
In-Context Decision-Making from
Supervised Pretraining

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large transformer models trained on diverse datasets have shown a remarkable1

ability to learn in-context, achieving high few-shot performance on tasks they2

were not explicitly trained to solve. In this paper, we study the in-context learning3

capabilities of transformers in decision-making problems, i.e., contextual bandits4

and Markov decision processes. We introduce a new pretraining method in which5

the transformer predicts an optimal action given a query state and an in-context6

dataset of interactions, across a diverse set of tasks. This pretraining procedure,7

while simple, produces an in-context algorithm with several surprising results. On8

a range of decision-making problems the learned algorithm simultaneously exhibits9

exploration online and conservatism offline, despite never being explicitly trained10

to do so. It also generalizes beyond the pretraining distribution to unseen tasks, in-11

context datasets, and reward noise. We show the learned algorithm can be viewed12

as an implementation of posterior sampling. We further leverage this connection to13

provide theoretical guarantees on its regret, and show that in situations where the14

training data is produced by an unknown, suboptimal regret-minimizing algorithm,15

the learned algorithm can achieve provably lower regret than the data-generating16

algorithm. These results suggest a promising yet simple path towards instilling17

strong in-context decision-making abilities in large transformer models.18

1 Introduction19

For supervised learning, transformer-based models trained at scale have shown impressive abilities20

to perform tasks given an input context, often referred to as few-shot prompting or in-context21

learning [Brown et al., 2020]: the model is presented with a small number of supervised input-output22

examples in its context, and is then asked to predict the most likely completion (i.e. output) of an23

unpaired input. In this work, we study in-context learning in sequential decision making settings, i.e.,24

reinforcement learning (RL) settings. Here, the context takes the form of observation-action-reward25

tuples representing a dataset interactions with an unknown environment, and the agent must leverage26

these interactions when making decisions in the future. Notably, RL is considerably more varied27

and complex than supervised learning, and in-context RL inherits this complexity. For example,28

a hallmark of good decision-making in online RL algorithms is to select exploratory actions and29

improve with more interactions, whereas an RL agent trained from a static, suboptimal offline dataset30

should select actions conservatively. An in-context RL algorithm should do the same.31

To enable this, we propose a new pretraining objective for decision-making, namely, to train a32

transformer to predict an optimal action1 given a query state and an in-context dataset of interactions,33

across a diverse set of tasks. We refer to pretrained model as a Decision-Pretrained Transformer34

1If not explicitly known, the optimal action can be determined by running any (potentially inefficient)
minimax-optimal regret algorithm for each pretraining task.

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

(DPT). Typically, the optimal action for a given query state is not completely determined by the35

context, and so our method effectively trains the transformer to perform posterior sampling [Osband36

et al., 2013]. For example, in the extreme case of an empty context, the transformer would learn37

the distribution of optimal actions with respect to the task distribution seen during pretraining. We38

demonstrate in theory and empirically that this simple pretraining produces an in-context algorithm,39

yielding surprising capabilities for learning in both online and offline decision-making tasks.40

• Pretraining to predict optimal actions gives rise to decision-making algorithms. The pre-41

training objective is solely based on predicting optimal actions from in-context interactions. At42

the outset, it is not immediately apparent that these predictions at test-time would yield good43

decision-making behavior when the task is unknown and thus exploration is necessary. Intriguingly,44

this approach culminates in an algorithm that is capable of dealing with this uncertainty. For45

example, despite not being explicitly trained to explore, the model exhibits an exploration strategy46

on par with hand-designed algorithms, as a means to discover the optimal actions.47

• In-context algorithms generalize to new decision-making problems, offline and online. The48

in-context algorithm can solve new tasks not seen during training, including unseen reward49

distributions on bandit problems and unseen goals, dynamics, and datasets in simple MDPs.50

• DPT can learn to leverage latent structure which prior algorithms required to be explicit. We51

explore several instances of this behavior. For example, in parametric bandit problems, specialized52

algorithms can leverage structure (such as linear rewards) and offer provably better regret, but a53

representation must be known in advance. Perhaps surprisingly, we demonstrate that pretraining54

on linear bandit problems, even with unknown representations, leads DPT to select actions and55

explore in a way that matches an efficient linear bandit algorithm. This holds even when the56

source pretraining data comes from a suboptimal algorithm, demonstrating DPT’s ability to learn57

improved strategies beyond what it was trained on.58

2 Related Work59

Meta-learning. Algorithmically, our work falls under the meta-learning framework [Schaul and60

Schmidhuber, 2010, Bengio et al., 1990]. At a high-level, these methods attempt to learn some61

underlying shared structure of the training distribution of tasks to accelerate learning of new tasks.62

While there is a choice in what shared ‘structure’ is specifically learned (e.g., the dynamics of the63

task [Fu et al., 2016, Nagabandi et al., 2018, Landolfi et al., 2019], a task context identifier [Rakelly64

et al., 2019, Humplik et al., 2019, Zintgraf et al., 2019, Liu et al., 2021], temporally extended65

skills and options [Perkins et al., 1999, Gupta et al., 2018, Jiang et al., 2022], or initialization66

of a neural network policy [Finn et al., 2017, Rothfuss et al., 2018]), we take a more agnostic67

approach by learning the learning algorithm itself [Duan et al., 2016, Wang et al., 2016, Mishra68

et al., 2017]. Algorithm Distillation (AD) [Laskin et al., 2022, Lu et al., 2023] also falls under this69

category, applying autoregressive supervised learning to distill (sub-sampled) traces of a single-task70

RL algorithm into a task-agnostic model. While our method DPT also leverages autoregressive71

SL, we take advantage of connections between posterior sampling and optimal regret-minimizing72

algorithms to derive an approach that is provably efficient.73

Autoregressive transformers for decision-making. In decision-making fields such as RL and74

imitation learning, the use of transformer models trained using autoregressive supervised action75

prediction has proliferated in recent years [Yang et al., 2023], inspired by the successes of these76

techniques for large language models [Vaswani et al., 2017, Raffel et al., 2020, Brown et al., 2020].77

For example, Decision Transformer (DT) [Chen et al., 2021, Janner et al., 2021] uses a transformer78

to autoregressively model sequences of actions from offline experience data, conditioned on the79

achieved return. During inference, one can then query the model with respect to a desired high return80

value. This approach has been shown to scale favorably to large models and multi-task settings [Lee81

et al., 2022], at times exceeding the performance of large-scale multi-task imitation learning with82

transformers [Reed et al., 2022, Brohan et al., 2022, Shafiullah et al., 2022]. However, DT is known83

to be provably (and unboundedly) sub-optimal in common scenarios [Brandfonbrener et al., 2022,84

Yang et al., 2022]. One common criticism of DT – and, in fact, autoregressive supervised learned85

transformers in general – is their inability to improve upon the dataset. For example, there is little86

reason for DT to output meaningful behavior if conditioned on a return higher than any of the returns87

observed in its training dataset, without excessively strong assumptions on the ability of the model to88

2

extrapolate [Brandfonbrener et al., 2022]. In contrast, a major contribution of our work is theoretical89

and empirical evidence for the ability of our method to improve over behaviors seen in the dataset in90

terms of regret, only relying on assumptions that parallel standard ones in offline RL settings.91

Value and policy-based offline RL. Offline RL algorithms offer the opportunity to learn from existing92

datasets. To address distributional shift, many prior algorithms incorporate the principle of value93

pessimism [Kumar et al., 2020, Yu et al., 2021, Liu et al., 2020], or policy regularization [Fujimoto94

et al., 2019, Kumar et al., 2019, Siegel et al., 2020, Liu et al., 2019]. To reduce the amount of offline95

data required in a new task, methods for offline meta-RL can reuse interactions collected in a set96

of related tasks [Li et al., 2020, Mitchell et al., 2021, Dorfman et al., 2021]. However, they still97

must address distribution shift, requiring solutions such as policy regularization [Li et al., 2020] or98

additional online interactions [Pong et al., 2022]. Following the success of autoregressive models like99

DT and AD, our model avoids these issues. With our pretraining objective, our model also leverages100

offline datasets for new tasks more effectively than AD does.101

3 In-Context Learning Model102

Basic decision models. The basic decision model of our study is the finite-horizon Markov decision103

process (MDP). An MDP is specified by the tuple ⌧ = hS,A, T, R,H, ⇢i to be solved, where S is the104

state space, A is the action space, T : S ⇥A ! �(S) is the transition function, R : S ⇥A ! �(R)105

is the reward function, H 2 N is the horizon, and ⇢ 2 �(S) is the initial state distribution. A learner106

interacts with the environment through the following protocol: (1) an initial state s1 is sampled from107

⇢; (2) at time step h, the learner chooses an action ah and transitions to state sh+1 ⇠ T (·|sh, ah),108

and receives a reward rh ⇠ R(·|sh, ah). The episode ends after H steps. A policy ⇡ maps states to109

distributions over actions and can be used to interact with the MDP. We denote the optimal policy110

as ⇡
?, which maximizes the value function V (⇡?) = max⇡ V (⇡) := max⇡ E⇡

P
h
rh. Note this111

framework encompasses multi-armed bandit settings where the state space is a single point, e.g.112

S = {1}, H = 1, and the optimal policy is a? = argmax
a2A E [r1|a1 = a].113

Pretraining. Let Tpre be a distribution over tasks at the time of pretraining. A task ⌧ ⇠ Tpre can be114

viewed as a specification of an MDP, ⌧ = hS,A, T, R,H, ⇢i. The distribution Tpre can span different115

reward and transition functions and even different state and action spaces. We then sample a context116

(or a prompt) which consists of a dataset D of interactions between the learner and the MDP specified117

by ⌧ . D = {sj , aj , s
0
j
, rj}j2[n] is a (potentially ordered) collection of transition tuples taken in ⌧118

We refer to D as the in-context dataset because it provides the contextual information about ⌧ . D119

could be generated through variety of means, including but not limited to: (1) random interaction120

data within ⌧ , (2) demonstrations from an expert, and (3) rollouts of an algorithm. Additionally, we121

independently sample a query state squery from the distribution Dquery over states and a label a? is122

sampled from the optimal policy ⇡
?

⌧
(·|squery) for task ⌧ (see Section 5.3 for how to implement this123

in common practical scenarios). We denote the joint pretraining distribution over tasks, in-context124

datasets, query states, and action labels as Ppre:125

Ppre(⌧, D, squery, a
?) = Tpre(⌧)Dpre(D; ⌧)Dquery(squery)⇡

?

⌧
(a?|squery) (1)

Given the in-context dataset D and a query state squery, we can train a model to predict the optimal126

action a
? in response. Let Dj = {(s1, a1, s01, r1), . . . , (sj , aj , s

0
j
, rj)} denote the partial dataset up127

to j samples. Formally, we aim to train a model M parameterized by ✓, which outputs a distribution128

over actions A, to minimize the expected loss over samples from the pretraining distribution:129

min✓ EPpre

P
j2[n] ` (M✓(· | squery, Dj), a?) (2)

We will use a cross-entropy loss function: `(M✓(· |squery, Dj), a?) := � logM✓(a? | squery, Dj)130

throughout, essentially treating this as a classification problem for finite A. The resulting output131

model M✓ can be viewed as an algorithm that takes in a dataset of interactions D and can be queried132

for predictions of the optimal action via inputting a query state squery.133

Testing. After pretraining, a new task (MDP) ⌧ is sampled from a test-task distribution Ttest. If the134

model is to be tested offline, then a dataset (prompt) is a sampled D ⇠ Dtest(· ; ⌧) and the policy that135

the model in-context learns is given conditionally as M✓(· | ·, D). Namely, we evaluate the policy136

by having it iteratively interact with the environment, selecting action ah 2 argmax
a
M✓(a|sh, D)137

when the learner visits state sh. If the model is to be tested online through multiple episodes of138

3

Figure 1: A transformer model M✓ is pretrained to predict an optimal action a?
query from a state squery in a task,

given a dataset of interactions from that task. The resulting decision-pretrained transformer (DPT) learns a
distribution over the optimal action conditioned on an in-context dataset. M✓ can be deployed in new tasks
online by collecting data on the fly, or offline by immediately conditioning on a static dataset.

interaction, then the dataset is initialized as empty D = {}. At each episode, M✓(· | ·, D) is deployed139

where the model samples ah ⇠ M✓(·|sh, D) upon observing state sh. Throughout a full episode, it140

collects interactions {s1, a1, r1, . . . , sH , aH , rH} which are appended to D. The model then repeats141

the process with another episode, initializing D = {s1, a1, r1, . . . , sH , aH , rH}, and so on until a142

specified number of episodes has been reached.143

A key distinction of the testing phase is that there are no updates to the parameters of the model M✓.144

This is in contrast to hand-designed reinforcement learning algorithms that would perform parameter145

updates or maintain statistics using the dataset D to learn from scratch. Instead, the model M✓146

performs a computation through its forward pass to generate a distribution over actions conditioned147

on the in-context D and query state sh.148

Sources of distribution mismatch. Inherent to this pre-train-then-test procedure, like nearly all149

foundation models, is distribution mismatch because a practitioner may be interested in solving150

specific downstream tasks that were not precisely known during pre-training. A model pre-trained151

on sufficiently diverse data should ideally be robust (to some extent) to these mismatches. Here, we152

briefly point out potential sources of distribution mismatch at test time that we have identified in153

the model and will investigate them throughout this work. (1) When deployed, M✓ will execute its154

learned policy which invariably induces a distribution over states different from Dquery. (2) Pretraining155

likely happens over a hugely diverse set of tasks Tpre, but but a practitioner may be interested in156

applying M✓ to a specific subset. (3) For a similar reason, the datasets prompted at test-time can also157

be different, especially in the online case where they are collected by M✓ itself.158

4 Learning in Bandits159

We begin with an empirical investigation of DPT in a multi-armed bandit, a well-studied special case160

of the MDP where the state space S is a singleton and the horizon H = 1 is a single step. We will161

examine the performance of DPT both when aiming to select a good action from offline historical162

data and for online learning where the goal is to maximize cumulative reward from scratch. Offline,163

it is critical to account for uncertainty to noise as certain actions may not be sampled well enough.164

Online, it is critical to judiciously balance exploration and exploitation to minimize overall regret.165

Pretraining distribution. For the pretraining task distribution Tpre, we sample 5-armed bandits166

(|A| = 5). The reward function for arm a is a normal distribution R(·|s, a) = N (µa,�
2) where167

µa ⇠ Unif[0, 1] independently and � = 0.3. For the distribution over actions for the in-context168

datasets Dpre, we randomly generate action frequencies by sampling probabilities from a Dirichlet169

distribution and mixing them with a point-mass distribution on one random arm. Then we sample the170

actions correspondingly. This encourages diversity of the in-context datasets. The optimal policy171

⇡
? for a particular bandit is simply the action with the highest mean: argmax

a
µa. We pretrain the172

model M✓ to predict a? from D as described in Section 3 for datasets up to size n = 500.173

Comparisons. We compare to several well-known algorithms for bandits2. All of the algorithms are174

designed to reason in a particular way about uncertainty based on their observations.175

2See Appendix A.2 for additional details such as hyperparameters.

4

(a) (b) (c)

Figure 2: (a) Offline performance on in-distribution bandits, given random in-context datasets. (b) Online
cumulative regret on bandits. (c) Final (after 500 steps) cumulative regret on out-of-distribution bandits with
different Gaussian noise standard deviations. The mean and standard error are computed over 200 test tasks.

• Empirical mean algorithm (Emp) selects the action with the highest empirical mean reward naively.176

• Upper Confidence Bound (UCB) selects the action with the highest upper confidence bound.177

• Lower Confidence Bound (LCB) selects the action with the highest lower confidence bound.178

• Thompson Sampling (TS) selects the action with the highest sampled mean from a posterior179

distribution over reward models.180

Emp and TS [Russo et al., 2018, Thompson, 1933] can both be used for offline or online learning;181

UCB [Auer et al., 2002] is known to be provably optimal online by ensuring exploration through182

optimism under uncertainty; and LCB [Xiao et al., 2021, Jin et al., 2021] is used to minimize183

suboptimality given an offline dataset by selecting actions pessimistically. We evaluate algorithms184

with standard bandit metrics. Offline, we use the suboptimality µa? �µâ where â is the chosen action.185

Online, we use cumulative regret:
P

k
µa? � µâk where âk is the kth action chosen.186

DPT learns to reason through uncertainty. As shown in Figure 2a, in the offline setting, DPT187

significantly exceeds the performance of Emp and LCB while matching the performance of TS, when188

the in-context datasets are sampled from the same distribution as during pretraining. The results189

suggest that the transformer is capable of reasoning through uncertainty caused by the noisy rewards190

in the dataset. Unlike Emp which can be fooled by noisy, undersampled actions, the transformer has191

learned to hedge to a degree. However, it also suggests that this hedging is fundamentally different192

from what LCB does, at least on this specific distribution3.193

Interestingly, the same transformer produces an extremely effective online bandit algorithm when194

sampling actions instead of taking an argmax. As shown in Figure 2b, our method matches the195

performance of classical optimal algorithms, UCB and TS, which are specifically designed for196

exploration. This is notable because DPT was not explicitly trained to explore, but its emergent197

strategy is on par with some of the best. In Figure 2c, we show this property is robust to noise in the198

rewards not seen during pretraining by varying the standard deviation. In Appendix B, we show this199

generalization happens offline too and even with unseen Bernoulli rewards.200

Adapting to expert-biased datasets. A common assumption in offline RL is that datasets tend to201

be a mixture between optimal data (e.g. expert demonstrations) and suboptimal data (e.g. random202

interactions) [Rashidinejad et al., 2021]. Hence, LCB is generally effective in practice. Motivated by203

this, we pretrain a second model where the in-context dataset is mixed with varying fractions of expert204

data. We denote this model by DPT-Exp. In Figure 3a, we plot the performance of both pretrained205

models when evaluated on new datasets with different fractions of expert data. Our results suggest206

that when the pretraining distribution is similarly trained with expert-suboptimal data, DPT-Exp207

behaves similarly to LCB, while DPT continues to resemble TS. This is quite interesting as for other208

methods, such as TS, it is less clear how to automatically incorporate the right amount of expert bias209

to yield the same effect.210

Leveraging structure from suboptimal data. We next demonstrate that the model can learn to211

leverage the inherent structure of a problem class, even without prior knowledge of this structure,212

and even when learning from in-context datasets that do not explicitly utilize it. More precisely, we213

consider tasks sampled from linear bandit tasks ⌧ , where the reward function is given by E [r | a, ⌧] =214

h✓⌧ ,�(a)i and ✓⌧ 2 Rd is a task-specific parameter vector and � : A ! Rd is fixed feature vector215

3Note our randomly generated environments are equally likely to have expert-biased datasets and adversarial
datasets, so LCB is not expected to outperform here [Xiao et al., 2021].

5

(a) (b) (c)

Figure 3: (a) Offline performance of DPT and DPT-Exp on expert-biased datasets. (b) Offline performance of
DPT trained on linear bandits from TS source data. LinReg does linear regression and outputs the greedy action.
(c) Online cumulative regret of the same model. The mean and standard error are computed over 200 test tasks.

that is the same for all tasks ⌧ . Given the feature representation �, LinUCB [Abbasi-Yadkori et al.,216

2011], a UCB-style algorithm that leverages �, achieves regret eO(
p
dK) over K steps, a substantial217

gain when d ⌧ |A|. Here, we pretrain a DPT model with datasets gathered by Thompson Sampling218

(TS), which treats the arms as if they are independent and is suboptimal for this problem.219

Figures 3b and 3c show that the model can learn to take advantage of the unknown linear structure,220

essentially learning an effective surrogate for �, and can use this structure to do more informed221

exploration online and decision-making offline. It is nearly on par with LinUCB (which is given �)222

and significantly outperforms the dataset source, TS, which does not know the structure. In addition,223

this presents evidence that supervised learning-based approaches to decision-making can learn novel224

exploration strategies that transcend the quality of their original data.225

5 Learning in Markov Decision Processes226

We next study whether DPT can tackle Markov decision processes by testing its ability to perform227

exploration and credit assignment. In the following experiments, the in-context algorithm demon-228

strates generalization to new tasks, scalability to image-based observations, and capability to stitch229

in-context behaviors (Section 5.2). This section also examines whether DPT can be pretrained with230

datasets and action labels generated by a different RL algorithm (Section 5.3).231

5.1 Experimental Setup232

Environments. We consider environments that require targeted exploration to solve the task. The233

first is Dark Room [Zintgraf et al., 2019], a 2D discrete environment where the agent must locate the234

unknown goal location in a 10⇥ 10 room, and only receives a reward of 1 when at the goal. We hold235

out a set of goals for generalization evaluation. Our second environment is Miniworld [Chevalier-236

Boisvert, 2018], a 3D visual navigation problem to test the scalability of our method to image237

observations. The agent is in a room with four boxes of different colors, and must find the target box,238

the color of which is unknown to the agent initially. It receives a reward of 1 only when near the239

correct box. Details on these environments and the pre-training datasets are in App. A.3 and A.4.240

Comparisons. Our experiments aim to understand the effectiveness of our pretraining procedure in241

comparison to that of other context-based meta-RL algorithms. To that end, we compare to meta-RL242

algorithms based on supervised and on RL objectives.243

• Proximal Policy Optimization (PPO) [Schulman et al., 2017]: We compare to this single-task RL244

algorithm, which trains from scratch without any pretraining data, to contextualize the performance245

of our model and other meta-RL algorithms.246

• Algorithm Distillation (AD) [Laskin et al., 2022]: AD first generates a dataset of learning histories247

by running an RL algorithm in each training task. Then, given a sampled subsequence hj =248

(oj , aj , rj , . . . , oj+c) from a learning history, a sequence model is trained to predict the next action249

aj+c from the learning history.250

• RL2 [Duan et al., 2016]: This online meta-RL comparison uses a recurrent neural network to adapt251

the agent’s policy from the given context. Unlike AD and our method, which is trained with a252

supervised objective, the RL2 agent is trained to maximize the expected return with PPO.253

6

(a) (b) (c) (d)

Figure 4: (a) Offline performance on held-out Dark Room goals, given random and expert datasets. (b) Online
performance on held-out Dark Room goals. (c) Offline performance on Miniworld, given random and expert
datasets. (d) Online performance on Miniworld after 40 episodes. We report the average and standard error of
the mean over 100 different offline datasets in (a) and (c) and 20 online trials in (b) and (d).

PPO and RL2 are online algorithms, while AD is capable of learning both offline and online. Details254

on the implementation of these algorithms can be found in Appendix A.2.255

5.2 Main Results256

Generalizing to new offline datasets and tasks. To study the generalization capabilities of DPT,257

we evaluate the model in Dark Room on a set of 20 held-out goals not in the pretraining dataset.258

When given an expert dataset, DPT achieves near-optimal performance. Even when given a random259

dataset, which has an average total reward of 1.1, DPT obtains a much higher average return of260

61.5 (see Fig. 4a). Qualitatively, we observe that when the in-context dataset contains a transition to261

the goal, DPT immediately exploits this and takes a direct path to the goal. In contrast, while AD262

demonstrates strong offline performance with expert data, it performs worse in-context learning with263

random data compared to DPT. The difference arises because AD is trained to infer a better policy264

than the in-context data, but not necessarily the optimal one.265

We next evaluate DPT, AD, RL2, and PPO online without any prior data from the 20 test-time Dark266

Room tasks, shown in Fig. 4b. After 40 episodes, PPO does not make significant progress towards267

the goal, highlighting the difficulty of learning from such few interactions alone. RL2 is trained to268

perform adaptation within four episodes each of length 100, and we report the performance after269

the four adaptation episodes. Notably, DPT on average solves each task faster than AD and reaches270

a higher final return than RL2, demonstrating its strong ability to explore effectively online. In271

Appendix B, we also present results on generalization to new dynamics.272

Learning from image-based observations. In Miniworld, the agent receives RBG image observa-273

tions of 25⇥ 25 pixels. As shown in Fig. 4d, DPT can solve this high-dimensional task offline from274

both random and expert datasets. Compared to AD and RL2, DPT also learns online more efficiently.275

Stitching novel trajectories from in-context subsequences. A desirable property of some offline276

RL algorithms is the ability to stitch suboptimal subsequences from the offline dataset into new277

trajectories with higher return. To test whether DPT exhibits stitching, we design the Dark Room278

(Three Tasks) environment in which there are three possible tasks. The pretraining data consists only279

of expert demonstrations of two of them. At test-time DPT is evaluated on third unseen task, but its280

offline dataset is only expert demonstrations of the original two. Despite this, it leverages the data to281

infer a path solving the third task (see Fig. 5a).282

5.3 Learning from Algorithm-Generated Policies and Rollouts283

So far, we have only considered in-context interactions collected by a random policy and action labels284

provided by an optimal policy. However, most realistic tasks do not have an optimal policy readily285

available. In the pretraining phase of this experiment, we instead use action labels given by the best286

policy a PPO agent learns. We also experiment with rollouts from the PPO agent’s replay buffer as287

the pretraining in-context datasets, which AD trains on and thus allows us to compare more directly288

to AD. We evaluate three variants: DPT (PPO, Opt) is with PPO contexts and optimal policy labels,289

DPT (Rand, PPO) is with random contexts and PPO policy labels, and DPT (PPO, PPO) is with290

PPO contexts and PPO policy labels. The final variant DPT (PPO, PPO) can be viewed as a direct291

comparison between our pretraining objective and that of AD, given the same pretraining data. In292

Figs. 5b and 5c, we see that DPT (Rand, PPO) online performs on par with and offline worse than293

7

(a) (b) (c)

Figure 5: (a) In Dark Room (Three Tasks), DPT stitches a new, optimal trajectory to the goal (blue) given two
in-context demonstrations of other tasks (pink and orange). (b) Offline Dark Room performance of DPT trained
on PPO data. (c) Online Dark Room performance of DPT trained on PPO data.

AD, but all the other variants outperform AD, including DPT (PPO, PPO). As we might expect, the294

variants of DPT that use the PPO policy to generate action labels perform worse compared to their295

counterparts with the optimal action labels. In Appendix B, we analyze the sensitivity of DPT to296

other hyperparameters, such as the context size and amount of pretraining data.297

6 Theory298

Under some assumptions on data and model parameterization, we prove we can formally relate the299

pretraining procedure to posterior sampling [Osband et al., 2013], a theoretical generalization of TS300

that samples tasks from a posterior distribution and computes optimal policies given data. This allows301

us to obtain regret bounds for in-context learning in DPT under the following pretraining conditions.302

History-dependent pretraining. For our theoretical analysis, we assume pretraining also conditions303

on a queried optimal history. Given on a task ⌧ , let ⇠h for h 2 [H] denote a partial history of304

state-actions ⇠⌧
h
= (s1, a1, . . . , sh�1, ah�1) generated by following the optimal policy ⇡

?

⌧
(·|·) in ⌧ .305

Accounting for ⇠, we denote the joint pretraining distribution as Ppre(⌧, h, ⇠h, D, squery, a
?), defined306

additionally by sampling h ⇠ Unif[H � 1] independently and then rolling out ⇡?

⌧
for h steps in ⌧307

to record ⇠h. The model M✓ can then be trained identically to the description in Section 3, but also308

conditioning on h and ⇠h to product the conditional distribution M✓(a?|squery, D, ⇠h). Intuitively, the309

difference here is that we are not only utilizing the optimal policy ⇡
?

⌧
to label squery, but we are also310

using it to generate a roll-in trajectory ⇠h. The test-time procedure remains the same as before when311

deploying M✓ except that when sampling ah in sh, we also condition on the partial history ⇠h�1312

and update it with each time step. Note for bandits and contextual bandits (i.e. H = 1), there is no313

difference between the pretraining procedures in prior sections, and the history-dependent pretraining,314

since ⇠ is empty. For MDPs, the original pretraining method can be seen as a simpler approximation315

of this modified method that still exhibits many of the desired characteristics in practice. In our proofs316

we will be clear where this modification is important.317

Assumption 1. (Learned model is consistent). Let M✓ denote the pretrained model. For all318

(squery, D, ⇠h), we have Ppre(a|squery, D, ⇠h) = M✓(a|squery, D, ⇠h) for all a 2 A.319

To provide some cursory justification for this assumption, we assume we have a very large320

amount of pretraining data, and note that optimizing the log-likelihood objective guarantees321

EPprekPpre(·|squery, D, ⇠h) � M✓(·|squery, D, ⇠h)k21
N
! 0, with high probability for transformer322

model classes of bounded complexity. Given the above conditions, trajectories generated online by323

sampling from the pretrained model M✓ follow the same distribution as those generated by a policy324

from well-specified posterior sampling (see Appendix C for a definition):325

Theorem 1. Let the current task ⌧c and dataset D be fixed. Let Pps(⇠) and PM✓ (⇠) denote the326

distributions over trajectories under posterior sampling and M✓ in ⌧c, respectively, conditioned on327

D and with a shared prior distribution Tpre. Then, Pps(⇠) = PM✓ (⇠) for all ⇠.328

The equivalence immediately implies a cumulative online regret guarantee for M✓ given prior results329

on posterior sampling[Osband et al., 2013]. Specifically, let Tpre = Ttest be distributions over finite330

MDPs with shared S := |S| and A := |A| and horizon H . Furthermore, we let squery be uniform over331

S during pretraining and D of length i 2 [KH] be constructed by sampling si and ai uniformly from332

8

S and A and observing the resulting ri and s
0
i

from ⌧ . For a task ⌧ define the cumulative regret over K333

episodes as Reg
⌧
(M✓) :=

P
k2[K] V⌧ (⇡?

⌧
)� V⌧ (⇡̂k) where ⇡̂k(·|sh) = M✓(·|sh, DH(k�1), ⇠h�1).334

Corollary 6.1 (Regret guarantee of learned algorithm). Suppose that sup
⌧

Ttest(⌧)
Tpre(⌧)

 C for some C > 0.335

For the above MDP setting, the pretrained model M✓ satisfies ETtest
[Reg

⌧
(M✓)]  eO

⇣
CHS

p
AK

⌘
.336

A similar analysis allows us to prove why training over (latently linear) bandit tasks using our337

pretraining procedure, even when using data generated by algorithms unaware of this structure, can338

lead to substantial empirical gains. We observed this empirically in Section 4.339

Corollary 6.2 (Latent representation learning in linear bandits). Consider d-dimensional linear ban-340

dits with a fixed feature map � : A ! Rd
, and datasets D gathered using Gaussian Thompson sam-341

pling for K steps per task (using one-hot encodings for each unique action). Let sup
a2A k�(a)k2  1.342

Then the pretrained model M✓ satisfies ETtest
[Reg(M✓)]  eO(

p
dK).343

This significantly improves over the O(
p

|A|K) regret bound for Thompson Sampling that does344

not leverage the linear structure. Note that such a TS algorithm is also used to gather the datasets345

for training, highlighting how our approach can provably learn better cumulative regret algorithms346

than those observed in the provided data. Indeed, the impact of the algorithms used, and datasets347

generated, for pretraining is an important issue. We now present a sufficient condition, under which348

the learned model will be identical for different sets of algorithms and datasets used for pretraining:349

Proposition 6.3. Let P
1
pre

and P
2
pre

be pretraining distributions that differ only in D
1
pre

and D
2
pre

: both350

are over the same underlying task distribution, and have the same dataset size n. If D
1
pre
(aj |sj , Dj ; ⌧)351

and D
2
pre
(aj |sj , Dj ; ⌧) are invariant to ⌧ for all j 2 [n] (e.g. D

1
pre
(aj |sj , Dj ; ⌧) = D

1
pre
(aj |sj , Dj)),352

then P
1
pre

(a?|squery, D, ⇠h) = P
2
pre

(a?|squery, D, ⇠h).353

This condition is similiar to the sequential ignorability condition often used in offline RL analysis,354

which assumes the selected actions depend only on the observed history and not additional con-355

founders or potential outcomes. Note this condition implies that if we generate in-context datasets356

D by running various algorithms that depend only on the observed data in the current task, we will357

end up with the same posterior distribution for downstream tasks: for example, Thompson Sampling358

could be used for D1
pre and Proximal Policy Optimization for D2

pre. Expert-generated trajectories359

violate the precondition of Proposition 6.3, since knowledge of the task, beyond that available by the360

observed data so far, is being used. This helps to explain our empirical results that pretraining on361

expert-biased datasets leads to a qualitatively different learned model at test-time.362

7 Discussion363

In this paper, we studied the problem of in-context decision-making and introduced a new pretraining364

method and transformer model, DPT, which is trained to predict optimal actions given an in-context365

dataset of interactions. Through an in-depth evaluations in classic decision problems in bandits and366

MDPs, we showed that this simple objective naturally gives rise to an in-context algorithm that is367

capable of online exploration and offline decision-making, unlike other algorithms that are explicitly368

trained or designed to do these. Our empirical and theoretical results provide some first steps towards369

understanding what factors are key for this to succeed such as: (1) classes of problems and distribution370

shifts where we can guarantee good performance (2) how the in-context algorithm can automatically371

leverage the structure in Tpre; (3) how the dataset distribution Dpre can affect the in-context algorithm.372

Limitations and future work. One limitation of DPT is the requirement of optimal actions at373

pretraining. Empirically, we find that this requirement can be relaxed by using actions generated374

by another RL-trained agent, which only leads to a slight loss in performance. However, fully375

understanding this problem and how best to leverage multi-task decision-making datasets remains a376

key open problem. We also discussed that the practical implementation for MDPs differs from true377

posterior sampling. It would be interesting to further understand and bridge this empirical-theoretical378

gap in the future. Finally, we remark that our preliminary analysis suggests promise for DPT to379

generalize to new tasks beyond its pretraining distribution. This suggests that diversifying the task380

distributions during pretraining could significantly enhance the model’s ability to generalize to new381

tasks. This possibility holds an exciting avenue for future work.382

9

References375

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic376

bandits. In Advances in Neural Information Processing Systems, pages 2312–2320, 2011.377

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural complexity378

and representation learning of low rank mdps. Advances in neural information processing systems,379

33:20095–20107, 2020.380

Shipra Agrawal and Navin Goyal. Near-optimal regret bounds for thompson sampling. Journal of381

the ACM (JACM), 64(5):1–24, 2017.382

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-383

rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,384

2022.385

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit386

problem. Machine learning, 47:235–256, 2002.387

Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule. Citeseer,388

1990.389

David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, and Joan Bruna. When does390

return-conditioned supervised learning work for offline reinforcement learning? arXiv preprint391

arXiv:2206.01079, 2022.392

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,393

Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics394

transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.395

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,396

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are397

few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.398

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,399

James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learning400

in transformers. Advances in Neural Information Processing Systems, 35:18878–18891, 2022.401

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,402

Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence403

modeling. Advances in neural information processing systems, 34:15084–15097, 2021.404

Maxime Chevalier-Boisvert. Miniworld: Minimalistic 3d environment for rl & robotics research.405

https://github.com/maximecb/gym-miniworld, 2018.406

Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline meta reinforcement learning–identifiability407

challenges and effective data collection strategies. Advances in Neural Information Processing408

Systems, 34:4607–4618, 2021.409

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast410

reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.411

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of412

deep networks. In International conference on machine learning, pages 1126–1135. PMLR, 2017.413

Justin Fu, Sergey Levine, and Pieter Abbeel. One-shot learning of manipulation skills with online414

dynamics adaptation and neural network priors. In 2016 IEEE/RSJ International Conference on415

Intelligent Robots and Systems (IROS), pages 4019–4026. IEEE, 2016.416

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without417

exploration. In International conference on machine learning, pages 2052–2062. PMLR, 2019.418

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn419

in-context? a case study of simple function classes. Advances in Neural Information Processing420

Systems, 35:30583–30598, 2022.421

10

https://github.com/maximecb/gym-miniworld

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-422

reinforcement learning of structured exploration strategies. Advances in neural information423

processing systems, 31, 2018.424

Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A Ortega, Yee Whye Teh, and425

Nicolas Heess. Meta reinforcement learning as task inference. arXiv preprint arXiv:1905.06424,426

2019.427

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence428

modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.429

Yiding Jiang, Evan Liu, Benjamin Eysenbach, J Zico Kolter, and Chelsea Finn. Learning options via430

compression. Advances in Neural Information Processing Systems, 35:21184–21199, 2022.431

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In432

International Conference on Machine Learning, pages 5084–5096. PMLR, 2021.433

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose in-context434

learning by meta-learning transformers. arXiv preprint arXiv:2212.04458, 2022.435

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy436

q-learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,437

32, 2019.438

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline439

reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.440

Nicholas C Landolfi, Garrett Thomas, and Tengyu Ma. A model-based approach for sample-efficient441

multi-task reinforcement learning. arXiv preprint arXiv:1907.04964, 2019.442

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,443

DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context reinforcement learning444

with algorithm distillation. arXiv preprint arXiv:2210.14215, 2022.445

Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadar-446

rama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision447

transformers. Advances in Neural Information Processing Systems, 35:27921–27936, 2022.448

Lanqing Li, Rui Yang, and Dijun Luo. Focal: Efficient fully-offline meta-reinforcement learning via449

distance metric learning and behavior regularization. arXiv preprint arXiv:2010.01112, 2020.450

Yingcong Li, M Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers as451

algorithms: Generalization and implicit model selection in in-context learning. arXiv preprint452

arXiv:2301.07067, 2023.453

Evan Z Liu, Aditi Raghunathan, Percy Liang, and Chelsea Finn. Decoupling exploration and454

exploitation for meta-reinforcement learning without sacrifices. In International conference on455

machine learning, pages 6925–6935. PMLR, 2021.456

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient with457

state distribution correction. UAI, 2019.458

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch off-policy459

reinforcement learning without great exploration. Advances in neural information processing460

systems, 33:1264–1274, 2020.461

Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and462

Feryal Behbahani. Structured state space models for in-context reinforcement learning. arXiv463

preprint arXiv:2303.03982, 2023.464

Xiuyuan Lu and Benjamin Van Roy. Ensemble sampling. Advances in neural information processing465

systems, 30, 2017.466

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-467

learner. arXiv preprint arXiv:1707.03141, 2017.468

11

Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea Finn. Offline meta-469

reinforcement learning with advantage weighting. In International Conference on Machine470

Learning, pages 7780–7791. PMLR, 2021.471

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and472

Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement473

learning. arXiv preprint arXiv:1803.11347, 2018.474

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,475

Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.476

arXiv preprint arXiv:2209.11895, 2022.477

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via478

posterior sampling. Advances in Neural Information Processing Systems, 26, 2013.479

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via480

bootstrapped dqn. Advances in neural information processing systems, 29, 2016.481

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement482

learning. Advances in Neural Information Processing Systems, 31, 2018.483

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor484

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,485

high-performance deep learning library. Advances in neural information processing systems, 32,486

2019.487

Theodore J Perkins, Doina Precup, et al. Using options for knowledge transfer in reinforcement488

learning. Technical report, Citeseer, 1999.489

Vitchyr H Pong, Ashvin V Nair, Laura M Smith, Catherine Huang, and Sergey Levine. Offline490

meta-reinforcement learning with online self-supervision. In International Conference on Machine491

Learning, pages 17811–17829. PMLR, 2022.492

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language493

models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.494

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi495

Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text496

transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.497

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah498

Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine499

Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.500

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy501

meta-reinforcement learning via probabilistic context variables. In International conference on502

machine learning, pages 5331–5340. PMLR, 2019.503

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline rein-504

forcement learning and imitation learning: A tale of pessimism. Advances in Neural Information505

Processing Systems, 34:11702–11716, 2021.506

Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of pretraining term507

frequencies on few-shot reasoning. arXiv preprint arXiv:2202.07206, 2022.508

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel509

Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A generalist510

agent. arXiv preprint arXiv:2205.06175, 2022.511

Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal512

meta-policy search. arXiv preprint arXiv:1810.06784, 2018.513

Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. Mathematics of514

Operations Research, 39(4):1221–1243, 2014.515

12

http://jmlr.org/papers/v22/20-1364.html

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on516

thompson sampling. Foundations and Trends® in Machine Learning, 11(1):1–96, 2018.517

Tom Schaul and Jürgen Schmidhuber. Metalearning. Scholarpedia, 5(6):4650, 2010.518

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy519

optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.520

Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior521

transformers: Cloning k modes with one stone. Advances in neural information processing systems,522

35:22955–22968, 2022.523

Seongjin Shin, Sang-Woo Lee, Hwijeen Ahn, Sungdong Kim, HyoungSeok Kim, Boseop Kim,524

Kyunghyun Cho, Gichang Lee, Woomyoung Park, Jung-Woo Ha, et al. On the effect of pretraining525

corpora on in-context learning by a large-scale language model. arXiv preprint arXiv:2204.13509,526

2022.527

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert,528

Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing what worked:529

Behavioral modelling priors for offline reinforcement learning. arXiv preprint arXiv:2002.08396,530

2020.531

Malcolm Strens. A bayesian framework for reinforcement learning. In ICML, volume 2000, pages532

943–950, 2000.533

William R Thompson. On the likelihood that one unknown probability exceeds another in view of534

the evidence of two samples. Biometrika, 25(3-4):285–294, 1933.535

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz536

Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing537

systems, 30, 2017.538

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,539

Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent.540

arXiv preprint arXiv:2212.07677, 2022.541

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,542

Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. arXiv543

preprint arXiv:1611.05763, 2016.544

Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. arXiv545

preprint arXiv:2303.07895, 2023.546

Chenjun Xiao, Yifan Wu, Jincheng Mei, Bo Dai, Tor Lattimore, Lihong Li, Csaba Szepesvari, and547

Dale Schuurmans. On the optimality of batch policy optimization algorithms. In International548

Conference on Machine Learning, pages 11362–11371. PMLR, 2021.549

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context550

learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.551

Mengjiao Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Dichotomy of control: Separat-552

ing what you can control from what you cannot. arXiv preprint arXiv:2210.13435, 2022.553

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans. Foun-554

dation models for decision making: Problems, methods, and opportunities. arXiv preprint555

arXiv:2303.04129, 2023.556

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.557

Combo: Conservative offline model-based policy optimization. Advances in neural information558

processing systems, 34:28954–28967, 2021.559

Tong Zhang. From e-entropy to kl-entropy: Analysis of minimum information complexity density560

estimation. 2006.561

13

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, and562

Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-learning.563

arXiv preprint arXiv:1910.08348, 2019.564

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, and565

Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-learning. In566

International Conference on Learning Representation (ICLR), 2020.567

14

Additional Related Work568

In-context learning. Beyond decision-making and reinforcement learning, our approach takes569

inspiration from general in-context learning, a phenomenon observed most prominently in large570

language models in which large-scale autoregressive modelling can surprisingly lead to a model that571

exhibits meta-learning capabilities [Brown et al., 2020]. Recently, there has been great interest in572

understanding the capabilities and properties of in-context learning [Garg et al., 2022, von Oswald573

et al., 2022, Razeghi et al., 2022, Olsson et al., 2022, Kirsch et al., 2022, Shin et al., 2022, Li574

et al., 2023, Wies et al., 2023, Akyürek et al., 2022]. While a common hypothesis suggests that this575

phenomenon is due to properties of the data used to train large language models [Chan et al., 2022],576

our work suggests that this phenomenon can also be encouraged in general settings via adjustments577

to the pre-training objective. In fact, our method could be interpreted as explicitly encouraging the578

ability to perform Bayesian inference, which is a popular explanation for the mechanism behind579

in-context learning for large language models [Xie et al., 2021].580

Posterior Sampling. Posterior sampling originates from the seminal work of Thompson [1933],581

and has been popularized and thoroughly investigated in recent years by a number of authors Russo582

et al. [2018], Agrawal and Goyal [2017], Strens [2000], Osband et al. [2013], Russo and Van Roy583

[2014]. For bandits, it is often referred to as Thompson Sampling, but the framework is easily584

generalizable to RL. The principle is as follows: begin with a prior over possible models (i.e. reward585

and transition functions), and maintain a posterior distribution over models by updating as new586

interactions are made. At decision-time, sample a model from the posterior and execute its optimal587

policy. The aforementioned prior works have developed strong theoretical guarantees on Bayesian588

and frequentist regret for posterior sampling. Despite its desirable theoretical characteristics, a major589

limitation is that computing the posterior is often computationally intractable, leading practitioners590

to rely on approximation-based solutions [Lu and Van Roy, 2017, Osband et al., 2016, 2018]. In591

Section 6, we show that a version of the DPT model learned from pretraining can be viewed as592

implementing posterior sampling as it should be without resorting to approximations or deriving593

complicated posterior updates. Instead, the posterior update is implicitly learned through pretraining.594

This suggests that in-context learning (or meta-learning more generally) could be a key in unlocking595

practically applicable posterior sampling for RL.596

A Implementation and Experiment Details597

Algorithm 1 Pretraining
1: // Collecting pretraining dataset

2: Initialize empty dataset B
3: for i in [N] do
4: Sample task ⌧ ⇠ Tpre
5: Sample interaction dataset D ⇠ Dpre(·; ⌧) of length n

6: Sample squery ⇠ Dquery and a
?
⇠ ⇡

?

⌧
(·|squery)

7: Add (squery, D, a
?) to B

8: end for
9: // Training model on dataset

10: Initialize model M✓ with parameters ✓
11: while not converged do
12: Sample (squery, D, a

?) from B

13: Predict p̂j(·) = M✓(·|squery, Dj) for all j 2 [n].
14: Compute cross entropy loss in (5) with respect to a

? and backpropagate to update ✓.
15: end while

A.1 DPT Architecture: Formal Description598

In this section, we provide a detailed description of the architecture alluded to in Section 3 and Figure 1.599

See hyperparameter details for models in their respective sections. The model is implemented in600

Python with PyTorch [Paszke et al., 2019]. The backbone of the transformer architecture we use is an601

autoregressive GPT-2 model from the HuggingFace transformers library.602

15

Algorithm 2 Offline test-time deployment
1: // Task and offline dataset are generated without learner’s control

2: Sample unknown task ⌧ ⇠ Ttest
3: Sample dataset D ⇠ Dtest(·; ⌧)
4: // Deploying offline policy M✓(·|·, D)
5: s1 = reset(⌧)
6: for h in [H] do
7: ah = argmax

a2A M✓(·|sh, D) // Most likely action

8: sh+1, rh = step(⌧, ah)
9: end for

Algorithm 3 Online test-time deployment
1: // Online, dataset is empty as learning is from scratch

2: Initialize D = {}

3: Sample unknown task ⌧ ⇠ Ttest
4: for ep in max_eps do
5: s1 = reset(⌧)
6: for h in [H] do
7: ah ⇠ M✓(·|sh, D) // Sample action from predicted distribution

8: sh+1, rh = step(⌧, ah)
9: end for

10: // Experience from previous episode added to dataset

11: Add (s1, a1, r1, . . .) to D

12: end for

For the sake of exposition, we suppose that S and A are subsets of RdS and RdA respectively. We603

handle discrete state and action spaces with one-hot encoding. Consider a single training datapoint604

derived from an (potentially unknown) task ⌧ : we have a dataset D of interactions within ⌧ , a query605

state squery, and its corresponding optimal action a
? = ⇡

?

⌧
(squery). We construct the embeddings to606

be passed to the backbone in the following way. From the dataset D = {(sj , aj , s0j , rj)}j2[n], we607

construct vectors ⇠j = (sj , aj , s0j , rj) by stacking the elements of the transition tuple into dimension608

d⇠ := 2dS + dA + 1 for each j in the sequence. This sequence of n elements is concatenated with609

another vector v := (squery,0) where the 0 vector is a vector of zeros of sufficient length to make610

the entire element dimension d⇠. The (n+ 1)-length sequence is given by X = (v, ⇠1, . . . , ⇠n). As611

order does not matter for the dataset D4, we do not use positional encoding in order to take advantage612

of this invariance. We first apply a linear layer Linear(X) and pass the result to the transformer,613

which outputs the sequence Y = (ŷ0, ŷ1, . . . , ŷn). In the continuous action case, these can be used614

as is for predictions of a?. For the discrete action case, we use them as logits to be converted to615

either a distribution over actions in A or one-hot vector predictions of a?. Here, we compute action616

probabilities617

p̂j = softmax(ŷj) 2 �(A) (3)

Because of the GPT-2 causal architecture (we defer details to the original papers [Radford et al.,618

2019, Brown et al., 2020]), we note that p̂j depends only on squery and the partial dataset Dj =619

{(sk, ak, s0k, rk)}k2[j], which is why we write the model notation,620

M✓(·|squery, Dj) = p̂j(·), (4)

to denote that the predicted probabilities of the jth element only depend on Dj and not the entire621

D for the model M with parameters ✓ 2 ⇥. For example, with j = 0, the prediction of a? is made622

without any contextual information about the task ⌧ except for squery, which can be interpreted as the623

prior over a?. We measure loss of this training example via the cross entropy for each j 2 [n]:624

�

X

j2[n]

log p̂j(a
?) (5)

4There are caveats to this when the data comes from an algorithm such as PPO or Thompson Sampling.

16

Intuition. Elements of the inputs sequence X represent transitions in the environment. When625

passed through the GPT-2 transformer, the model learns to associate elements of the sequence via the626

standard query-key-value mechanism of the attention model. The query state squery is demarcated by627

its zeros vector (which also acts as padding). Unlike other examples of transformers used for decision-628

making such as the Decision Transformer [Chen et al., 2021] and Algorithm Distillation [Laskin629

et al., 2022], DPT does not separate the individual (s, a, s0, r) into their own embeddings to be made630

into one long sequence. This is because we view the transition tuples in the dataset as their own631

singletons, to be related with other singletons in the dataset through the attention mechanism. We632

note that there are various other implementation variations one could take, but we found success and633

robustness with this one.634

A.2 Implementation Details635

A.2.1 Bandit algorithms636

First, we describe the comparisons from the bandit experiments with hyperparameters.637

Empirical Mean (Emp). Emp has no hyperparameters, but we give it some mechanism to avoid638

degenerate scenarios. In the offline setting, Emp will only choose from actions that have at least one639

example in the dataset. This gives Emp and LCB-style effect when actions are missing. Similarly,640

online, Emp will sample each action at least once before defaulting to its real strategy. These changes641

only improve Emp.642

Upper Confidence Bound (UCB). According to the Hoeffding bound, we choose actions as643

â 2 argmax
a2A

n
µ̂a +

p
1/na

o
where µ̂a is the empirical mean so far for action a and na is the644

number of times a has been chosen so far. To arrive at this constant for the bonus, we coarsely tried a645

set of plausible values given the noise and found this to perform the best.646

Lower Confidence Bound (LCB). We choose actions as â 2 argmax
a2A

n
µ̂a �

p
1/na

o
where647

µ̂a is the empirical mean so far for action a and na is the number of times a has been chosen so far.648

Thompson Sampling (TS). Since the means are sampled uniformly from [0, 1], Gaussian TS is649

partially misspecified; however, we set prior mean and variance to 1
2 and 1

12 to match the true ones.650

The noise model was well-specified with the correct variance. In the linear experiments of Figure 3b651

and Figure 3c, we set the prior mean and variance to 0 and 1 to fit the true ones better.652

LinUCB. We choose ât 2 argmax
a2Ah✓̂t,�(a)i + �k�(a)k⌃̂�1

t
where � = 1 and ⌃̂t = I +653

P
s2[t�1] �(as)�(as)

> and ✓̂t = ⌃̂�1
t

P
s2[t�1] rs�(as). Here, rs and as are the reward and action654

observed at time s.655

LinReg. LinReg (offline) is the same as LinUCB except we set � = 0 to greedily choose actions.656

DPT. The transformer for DPT has an embedding size of 32, context length of 500 for basic bandits657

and 200 for linear bandits, 4 hidden layers, and 4 attention heads per attention layer for all bandits.658

We use the AdamW optimizer with weight decay 1e-4, learning rate 1e-4, and batch-size 64. For659

all experiments, we shuffle the in-context dataset D since order does not matter except in the linear660

bandit.661

A.2.2 RL Algorithms662

Below, we describe the comparisons from the MDP experiments and their hyperparameters.663

Proximal Policy Optimization (PPO). The reported results for PPO use the Stable Baselines3664

implementation [Raffin et al., 2021] with the default hyperparameters, which successfully learns each665

task given 100K environment steps in Dark Room and 125K environment steps in Miniworld. In666

Dark Room, the policy is implemented as a multi-layer perceptron with two hidden layers of 64 units667

17

each. In Miniworld, the policy is a convolutional neural network with two convolutional layers with668

16 3⇥ 3 kernels each, followed by a linear layer with output dimension of 8.669

Algorithm Distillation (AD). We first collect learning histories with PPO for each of the training670

tasks. Then, given a cross-episodic context of length H , where H is the task horizon, the model is671

trained to predict the actions taken K episodes later (given the states visited in that episode). In our672

experiments, we evaluate AD across different values of K. Between K = 10, 50, and 100, we found673

K = 100 to be most performant in the Dark Room environment. In Miniworld, we sampled the latter674

episode from the final 500 episodes of the task’s replay buffer, which performed better than other675

choices of K we experimented with, including K = 10, 50, and 100. In Dark Room, the transformer676

has similar hyperparameters as DPT: an embedding size of 32, context length of 100 steps, 4 hidden677

layers, and 4 attention heads per attention layer. In Miniworld, we first encode the image with a678

convolutional network with two convolutional layers with 16 3⇥ 3 kernels each, followed by a linear679

layer with output dimension of 8.680

RL2. The reported results for RL2 use an open-sourced implementation from Zintgraf et al.. The681

implementation uses PPO as the RL algorithm and defines a single trial as four consecutive episodes.682

The policy is implemented with one hidden layer of 32 units in Dark Room. In Miniworld, the policy683

is parameterized with a convolutional neural network with two convolutional layers with 16 3⇥ 3684

kernels each, followed by a linear layer with output dimension of 8.685

DPT. The transformer for DPT has an embedding size of 32, context length of 100 steps, 4 hidden686

layers, and 4 attention heads per attention layer in Dark Room. In Miniworld, the image is first687

passed through a convolutional network with two convolutional layers 16 3⇥3 kernels each, followed688

by a linear layer with output dimension of 8. The transformer model that processes these image689

embeddings otherwise has the same hyperparameters as in Dark Room. We use the AdamW optimizer690

with weight decay 1e-4, learning rate 1e-3, and batch-size 128.691

A.3 Bandit Pretraining and Testing692

Basic Bandit. Offline, to generate the in-context datasets for pretraining, we used a Dirichlet693

distribution to sample action frequencies in order to generate datasets with diverse compositions (i.e.694

some more uniform, some that only choose a few actions, etc.): p1 ⇠ Dir() where p1 2 �(A) and695

2 R|A|. We also mixed this with a distribution that has all mass on one action: â ⇠ Unif(A) and696

p2(â) = 1 and p2(a) = 0 for all a 6= â. The final action distribution is p = (1� !)p1 + !p2 where697

! ⇠ Unif(0.1[10]). We train on 100,000 pretraining samples for 300 epochs. In Figure 2a, Dtest is698

generated in the same way.699

Expert-Biased Bandit. To generate expert-biased datasets for pretraining, we compute the action700

frequencies to bias the dataset towards the optimal action. Let a? be the optimal one. As before,701

we take p1 ⇠ Dir(). Then, p2(a?) = 1 and p2(a) = 0 for all a 6= a
?. For of bias of !, we take702

p = (1� !)p1 + !p2 with ! ⇠ Unif(0.1[10]). We use the same pretraining sample size and epochs703

as before. For testing, Dtest is generated the same way except we fix a particular ! 2 {0, 0.5, 1} to704

test on.705

Linear Bandit. We consider the case where |A| = 10 and d = 2. To generate environments from706

Tpre, we first sampled a fixed set of actions from N (0, Id/d) in Rd to represent the features. Then, for707

each ⌧ , we sampled ✓⌧ ⇠ N (0, Id/d) to produce the means µa = h✓⌧ ,�(a)i for a 2 A. To generate708

the in-context dataset, we ran Gaussian TS (which does not leverage �) over n = 200 steps (see709

hyperparameters in previous section). Because order matters, we did not shuffle and used 1, 000, 000710

pretraining samples over 200 epochs. At test time, we set Ttest = Tpre and Dtest = Dpre. Note that � is711

fixed over all ⌧ , as is standard for a linear bandit.712

A.4 MDP Environment Details713

Dark Room. The agent must navigate a 10⇥ 10 grid to find the goal within H = 100 steps. The714

agent’s observation is its xy-position, the allowed actions are left, right, up, down, and stay, and the715

reward is only r = 1 when the agent is at the goal, and r = 0 otherwise. At test time, the agent716

18

(a) (b) (c)

Figure 6: (a) Final (after 500 steps) offline suboptimality on out-of-distribution bandits with different Gaussian
noise standard deviations. (b) Offline performance on out-of-distribution Bernoulli bandits, given random in-
context datasets. (c) Online cumulative regret on Bernoulli bandits. The mean and standard error are computed
over 200 test tasks.

begins at the (0, 0) position. We randomly designate 80 of the 100 grid squares to be goals for the717

training tasks, and hold out the remaining 20 for evaluation.718

Miniworld. The agent must navigate to the correct box, which is initially unknown, from 25⇥ 25719

RGB image observations. The agent is additionally conditioned on its own position and direction720

vectors. In each episode, the environment is initialized with four boxes of different colors, one in721

each corner of the square room. The agent can turn left, turn right, or move forward. The reward722

is only r = 1 when the agent is near the correct box and r = 0 otherwise, and each episode is 50723

time-steps long. At test time, the agent begins in the middle of the room.724

A.5 MDP Pretraining Datasets725

Dark Room. In Dark Room, we collect 100K in-context datasets, each of length H = 100 steps,726

with a uniform-random policy. The 100K datasets are evenly collected across the 100 goals. The727

query states are uniformly sampled from the state space, and the optimal actions are computed as728

follows: move up/down until the agent is on the same y-position as the goal, then move left/right729

until the agent is on the x-position as the goal. Of the 100K collections of datasets, query states,730

and optimal actions, we use the first 80K (corresponding to the first 80 goals) for training and the731

remaining 20K for validation.732

Miniworld. While this task is solved from image-based observations, we also note that there are733

only four distinct tasks (one for each colored box), and the agent does not need to handle new tasks at734

test time. Hence, the number of in-context datasets required in pretraining is fewer – we use 20K735

datasets each of length H = 50 steps. Of this total, 18K are collected with a uniform-random policy,736

while the remaining 2K are collected with a hand-designed optimal policy. These 2K demonstrations737

are notably provided to both DPT and AD, which are capable of learning from these demonstrations738

at pretraining. The in-context datasets only contain the position and direction vectors, and not the739

images, as the observation. The query states, which consist of the position, direction, and image,740

are sampled uniformly from the entire state space, i.e., the position is first sampled uniformly in the741

room, then the orientation is sampled from [0, 360) degrees. The optimal actions are computed as742

follows: turn towards the correct box if the agent is not yet facing it (within ±15 degrees), otherwise743

move forward. Of the 20K collections of datasets, query states, and optimal actions, we use 16K for744

training and the remaining 4K for validation.745

B Additional Experimental Results746

B.1 Bandits747

This section reports additional experimental results in bandit environments.748

19

(a) (b) (c) (d)

Figure 8: All comparisons in Dark Room evaluated on the tasks that were seen during pretraining, displayed
next to their evaluations on test task counterparts from the main text.

(a) (b) (c) (d)

Figure 9: Sensitivity analysis of the offline Dark Rook task over the GPT-2 transformer’s hyperparameters: (a)
layers (b) attention heads (c) embedding dimensions (d) pretraining samples.

Out-of-distribution reward variances. In Figures 2c and 6a, we demonstrate the robustness of749

the basic pretrained model under shifts in the reward distribution at test time by varying the amount750

of noise observed in the rewards. DPT maintains robustness to these shifts similar to TS.751

Bernoulli rewards. We test the out-of-distribution ability of DPT further by completely changing752

the reward distribution from Gaussian to Bernoulli bandits. Despite being trained only on Gaussian753

tasks during pretraining, DPT maintains strong performance both offline and online in Figures 6b754

and 6c.755

B.2 Markov Decision Processes756

Figure 7: Online evalua-
tion of DPT on Dark Room
when tested on novel ac-
tions set permutations.

This section reports additional experimental results in the Dark Room and757

Miniworld environments.758

Performance on training tasks. In Fig. 8, we show the performance of759

each method on the training tasks in Dark Room. Offline, DPT and AD760

demonstrate comparable performance as on the training tasks, indicating a761

minimal generalization gap to new goals. Online, DPT, AD, and RL2 also762

achieve performance on the training tasks similar to that on the test tasks.763

Generalization to new dynamics. In this experiment, we study general-764

ization to variations in a different aspect of the MDP, namely the dynamics.765

We design Dark Room (Permuted), a variant of Dark Room in which the766

goal is fixed to a corner but the action space is randomly permuted. Hence,767

the agent must leverage its historical context to infer the effect of each action. On a held-out set of768

20 permutations, DPT infers the optimal policy correctly every time offline, given only 100 offline769

samples, matching the optimal policy at 83 return. Similarly, the online performance immediately770

snaps to a near optimal policy in one episode once it identifies the novel permutation in Figure 7.771

B.3 Sensitivity Analysis772

We next seek to understand the sensitivity of DPT to different hyperparameters, including the773

model size and size of the pretraining dataset. These experiments are performed in the Dark Room774

environment. As shown in Fig. 9, the performance of DPT is robust to the model size; it is the same775

across different embedding sizes, number of layers, and number of attention heads. Notably, the776

20

performance is slightly worse with 8 attention heads, which may be attributed to slight overfitting.777

We do see that when the pretraining dataset is reduced to 10% of its original size (10000 samples)778

the performance degrades, but otherwise has similar performance with larger pretraining datasets.779

C Additional Theory and Omitted Proofs780

We start with a well-known concentration inequality for the maximum-likelihood estimate (MLE)781

to provide some more justification for the approximation made in Assumption 1. An early version782

of this result can be found in Zhang [2006]. We state a version from Agarwal et al. [2020]. Let F783

be a finite function class used to model a conditional distribution pY |X(y|x) for x 2 X and y 2 Y .784

Assume there is f?
2 F such that p(y|x) = f

?(y|x) (realizable), and f(·|x) 2 �(Y) for all x 2 X785

and f 2 F (proper). Let D = {xi, yi}i2[N] denote a dataset of i.i.d samples where xi ⇠ pX and786

yi ⇠ pY |X(·|xi). Let787

f̂ = argmax
f2F

X

i2[N]

log f(yi|xi) (6)

Proposition C.1 (Theorem 21 of Agarwal et al. [2020]). Let D and f̂ be given as above under the788

aforementioned conditions. Then, with probability at least 1� �,789

Ex⇠pXkf̂(·|x)� pY |X(·|x)k21 
8 log (|F|/�)

N
(7)

The finiteness of F is done for simplicity, but we can see that this yields dependence on the790

log-cardinality, a common measure of complexity. Extensions to infinite F of bounded statis-791

tical complexity can be readily made to replace this. For our setting, the bound suggests that792

EPprekPpre(·|squery, D, ⇠h)�M✓(·|squery, D, ⇠h)k21 ! 0 as N ! 1 with high probability, provided793

the function class of M✓ has bounded statistical complexity.794

C.1 Posterior Sampling795

Posterior sampling is most generally described with the following procedure [Osband et al., 2013].796

Initialize a prior distribution T1 = Tpre and dataset D = {}. For k 2 [K]797

1. Sample ⌧k ⇠ Tk and compute ⇡̂k798

2. Execute ⇡
?

⌧k
and add interactions to D799

3. Update posterior distribution Tk+1(⌧) = Ppre(⌧ |D).800

The prior and posteriors are typically over models such as reward functions in bandits or transition801

dynamics in MDPs.802

C.2 Proof of Theorem 1803

Proof. Without loss of generality, for a task ⌧ , we take ⇡
?

⌧
(·|s) to be deterministic and denote the804

optimal action in state s as ⇡?

⌧
(s). Recall that we consider a fixed current task ⌧c and a fixed in-context805

dataset D. We denote by Pps and PM✓ the joint distributions over ⇠h on ⌧c for posterior sampling and806

M✓ under Assumption 1, both conditioned on D. Because of this, with some abuse of notation, we807

will also use PM✓ to more generally refer to the pretraining distribution. We will prove this statement808

via induction over the length of the trajectory ⇠1 through ⇠H . First, consider the base case for a809

trajectory of length h = 1. We have that810

Pps(s1, a1) = ⇢(s1)Pps(a1|s1)

= ⇢(s1)

Z

⌧

P (⌧ |D)⇡?

⌧
(a1|s1)d⌧

= ⇢(s1)M✓(a1|s1, D)

= PM✓ (s1, a1)

21

where the second line uses the definition of the posterior sampling algorithm and the third line uses811

the fact that
R
⌧
P (⌧ |D)⇡?

⌧
(a1|s1) is equivalent to the posterior distribution over the optimal first812

action in the pretraining distribution. Now consider the inductive hypothesis at step h� 1 that813

Pps(⇠h�1) = PM✓ (⇠h�1). (8)

We aim to show that this also holds for ⇠h. By the inductive hypothesis, we have814

Pps(⇠h) = Pps(⇠h�1)Pps(sh, ah|⇠h�1)

= PM✓ (⇠h�1)Pps(sh, ah|⇠h�1).

It remains to show that Pps(sh, ah|⇠h�1) = PM✓ (sh, ah|⇠h�1). Note that this distribution is similar815

to the posterior but conditioned on the information that the policy used up until step h has generated816

the sequence ⇠h�1 which collapses the probability over ah. We can verify this claim by direct817

inspection. Due to the definition of the posterior sampler we have818

Pps(sh, ah|⇠h�1) = T⌧c(sh|sh�1, ah�1)Pps(ah|sh, ⇠h�1), (9)

where we use T⌧c(sh|sh�1, ah�1) to denote the Markov transition probability of the (unknown to the819

algorithm) true current task ⌧c. Furthermore,820

Pps(ah|sh, ⇠h�1) =

Z

⌧

Pps(ah, ⌧ |sh, ⇠h�1)d⌧ (10)

=

Z

⌧

Pps(⌧ |sh, ⇠h�1)⇡
?

⌧
(ah|sh)d⌧ (11)

where Pps(⌧ |sh, ⇠h�1) is the probability that the posterior sampling algorithm sampled task ⌧ at the821

start of the episode, given dataset D and the observed trajectory ⇠h�1, sh.5822

Using Bayes rule, we can re-express Pps(⌧ |sh, ⇠h�1) as:823

Pps(⌧ |sh, ⇠h�1) =
Pps(sh, ⇠h�1|⌧)P (⌧ |D)

Pps(sh, ⇠h�1)
(12)

=
Pps(sh, ⇠h�1|⌧)P (⌧ |D)

T⌧c(sh|sh�1, ah�1)Pps(⇠h�1)
(13)

=

hQ
h�1
i=1 T⌧c(si+1|si, ai)⇡?

⌧
(ai|si)

i
P (⌧ |D)

T⌧c(sh|sh�1, ah�1)Pps(⇠h�1)
(14)

where the second line follows by the Markov property, and the third line follows since for a given task824

⌧ , posterior sampling executes the optimal policy for ⌧ . Note that in the pretraining procedure, we825

train the model only on partial histories ⇠h labeled by the optimal policy. Therefore, the pretraining826

distribution is also decomposed as827

PM✓ (⌧ |sh, ⇠h�1) =
PM✓ (sh, ⇠h�1|⌧)P (⌧ |D)

PM✓ (sh, ⇠h�1)
(15)

/

hQ
h�1
i=1 ⇡

?

⌧
(ai|si)

i
P (⌧ |D)

PM✓ (sh, ⇠h�1)
. (16)

Since the numerators between the two posteriors are proportional in ⌧ and the denominators do not828

depend on ⌧ , we have that Pps(⌧ |sh, ⇠h�1) = PM✓ (⌧ |sh, ⇠h�1). Therefore,829
Z

⌧

Pps(⌧ |sh, ⇠h�1)⇡
?

⌧
(ah|sh)d⌧ =

Z

⌧

PM✓ (⌧ |sh, ⇠h�1)⇡
?

⌧
(ah|sh)d⌧ (17)

= M✓(ah|sh, ⇠h�1, D). (18)

This concludes the proof.830

831

5Note, posterior sampling is always assumed to have computed the optimal policy ⇡⇤
⌧ for the task it samples

⌧ . However, ambiguity in which task was sampled by PS can arise when the actions taken so far, and states
visited, could be trajectories from optimal policies from two or more tasks.

22

C.3 Proof of Corollary 6.1832

Proof. We use the equivalence between M✓ and posterior sampling established in Theorem 1. The833

proof then follows immediately from Theorem 1 of Osband et al. [2013] to guarantee that834

ETpre [Reg
⌧
(M✓)]  eO

⇣
HS

p

AK

⌘
(19)

where the notation eO omits polylogarithmic dependence. The bound on the test task distribution835

follows from the assumed bound on the likelihood ratio under the priors:836
Z

Ttest(⌧)Reg
⌧
(M✓)d⌧  C

Z
Tpre(⌧)Reg

⌧
(M✓)d⌧. (20)

837

C.4 Proof of Corollary 6.2838

Erratum: In the main text, we erroneously stated that the regret is eO(
p
dK). The correct regret is839

eO(d
p
K).840

Proof. The proof once again follows by immediately deferring to the established result of Russo and841

Van Roy [2014] (Proposition 3) for linear bandits by the posterior sampling equivalence of Theorem 1.842

This ensures that posterior sampling achieves regret eO(d
p
K). It remains, however, to justify that843

Ppre(·|Dk) will be covered by Gaussian Thompson Sampling for all Dk with k 2 [K]. This is844

verified by noting that Pps(a|Dk) > 0 for non-generate Gaussian Thompson Sampling (positive845

variances of the prior and noise distribution) and finite K. This guarantees that any Dk will have846

support.847

C.5 Proof of Proposition 6.3848

Proof. The proof follows by direct inspection of the pretraining distributions. For P 1
pre

, we have849

P
1
pre

(a?|squery, D, ⇠) =

Z

⌧

⇡
?

⌧
(a?|squery)P

1
pre

(⌧ |squery, D, ⇠)d⌧ (21)

The posterior distribution over tasks is simply850

P
1
pre

(⌧ |squery, D, ⇠) =
P

1
pre

(⌧, squery, D, ⇠)

P 1
pre

(squery, D, ⇠)
(22)

/ P
1
pre

(⌧)P 1
pre

(⇠|⌧)Dquery(squery)D
1
pre(D; ⌧) (23)

= P
2
pre

(⌧)P 2
pre

(⇠|⌧)Dquery(squery)D
1
pre(D; ⌧) (24)

Then, the distribution over the in-context dataset can be decomposed as851

D
1
pre

(D; ⌧) =
Y

i2[n]

R⌧ (ri|si, ai)T⌧ (s
0
i
|si, ai)D

1
pre(ai|si, Di�1; ⌧) (25)

=
Y

i2[n]

R⌧ (ri|si, ai)T⌧ (s
0
i
|si, ai)D

1
pre(ai|si, Di�1) (26)

=
Y

i2[n]

R⌧ (ri|si, ai)T⌧ (s
0
i
|si, ai)D

1
pre(ai|si, Di�1)

D
2
pre(ai|si, Di�1)

D2
pre(ai|si, Di�1)

(27)

=
Y

i2[n]

R⌧ (ri|si, ai)T⌧ (s
0
i
|si, ai)D

2
pre(ai|si, Di�1)

Y

i2[n]

D
1
pre(ai|si, Di�1)

D2
pre(ai|si, Di�1)

(28)

=
Y

i2[n]

R⌧ (ri|si, ai)T⌧ (s
0
i
|si, ai)D

2
pre(ai|si, Di�1, ⌧)

Y

i2[n]

D
1
pre(ai|si, Di�1)

D2
pre(ai|si, Di�1)

(29)

/ D
2
pre

(D; ⌧), (30)

23

where the second equality holds because D
1
pre(aj |sj , Dj ; ⌧) is assumed to be invariant to ⌧ , and the852

fifth equality holds because D
2
pre(aj |sj , Dj ; ⌧) is assumed to be invariant to ⌧ .853

Therefore, we conclude that854

P
1
pre

(⌧ |s,D, ⇠) / P
2
pre

(⌧)P 2
pre

(⇠|⌧)Dquery(squery)D
2
pre(D; ⌧) (31)

/ P
2
pre

(⌧ |s,D, ⇠). (32)

Since also
P

⌧
P

1
pre

(⌧ |s,D, ⇠) = 1 =
P

⌧
P

2
pre

(⌧ |s,D, ⇠), then855

P
1
pre

(⌧ |s,D, ⇠) = P
2
pre

(⌧ |s,D, ⇠). (33)

Substituting this back into Equation21 yields P 1
pre

(a?|squery, D, ⇠) = P
1
pre

(a?|squery, D, ⇠).856

24

	Introduction
	Related Work
	In-Context Learning Model
	Learning in Bandits
	Learning in Markov Decision Processes
	Experimental Setup
	Main Results
	Learning from Algorithm-Generated Policies and Rollouts

	Theory
	Discussion
	Implementation and Experiment Details
	DPT Architecture: Formal Description
	Implementation Details
	Bandit algorithms
	RL Algorithms

	Bandit Pretraining and Testing
	MDP Environment Details
	MDP Pretraining Datasets

	Additional Experimental Results
	Bandits
	Markov Decision Processes
	Sensitivity Analysis

	Additional Theory and Omitted Proofs
	Posterior Sampling
	Proof of Theorem 1
	Proof of Corollary 6.1
	Proof of Corollary 6.2
	Proof of Proposition 6.3

