ` IpX;Z2 | Z1q ` . . . ` IpX;Zm | Z1, . . . , Zm´1q.

We will need to evaluate Ipθ, ξ;Zq, where Z is a discrete random variable, e.g. v̄t or V ptq, θ is
continuous, and ξ is discrete. We can evaluate this mutual information by writing

Ipθ, ξ;Zq “ IpZ;θ, ξq

“ IpZ;θq ` IpZ; ξ | θq

“ HpZq ´ HpZ | θq ` HpZ | θq ´ HpZ | ξ,θq,

which are all well defined.

C.2 Proofs

For readability, we restate all propositions.

Proposition 1 (restated). Let RT denote the regret incurred by following Thompson sampling (Alg. 1).
For any T P N and Γ ě Γt, then

ErRT | v̄s ď Γ

b

HpX̃ | v̄qT ,

where HpX̃ | v̄q is the conditional entropy of X̃ given v̄.

Proof. This analysis extends [35, Prop. 1] to account for the case in which prior data is conditioned
upon. We first bound the expected regret by using the law of total expectations and introducing the
mutual information between the optimal action and the action observation tuple,

ErRT | v̄s “ E

«

T
ÿ

t“1

YX̃ ´ YXptq | v̄

ff

(15)

“ E
T

ÿ

t“1

E
“

YX̃ ´ YXptq | V̄t, v̄
‰

(16)

“ E
T

ÿ

t“1

b

IP p¨|V̄t,v̄qpX̃;VXptq q
E

“

YX̃ ´ YXptq | V̄t, v̄
‰

b

IP p¨|V̄t,v̄qpX̃;VXptq q

. (17)

By using the KL divergence definition of mutual information and using the fact that Thompson
sampling precisely chooses actions according the their probability of being optimal, it can be shown
that,

E rYX̃ ´ YXptq s “
ÿ

xPΩX

P pX̃ “ xqErYx | X̃ “ xs ´
ÿ

xPΩX

P pX “ xqErYxs

“
ÿ

xPΩX

P pX̃ “ xqpErYx | X̃ “ xs ´ ErYxsq,
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where P pX “ xq “ P pX̃ “ xq by definition of the policy used by Thompson sampling. Let the
information ratio Γt is defined as an upperbound on the ratio

E
“

YX̃ ´ YXptq | V̄t, v̄
‰

b

IP p¨|V̄t,v̄qpX̃;VXptq q

ď Γt.

By writing Γ ě Γt,@t, applying this bound yields

ErRT | v̄s “ E
T

ÿ

t“1

b

IP p¨|V̄t,v̄qpX̃;VXptq q
E

“

YX̃ ´ YXptq | V̄t, v̄
‰

b

IP p¨|V̄t,v̄qpX̃;VXptq q

ď E
T

ÿ

t“1

Γt

b

IP p¨|V̄t,v̄qpX̃;VXptq q

ď ΓE
T

ÿ

t“1

b

IP p¨|V̄t,v̄qpX̃;VXptq q

ď Γ

g

f

f

eTE
T

ÿ

t“1

IP p¨|V̄t,v̄qpX̃;VXptq q

ď Γ

b

THpX̃ | v̄q,

where the second to last inequality follows from the Cauchy-Schwartz inequality and the last inequality
follows from the fact that,

E
T

ÿ

t“1

IP p¨|V̄t,v̄qpX̃;VXptq q “

T
ÿ

t“1

IP p¨|v̄qpX̃;VXptq | V̄tq (18)

“ IP p¨|v̄qpX̃; pVXpT q , . . . ,VXp1q qq (19)

“ HpX̃ | v̄q ´ HpX̃ | VXpT q , . . . ,VXp1q , v̄q (20)

ď HpX̃ | v̄q, (21)

by the chain rule for the mutual information and given the non-negativity of the entropy.

Proposition 2 (restated). Let RT denote the regret incurred following the policy defined by Alg. 1.
For any T P N, if Eq. (7) holds with Γ ě Γt for all t,

ErRT | v̄s ď Γ
b

TIP p¨|v̄q pθ, ξ;VXp1q , . . . ,VXpT q q `

T
ÿ

t“1

Erϵts.

Proof. This proof uses a different characterization of the per round regret to explicitly consider the
influence of model parameters pθ, ξq on information gain. Assume instead that there exists Γt such
that

ErYX̃ ´ YXptq | V̄t, v̄s ď Γt

b

IP p¨|V̄t,v̄q pθ, ξ;VXptq q ` ϵt, (22)
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where ϵt ą 0 is an additional slack term. The proof strategy follows that of [25, Prop. 2] where
unconditional regret bounds were shown. Given Eq. (22) the following derivation holds,

ErRT | v̄s “ E

«

T
ÿ

t“1

YX̄ ´ YXptq | v̄

ff

by definition

“ E

«

T
ÿ

t“1

E
“

YX̄ ´ YXptq | v̄, V̄t

‰

ff

by the law of iterated expectations

ď E

«

T
ÿ

t“1

Γt

b

IP p¨|V̄t,v̄q pθ, ξ;VXptq q ` ϵt

ff

by definition of Γt and ϵt

ď Γ

g

f

f

eT
T

ÿ

t“1

E
“

IP p¨|V̄t,v̄q pθ, ξ;VXptq q
‰

` E

«

ÿ

t

ϵt

ff

by Cauchy-Schwarz’s inequality

“ Γ

g

f

f

eT
T

ÿ

t“1

IP p¨|v̄q

`

θ, ξ;VXptq | V̄t

˘

` E

«

ÿ

t

ϵt

ff

by definition of the expectation of IP

“ Γ
b

TIP p¨|v̄q pθ, ξ;VXp1q , . . . ,VXpT q q ` E

«

ÿ

t

ϵt

ff

by the chain rule for mutual information.

Proposition 3 (restated). Fix δ ą 0 and choose Γt such that
ˇ

ˇYx ´ ErYx | V̄t, v̄s
ˇ

ˇ ď

Γt

2

b

IP p¨|V̄t,v̄qpθ, ξ;Yxq for all x P ΩX simultaneously with probability greater than 1 ´ δ. Then

Alg. 1 chooses actions Xptq that satisfy

ErYX̃ ´ YXptq | V̄t, v̄s ď Γt

b

IP p¨|V̄t,v̄qpθ, ξ;VXptq q ` δB,

where B ě 0 is such that supy,y1PΩY
y ´ y1 ď B.

Proof. This proposition extends [25, Lem. 3] to account for the case in which prior data is conditioned
upon. Thompson sampling, by definition, samples an action according to its probability of being
optimal with the current distribution of parameter values,

ErYX̃ ´ YXptq | V̄t, v̄s “ E
“

EPM̂
rYXptq | V̄t, v̄s ´ EPπ˚ rYXptq | V̄t, v̄s

‰

,

where M̂ :“ Mpξ̂, θ̂q defines the SCM that is obtained with the current sample ξ̂, θ̂ „ P pξ,θ | v̄t, v̄q

from the posterior distribution at round t, while Mπ˚ refers to the true underlying SCM of the
environment. Expectations with respect to the distributions PM̂ and Pπ˚ are conditioned on a specific
model of the environment. Define,

E :“
!

pξ,θq P Ωξ ˆ Ωθ : |Yx,Mpξ,θq ´ EM„PMpG
π˚ q

rYx,M s| ď Γt

b

IP p¨|V̄t,v̄qpθ, ξ;Yxq,@x P ΩX

)

,

where Yx,Mpξ,θq refers to the random variable Y in SCM Mpξ,θq in which we intervene to set X to
x, and Yx,M refers to the random variable Y in SCM M in which we set X to x.
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The probability matching property of Thompson sampling implies that P pξ̂, θ̂ P E | v̄t, v̄q ě 1´ δ{2.
It follows then, using the same proof strategy as [25, Lemma 3], that

ErYX̃ ´ YXptq | V̄t, v̄s ď EP p¨|V̄t,v̄q

”

1tpξ̂, θ̂q, pξ,θq P EupYXptq,M̂ ´ YXptq,M q

ı

` δB

ď EP p¨|V̄t,v̄q

«

Γt

ÿ

xPΩX

1tXptq “ xu

b

IP p¨|V̄t,v̄qpθ, ξ;Yxq

ff

` δB

ď Γt

ÿ

xPΩX

P pXptq “ x | V̄t, v̄qq

b

IP p¨|V̄t,v̄qpθ, ξ;Yxq ` δB

ď Γt

d

ÿ

xPΩX

P pXptq “ x | V̄t, v̄qqIP p¨|V̄t,v̄qpθ, ξ;Yxq ` δB

“ Γt

d

ÿ

xPΩX

P pXptq “ x | V̄t, v̄qqIP p¨|V̄t,v̄qpθ, ξ;YXptq | Xptq “ xq ` δB

“ Γt

b

IP p¨|V̄t,v̄qpθ, ξ;YXptq | Xptqq ` δB

“ Γt

b

IP p¨|V̄t,v̄qpθ, ξ;YXptq , Xptqq ` δB,

where the last equalities follow from the conditional independence between Xptq and pθ, ξq condi-
tioned on V̄t, v̄.

This proposition might guide us to obtain a per-period regret bound that in particular determines a
choice for the noise term ϵt, which results in an additive term inProp. 2. A common choice for ϵt is
1{T where T is the number of experimentation rounds and therefore the additive term in the regret is
simply a constant. This is also the choice made by [25]. In this way, the regret bound is tuned with
knowledge of the horizon, which is common in online learning.

C.3 Information ratio computation for specific example

The theoretical statements presented in the main body of this work only implicitly relate bounds on
regret with the assumed environment discrepancies assumed in selection diagrams. It is challenging
in general to provide more explicit connections. Although similarity in structure between domains
is explicitly encoded in selection diagrams, the association between discrepancies and posterior
distributions on parameters or reward probabilities learned from prior data for an arbitrary input
selection diagram are complex. For instance, it doesn’t necessarily hold that few discrepancies lead to
narrow reward probability posterior distributions, and conversely it doesn’t necessarily hold that large
discrepancies, e.g. many selection nodes, lead to wide reward probability posterior distributions.

In particular, consider an extreme example in which source and target domains are equal and described
by G :“ tX Ñ Y,X L9999K Y u. Even with infinite data and no discrepancy, it can be shown that
posterior reward probabilities P˚py | dopxqq are bounded in the interval rP px, yq, P px, yq`1´P pxqs

which might be arbitrarily wide depending on the underlying SCM. In contrast, in other examples
with certain graphs in which source and target domains differ on an arbitrarily large set of causal
mechanisms (that are, however, irrelevant for the computation of posterior reward probabilities)
posterior reward probabilities could be made arbitrarily narrow with sufficient data.

The information ratio Γ can highlight the trade-off between regret and graph structure. For specific
graphs, a bound on the information ratio Γ can be analytically computed and used to convey some of
the performance gains to be expected, for intuition. Recall that the information ratio is defined as a
scalar Γt such that,

ErYX̃ ´ YXptq | V̄t, v̄s “

c

ΓtIP p¨|V̄t,v̄q

´

X̃;VXptq

¯

, (23)

The information ratio can be bounded: 1{2 ď Γt ď |ΩX |{2, and describes how much information
is revealed about reward distributions when an arm is pulled: on one end Γt “ 1{2 in problems
with full information arise when the outcome Yx is perfectly revealed by observing Yx1 , and on the
other end Γt “ |ΩX |{2 in problems where random variables Yx and Yx1 are independent for any
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x ‰ x1. Bounds on the information ratio have also been shown for linear bandits [35]. With our
parameterization of Pπ˚ pyxq the probability of exogeneous variables encoded in θ is shared while ξ
is not, thus some information about reward distributions is expected to be gained on all arms in each
MAB round, and 1{2 ă Γt ă |ΩX |{2.

X Y

ZSZ

Figure 10: Ga,˚

In the following we will quantify the amount of sharing between
reward distributions and compute a corresponding a smaller up-
perbound for the information ratio for a specific graph in which
the computation is tractable following the proof strategy of [35,
Proposition 5]. This illustrates more precisely the regret gains that
can be expected from having a shared parameterization for reward
distributions.

We consider the selection diagram with domain-specific confounding given in Fig. 10 and the
computation of P˚py | dopxqq “

ř

zPΩZ
P apy | x, zqP˚pzq given knowledge of P apx, y, zq. This

graph is interesting because we may directly parameterize the conditional distributions involved
in P˚py | dopxqq instead of considering its underlying SCM. Let Y be binary for simplicity (all
arguments hold also more generally). For the purposes of this discussion, we will assume that
P apy | x, zq can be approximated arbitrarily well from sufficient prior data. It holds that

P˚py | dopxqq “
ÿ

zPΩZ

P apy | x, zqP˚pzq (24)

“ ϕpxqTp, (25)

where ϕpxq P R|ΩZ | is a column vector with i-th entry PπapY “ 1 | x, z “ iq and p P R|ΩZ | is a
column vector with i-th entry P pZ “ iq. The latter has some distribution in the interval r0, 1s and in
particular we denote its mean by µ :“ Erps and its mean conditioned on the optimal action being xj

by µj :“ Erp | X̃ “ xjs. Recall that X̃ denotes the optimal action.

Let αi :“ P pX̃ “ xiq and define M P R|ΩX |ˆ|ΩX | by its pi, jq-th entry,

Mi,j :“
?
αiαj

´

ErYxi
| X̃ “ xjs ´ ErYxi

s

¯

(26)

“
?
αiαj

´

ϕpxiq
TErp | X̃ “ xjs ´ ϕpxiq

TErps

¯

(27)

“
?
αiαj

´

Erp | X̃ “ xjs ´ Erps

¯T

ϕpxiq. (28)

All expectations are taken with respect to P p¨ | V̄t, v̄q. M can therefore be written as a product of
two matrices of rank |ΩX |. With this definition, it was shown by [35, Proposition 5] that,

E
“

YX̃ ´ YXptq | V̄t, v̄
‰2

“ TracepMq, (29)

and that,

IP p¨|V̄t,v̄qpX̃;VXptq q ě 2}M}2F , (30)

leading to the fact that the information ratio,

Γt :“
E

“

YX̃ ´ YXptq | V̄t, v̄
‰2

IP p¨|V̄t,v̄qpX̃; pX,YXqq
ď

RankpMq

2
“

|ΩZ |

2
. (31)

Now, |ΩZ | ăă |ΩX | in certain applications which shows that the information ratio may be smaller
than the worst-case value of |ΩX |{2 due to sharing of P˚pzq across different actions x.
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D Details on the data generating mechanisms

Bow graph with domain-specific confounding. To generate source data we choose an SCM
Ma compatible with the graph specified as follows: P puZq, P puX , P puY , P puXY q are given by
independent Gaussian distributions with mean 0 and variance 1, and each observation pz, x, yq

is generated from puZ , uX , uY , uXY q using the structural assignments: z Ð 1tuZ ă 1u, x Ð

1tz ` uXY ´ uX ą 0u, y Ð 1tx ´ 0.5z ` 2uXY ą 0u.

The deployment domain π˚ is given by a different SCM M˚ that varies in the causal mechanism relat-
ing to Z. It is given by the following SCM: P puZq, P puX , P puY , P puXY q are given by independent
Gaussian distributions with mean 0 and variance 1, and each observation pz, x, yq is generated from
puZq, uX , uY , uXY q using the structural assignments: z Ð 1tuZ ă 0u, x Ð 1tz ` uXY ´ uX ą

0u, y Ð 1tx ´ 0.5z ` 2uXY ą 0u.

Hypertension example. To generate data from the patient population πa we choose an SCM
Ma compatible with the graph specified as follows: P puZq, P puX , P puW , P puXY q are given by
independent Gaussian distributions with mean 0 and variance 1, and each observation pz, x, w, yq

is generated from puZq, uX , uY , uXY q using the structural assignments: z Ð 1tuZ ą 0u, x Ð

intt0.5z ` 1tuXY ą 0u ` 21tuXY ą 0u ´ 1tuX ą 0u ą 0u ` 21tuX ą 1u ` 1u, w Ð

1t0.3x ´ uW ´ 0.8 ą 0u, y Ð 1tw ´ 0.5z ` uXY ą 0u. intt¨u stands for the integer part of the
content of the brackets.

The domain π˚ in which the MAB is deployed is given by a different SCM M˚ that varies in the
causal mechanism relating to Z and W with respect to M b, and varies in W with respect to Ma.
It is defined by: P puZq, P puX , P puW , P puXY q are given by independent Gaussian distributions
with mean 0 and variance 1, and each observation pz, x, w, yq is generated from puZq, uX , uY , uXY q

using the structural assignments: z Ð 1tuZ ą 0u, x Ð intt0.5z ` 1tuXY ą 0u ` 21tuXY ą

0u´1tuX ą 0u`21tuX ą 1u`1u, w Ð 1t0.2x´uW ´1.8 ą 0u, y Ð 1tw´0.5z`uXY ą 0u.

Digital advertising example. This example considers data from two domains. Data from the
source domain πa is given by a SCM Ma compatible with the graph that is specified as fol-
lows: P puZq, P puX , P puW , P puXW , P puWY , P puAq are given by independent Gaussian distri-
butions with mean 0 and variance 1, and each observation pz, x, w, a, yq is generated from a sample
uZ , uX , uW , uXW , uWY , uA using the structural assignments: w Ð 1tuXW ` uWY ą 0u, z Ð

1tuZ`w ą 0u, a Ð 1tuA ą 0u, x Ð intt0.5z´0.5a`1tuXW ą 0u`21tuXW ą 0.5u´1tuX ą

0u ` 1u, y Ð 1t0.2x ´ 0.5a ` uWY ´ 1 ą 0u.

The domain π˚ in which the MAB is deployed is given by a different SCM M˚ that
varies in the causal mechanism relating to A with respect to Ma. It is defined by:
P puZq, P puX , P puW , P puXW , P puWY , P puAq are given by independent Gaussian distributions
with mean 0 and variance 1, and each observation pz, x, w, a, yq is generated from a sample
uZ , uX , uW , uXW , uWY , uA using the structural assignments: w Ð 1tuXW ` uWY ą 0u, z Ð

1tuZ ` w ą 0u, a Ð 1tuA ą 0.5u, x Ð intt0.5z ´ 0.5a ` 1tuXW ą 0u ` 21tuXW ą

0.5u ´ 1tuX ą 0u ` 1u, y Ð 1t0.2x ´ 0.5a ` uWY ´ 1 ą 0u.
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E Gibbs sampling

This section gives the derivation of all conditionals using our parameterization of causal effects for
the bow graph with confounding example.

The query of interest is given by P˚pyx “ 1q which is first approximated using source data v̄ and
then updated using interventional data vxp1q ,vxp2q , . . . collected by the MAB in the deployment
environment π˚.

Its parameterization, following Corol. 1, is given by

P˚pyx “ 1q “
ÿ

uxy,uz

1tξ
px,z,uxyq

Y “ yu1tξ
puzq

Z “ zuθuxyθuz , (32)

where ξ
px,z,uxyq

Y and θuxy
parameters are shared across source and deployment environments, while

1tξ
puzq

Z “ zu and θuz is specific to the deployment environment. We start by approximating the
posterior of all relevant parameters, that is ξpx,z,uxyq

Y and θuxy
, given v̄, before interacting with the

deployment environment π˚. Note that prior data v̄ is not relevant for estimating 1tξ
puzq

Z “ zu

and θuz
and thus we maintain uniform prior distributions over these parameters at this stage. In the

following, we give the derivation of the complete conditionals over ξpx,z,uxyq

Y and θuxy .

1. Sampling from P pūxy, ūz | v̄, ξ,θq. Let ūxy “ tu
pnq
xy , n “ 1, . . . , Nu and ūz “ tu

pnq
z , n “

1, . . . , Nu denote N independent samples of Uxy and Uz respectively, one corresponding to each
observation vpnq “ pxpnq, ypnq, zpnqq, where is the number of prior data samples. The complete
conditional can be derived following the functional dependencies in the underlying SCM given by
the causal graph,

P pupnq
xy , upnq

z | v̄, ξ,θq “ P pupnq
xy , upnq

z | vpnq, ξ,θq 9 P pupnq
xy , upnq

z ,vpnq | ξ,θq

“ P pypnq | xpnq, zpnq, upnq
xy qP pxpnq | zpnq, upnq

xy qP ppzpnq | upnq
z qP pupnq

z qP pupnq
xy q

“ 1tξ
pxpnq,zpnq,uxyq

Y “ ypnqu1tξ
pzpnq,upnq

xy q

X “ xpnqu1tξ
pupnq

z q

Z “ pzpnquθ
u

pnq
xy

θ
u

pnq
z

,

where we have replaced the probabilities with the corresponding parameters that are used to define
them.

2. Sampling from P pξ
px,z,uxyq

Y | v̄, ū,θq. Similarly, for fixed x, z, uxy, parameter ξ
px,z,uxyq

Y is
mutually independent of any other parameter in ξ given v̄, ū,θ and can be sampled separately.
Recall that by definition of the underlying SCM ξ

px,z,uxyq

Y represent a deterministic mapping
between inputs x, z, uxy and output y P ΩY . The value ξ

px,z,uxyq

Y P ΩY is therefore implicitly
determined by the current values v̄, ū: if there exists a tuple pxpnq “ x, zpnq “ z, u

pnq
xy “

uxy, y
pnq “ yq for some n “ 1 . . . , N , then by definition ξ

px,z,uxyq

Y :“ y with probability 1. If no
such tuple exist, then the distribution of ξpx,z,uxyq

Y remains uniform over its domain ΩY as none of
the data points carries information as to the mapping px, z, uxyq ÞÑ y.

3. Sampling from P pθuxy | v̄, ū,θq. The conditional distribution over θuxy given v̄, ū is given by a
Dirichlet distribution following the conjugacy of it with regard to categorical distributions of Uxy

and can be updated by adding the counts of each outcome ūxy of Uxy in the current sample to the
corresponding prior concentration parameters of the Dirichlet prior distribution.

This process eventually forms a chain of samples from the correct posterior distribution of each
parameter. At this stage, the MAB is deployed in π˚ and all parameters may be updated both with
prior data v̄ as well as with additional samples vx collected online in every round of experimentation.
Offline and online data points are different in kind, and contribute to updating parameters differently.
For shared parameters, both types of data may be used while for parameters specific to π˚ only newly
collected interventional data samples will be relevant in posterior computations.

ξ
px,z,uxyq

Y is updated using the posterior P pξ
px,z,uxyq

Y | v̄,vxp1q , . . . ,vxpt´1q , ū,uxp1q , . . . ,uxpt´1q q,
while ξ

puzq

Z is updated using the posterior P pξ
puzq

Z | v̄,vxp1q , . . . ,vxpt´1q , ū,uxp1q , . . . ,uxpt´1q q “
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P pξ
puzq

Z | vxp1q , . . . ,vxpt´1q ,uxp1q , . . . ,uxpt´1q q using the same intuition as described above. Simi-
larly, θuxy

is updated using the posterior P pθuxy
| ū,uxp1q , . . . ,uxpt´1q q while θuz

is updated using
the posterior P pθuz | ū,uxp1q , . . . ,uxpt´1q q “ P pθuz | uxp1q , . . . ,uxpt´1q q.
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