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Abstract

Single image super-resolution (SISR) has made a significant breakthrough benefit-
ing from the prevalent rise of deep neural networks and large-scale training samples.
The mainstream deep SR models primarily focus on network architecture design as
well as optimization schemes, while few pay attention to the training data. In fact,
most of the existing SR methods train the model on uniformly sampled patch pairs
from the whole image. However, the uneven image content makes the training data
present an unbalanced distribution, i.e., the easily reconstructed region (smooth)
occupies the majority of the data, while the hard reconstructed region (edge or
texture) has rarely few samples. Based on this phenomenon, we consider rethinking
the current paradigm of merely using uniform data sampling way for training SR
models. In this paper, we propose a simple yet effective Bi-Sampling Parameter
Attribution (BSPA) method for accurate image SR. Specifically, the bi-sampling
consists of uniform sampling and inverse sampling, which is introduced to rec-
oncile the unbalanced inherent data bias. The former aims to keep the intrinsic
data distribution, and the latter is designed to enhance the feature extraction ability
of the model on the hard samples. Moreover, integrated gradient is introduced to
attribute the contribution of each parameter in the alternate models trained by both
sampling data so as to filter the trivial parameters for further dynamic refinement.
By progressively decoupling the allocation of parameters, the SR model can learn a
more compact representation. Extensive experiments on publicly available datasets
demonstrate that our proposal can effectively boost the performance of baseline
methods from the data re-sampling view.

1 Introduction

Single image super-resolution (SISR) aims to reconstruct a high-resolution (HR) image from its
downsampled low-resolution (LR) counterpart. As a classical ill-posed problem, multiple HR images
can be recovered from the same LR image. With the boom of neural networks, numerous excellent
deep SR methods [9, 23, 25, 5] have been proposed to chase for a more accurate solution. It is
well-known that the success of deep learning primarily attributes to three significant factors, including
large-scale data [1], network structures [10, 52, 23], and optimization strategies [16, 31, 26]. Most
of the existing SR models mainly focus on the delicate structure design or complex regularization
constraints, while neglecting the in-depth analysis of the intrinsic training data.

Due to resource constraints, the mainstream deep SR methods mostly train the models with uni-
formly sampled LR-HR patch pairs rather than the whole images. However, they ignore the
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underlying fact that the content of patches is usually unevenly distributed in an image. As pre-
sented in Fig. 1, we measure the patch content by mean square error (MSE) and count it for
all the cropped sub-images on the commonly used DIV2K training dataset. It reveals a phe-
nomenon of long-tailed distribution, i.e., the flat region occupies the majority of the training
samples, while the sharp region with abundant texture details only holds a very small percentage.
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Figure 1: The illustration of long-tailed data dis-
tribution with uniform sampling in image SR. Fol-
lowing [19], we first crop the commonly used
training dataset, e.g, DIV2K [1], into multiple
sub-images, and adopt the mean square error
(MSE) between the SR output by MSRResNet
[40] and the HR image to measure the reconstruc-
tion difficulty of an LR sub-image. It shows that
the data distribution of the training samples is
uneven, which presents a long-tailed distribution.

The imbalanced training data would undoubtedly
impair the reconstruction accuracy, especially for
the hard areas in the tail. Therefore, we consider
enhancing the model representation from the data
sampling perspective.

In this paper, we propose a simple yet effective Bi-
Sampling Parameter Attribution (BSPA) method
for image SR, which aims to obtain the compact
feature representation by explicitly increasing the
sampling proportion of the tail hard patch pairs.

Specifically, the bi-sampling consists of uniform
sampling and inverse sampling to make up for
the unbalanced training data bias. As the most
common way of data sampling, uniform sampling
helps to keep the original data distributions, while
inverse sampling aims to allocate a higher prob-
ability to the fewer patches sampled from the tail
data. The SR model is alternately trained with
the two kinds of sampling data. However, the SR
models treat all the parameters equally and per-
form gradient updating to each parameter, which
ignores the parameter redundancy. Therefore, it
is necessary to obtain a compact model according
to the parameter contribution to the output. Con-
sidering that the weight values would not change drastically with the small learning rate, it is difficult
to determine the impact of different weights. Inspired by [35], we introduce the integrated gradient
(IG) attribution method to measure the parameter importance. The IG is calculated between the
previous model trained with uniform sampling data and the next model trained with inverse sampling
data. Based on the importance ranking, the significant parameters do not perform gradient updating,
and the remaining trivial parameters are encouraged to contribute more by further optimization.
Extensive experiments have demonstrated that our proposal can improve the SR performance of
baseline methods. To the best of our knowledge, this is the first attempt to investigate image SR as a
long-tail data distribution problem.

In summary, the main contributions of this paper are: 1) We definitely find the data unbalanced
problem in the training samples caused by uniform sampling for image SR. 2) A bi-sampling paradigm
is designed to remedy the unbalanced data bias, including uniform sampling and inverse sampling,
respectively. 3) To obtain a compact representation, an integrated gradient based attribution method is
introduced for measuring the parameter importance so that the significant parameters are progressively
selected to stop gradient updating for better distilling the remaining trivial parameters.

2 Related Work

2.1 Deep Image SR Models

Nowadays, numerous SR models have been proposed with remarkable performance. The pioneering
work, SRCNN [9], proposed a three-layer network for image SR. Then, FSRCNN [10] and ESPCN
[32] introduced deconvolution and sub-pixel upsampling for mapping LR features to HR images,
which could largely reduce computation complexity. VDSR [17] introduced residual learning to
extract missing high-frequency information. DRRN [18] and DRCN [18] adopted recursive neural
networks to reduce the model parameters while achieving excellent performance. RCAN [52] adopted
a residual-in-residual network design and embedded the channel attention in each residual block to
build an extremely deep network for image SR. DIN [21] designed a deep interleaved network to
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combine the information at different states. Wang et. al. [37] learned a scale-arbitrary image SR
network from scale-specific networks. LatticeNet [27] proposed a lattice block to adaptively combine
pair-wise residual blocks. All these SR models have been trained on uniformly sampled LR-HR patch
pairs, which ignore the unbalanced data distribution in the training samples.

Recently, several region-aware SR methods have been proposed to distinguish different image regions
in an image and aim to assign more computation resources on more challenging pixels adaptively.
RL-Restore [45] and Path-Restore [46] decomposed the image into different sub-images and then
estimated an appropriate processing path for each sub-image by reinforcement learning. ClassSR [19]
proposed a new classification method to determine the processing of different image regions and then
reconstructed the sub-image by models of different sizes. Similar to ClassSR, FADN [43] proposed a
framework for processing the different image regions divided by the corresponding information in
the frequency domain with different computation burdens. APE [38] introduced an adaptive patch
exiting strategy to super-resolve patches with different difficulties for achieving a flexible tradeoff
between performance and efficiency. The above content-related SR methods mainly focus on the
architecture design or optimization schemes. Except for the sub-image decomposition methods,
UDN [31] proposed a new adaptive weighted loss for image SR to train deep networks focusing on
challenging situations such as textured and edge pixels with high uncertainty.

In this paper, we mainly rethink the unbalanced distribution for image SR from the view of data
sampling. SamplingAug [39] is a sampling-based data augmentation method for image SR. It only
sampled the p% most informative patches for model training, while the rest is ignored. DDA [49]
designed a difficulty-aware data sampling strategy, which controls the sampling probability of each
class by the relative loss. Different from these works, we propose a bi-sampling strategy and the
model is alternatively updated with uniformly and inversely sampled image data. All patches are
effectively utilized for SR training to help the model fully mine the image information.

2.2 Long-tail Image Classification

Due to the imbalanced data distribution caused by the difficult data acquisition in actual applications,
long-tailed image recognition has attracted widespread attention [41, 11, 50]. The existing long-tail
studies can be roughly divided into three types: data re-sampling, loss re-weighting, and transfer
learning. The data re-sampling based methods [28, 12] aim to re-sample the training dataset for
achieving a more balanced distribution. Besides, the loss re-weighting based methods [13, 33] are
proposed to allocate different weights to each training samples for loss optimization. Recently, the
transfer learning based methods [44, 24] have sprung up to transfer the informative features learned
from the head classes with abundant training samples to the under-represented tail classes. Here, we
mainly explore the data re-sampling method for image SR.

As the widely adopted data re-balancing strategy for solving the long-tailed problem, re-sampling
methods aim to sample the data to generate an evenly distributed dataset, which can be classified
as: over-sampling for minority classes and under-sampling for dominant classes. However, repeated
sampling for tailed samples may lead to the over-fitting problem on minority classes, while discarding
the head samples will undoubtedly damage the generalization ability of deep models. Therefore, we
integrate the two data sampling ways together for remedying the dataset bias in image SR task.

2.3 Attribution Analysis

Attribution analysis is usually utilized for model interpretation on the high-level image classification
task, which aims to attribute the influence of each pixel in the input on prediction accuracy. The
existing attribution analysis methods can be classified as: the gradient-based methods [34, 35],
propagation-based methods [30, 4] and occlusion-based methods [47, 22]. Here, we primarily focus
on the gradient-based methods, which utilize the gradient of the output against the input as a metric
and accumulate the integrated gradients (IG) at all points along a path from the baseline input to the
target input. IntInf [20] and neuron conductance [8] further extend feature-important IG to neurons.
Unlike the classical attribution methods [35, 36], which are used to attribute the influence of the input
on the classification model by attributing the contribution of each pixel of the input image to the final
output label, FAIG [42] first introduced IG to attribute network functions to the filters in the blind SR
model and successfully find discriminative filters that closely relate to the image degradation removal.
In this paper, we mainly adopt the integrated gradient method to help locate the position of important
weights in SR models trained with uniform sampling data and inverse sampling data.

3



Teacher model

Uniform sampling

Inverse sampling

Ynormal
Yinverse

Y
Step2

Step1

M

Target model

Baseline model

Im
po

rt
an

ce

Sort

Integrated 
path

In
te

gr
at

ed
 g

ra
di

en
t

0 1Update

Parameter
Significant 
parameter

Trivial 
parameter

Input

Input

Figure 2: The framework of our proposed bi-sampling parameter attribution method for image SR.

3 Proposed Method

3.1 Method Overview

Considering the intrinsic dataset-specific bias shown in Fig. 1, we adopt two kinds of sampling ways
(bi-sampling) for capturing the training data: uniform sampling and inverse sampling, which are
combined to re-balance the distribution of training data. As shown in Fig 2, the proposed bi-sampling
parameter attribution (BSPA) framework includes two steps, which are alternately performed. In Step
1, the SR model is trained with the data from uniform sampling to obtain a trivial solution toward
normal data distribution (baseline model). In Step 2, the SR model is fine-tuned with the data from
inverse sampling for generating a biased solution towards processing well on the tail edge and texture
regions (target model). After training with inverse sampling data, the integrated gradient is calculated
between the baseline model and the target model, which is utilized to obtain the parameter importance
so as to control the relevant weight updating.

3.2 Bi-sampling Strategy

Uniform Sampling. Uniform sampling refers to cropping the patch samples from the whole image
in the training dataset randomly, which is the most common way of data sampling and widely used in
image SR task [21]. To be specific, the input data comes from a uniform sampler, where each sample
in the training dataset is sampled with equal probability in a training epoch. The probability Pus

i that
a sample i is chosen from the whole training dataset can be formulated as:

Pus
i =

1

NT
, (1)

where NT is the total number of training samples.

Inverse Sampling. Inverse sampling aims to allocate a higher probability to capture the tail hard data
with few samples. Unlike long-tailed image classification, which has a definite number of classes,
image SR is a regression task. We adopt MSE to measure the reconstruction difficulties, which is a
continuous value and each value corresponds to a sample as shown in Fig. 1. Considering the MSE
value is continuous and divergently distributed, it needs to collect more samples within a certain
range to calculate the proportion. Therefore, we first split data patches into multiple groups to better
calculate the sampling probability.

Data classification. Specifically, the number of classes is predefined as K. Analogy to the long-tailed
CIFAR, which is created by reducing the number of training samples per class via an exponential
function [51], then the number of samples for each class can be calculated as:

Nk = N × µk, (2)
where k ∈ (1,K) is the class index, N is the total number of training sub-images, and µ ∈ (0, 1) is
an attenuation factor. Therefore, a long-tailed version of DIV2K training dataset can be created by
setting different MSE threshold values.
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Moreover, the imbalance factor of a long-tailed dataset is defined as the number of training samples
in the largest class (N1) divided by that of the smallest (NK ), which usually ranges from 10 to 200 in
long-tail research and is set as 10 in our experimental setting. Finally, the MSE threshold values used
for classifying the sub-images can be obtained by:

tk = t[N1:k], (3)
where tk is the MSE threshold sorted by ascending. N1:k refers to the total number of sample from
N1 to Nk. Therefore, we can obtain the long-tailed version of DIV2K training dataset. It is noted
that the test dataset remains unchanged and the SR model is still tested on the whole image.

Sampling procedure. Following [53], the sampling possibility of each class for inverse sampling P is
k

is inversely proportional to the class sample capacity, i.e., the more samples in a class, the small
sampling possibility that class has. Therefore, the procedures of inverse sampling are as follows: 1)
P is
k for the class k can be calculated according to the number of samples as:

P is
k =

1
Nk∑K

j=1
1
Nj

. (4)

2) sample a class k according to P is
k randomly; 3) select a sample from class k randomly. The

mini-batch inverse sampling data can be obtained by repeating the above operations.

3.3 Integrated Gradient for Parameter Attribution

Parameter Importance Formulation. The uniform sampling data is adopted to maintain the inherent
data distribution. The inverse sampling data is used to train the SR model for providing an elegant
solution on edge and texture areas. In this paper, we adopt a hybrid training mechanism with uniform
and inverse sampling data, which are iteratively input into the SR model.

Since the SR model is trained on uniform sampling and inverse sampling iteratively, there exist
different preferences in the SR reconstruction regions. Then, it is meaningful to calculate the
parameter importance for obtaining a compact model. Assume the parameter sets of the SR model
F (·) trained with uniform sampling data and inverse sampling data are denoted as {θusi : 1 ≤ i ≤ L}
and

{
θisi : 1 ≤ i ≤ L

}
, where θusi , θisi ∈ Rco×ci×w×h are the weight matrixs at the i-th layer, L is

the number of convolutional layers, co and ci are the number of output and input channels, w and h
are the kernel sizes. The two sampling LR images are denoted as Xus, Xis, and the corresponding
HR images are Y us, Y is, respectively. Then, for a uniformly sampled patch pair (xus, yus), the
variation of network performance on the baseline model and the target model can be measured by:

∆F (θis, θus;xus, yus) =
∣∣l(F (xus; θis), yus)− l(F (xus; θus), yus)

∣∣ , (5)
where l means the loss function used for training the SR network. For simplicity, we denote
l(F (x; θ), y) as l(θ;x, y).

Take the element of parameter θusik (i-th layer) for example, the change of parameter θusik when the
model is trained on the inverse sampling data is represented as δθusik , i.e.,

δθusik = θisik − θusik , (6)

To further measure ∆F (θis, θus;xus, yus), Cauchy mean value theorem [7] demonstates that when a
function f is differentiable at point x0, it always stands up in the neighborhood U(·) of the point x0:

f(x) = f(x0) + f ′(x0)(x− x0) + o(x− x0), (7)
Since o(x− x0) is an infinitesimal, it can be derived that f(x) ≈ f(x0) + f ′(x0)(x− x0). This is
one of the formulas that is often used in local linearization of a function. Geometrically, it adopts the
tangent line to approximate the curve in a small neighborhood.

Then, Eq. (5) can be further formulated as:

l (θusik + δθusik ;x
us, yus)− l (θusik ;x

us, yus) ≈
(
∇θus

ik
l
)T · δθusik . (8)

Integrated Gradient. The above formula means that we can calculate the parameter importance
by the value change and its gradient, which both consider the influence of network alteration on the
model outputs. Here, we apply the integrated gradients (IG) to calculate the parameter importance,
which was originally an attribution method to attribute the prediction of a deep network to its input
features by accumulating the gradient of input changes. Inspired by FAIG [42], which utilizes paths
in the parameter space for attributing network functional alterations to filter changes, we adopt IG to
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Algorithm 1 The bi-sampling parameter attribution for compact image SR.
Input: the SR model F (·) with the randomly initialized weights: θ0; the uniform sampling and
inverse sampling datasets: Dus, Dis; the total epochs: T ; the interval for training F (·) with inverse
sampling: E; the remaining ratio for parameters without gradient updating: p.
Output: the compact SR model F (·) with parameter θ.

1: while epoch ≤ T do
2: Sample the LR-HR patch pairs (xus

lr , y
us
hr) from Dus;

3: Update F (·) with θus on the uniformly sampled data;
4: if epoch % E = 0 then
5: Sample the LR-HR patch pairs (xis

lr, y
is
hr) from Dis;

6: Update F (·) with θis on the inversely sampled data;
7: Calculate the integrated gradient between the baseline model (θus) and the target model

(θis) as Eq. (10) to obtain the parameter importance;
8: Keep p significant parameters stop gradient updating as Eq.(11) after sorting the importance;
9: end if

10: end while

obtain the parameter importance so as to help us discover the location of significant parameters in the
sampling iteration.

The integrated path is calculated from the model trained with uniform sampling data to the model
trained with inverse sampling data. Let γ(α), α ∈ [0, 1] denote a continuous path between the
baseline model (θ′) and the target model (θ) with γ(0) = θ′, γ(1) = θ. Then, the integrated path can
be represented as:

γ(α) = θ′ + α(θ − θ′). (9)

In addition, the L1 loss is utilized to train the SR model, while the gradient of each parameter can
be obtained according to the back-propagation algorithm. After defining the baseline and target
model, integarted path and the loss function, the changes of network functions to each parameter with
integrated gradient for an input image x can be attributed as follows:

IG(θ, x) = l(γ(1), x)− l(γ(0), x)

=
∑
i

∫ 1

α=0

∂l(γ(α), x)

∂γ(α)i
× ∂γ(α)i

∂α
dα

≈ 1

M
[θ − θ

′
]

M−1∑
s=0

[
∂l(γ(α), x)

∂γ(α)
|γ(α)=θ′+α(θ−θ′ ),α= s

M

]
.

(10)

Parameter Refinement. After calculating the integrated gradient, the position index of parameter
importance can be located. The alternate training scheme is adopted for the bi-sampling data. To
obtain a more compact representation, we expect the trivial parameters can also learn more effective
information so we strive to distill them with other parameters fixed. Therefore, a specific proportion
of significant parameters can be selected to keep unchanged and only perform the gradient updating
on the remaining trivial parameters for further refinement. Especially, the selective ratio is set as:

p = β ∗ (e/T ), (11)
where e is the e-th training epoch, and T is the total training epochs. β is a scaling factor. The
detailed training procedure of our proposal is given in Algorithm 1.

4 Experiments

4.1 Datasets and Implementation Details

Datasets. We use DIV2K [1] to train the SR models, which is a high-quality dataset widely used for
image SR. The whole dataset includes 800 training images and 100 validation images totally with
diverse contents and texture details. The LR images are obtained in the same way as [52, 15]. To
demonstrate the effectiveness of our method, the SR models are also evaluated on five public SR
benchmark datasets: Set5 [3], Set14 [48], B100 [2], Urban100 [14] and Manga109 [29].
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Figure 3: The PSNR of each class on the classified DIV2K training and validation datasets for
uniform sampling and inverse sampling.

Uniform SR Error map Inverse SR Error map

Figure 4: Visual comparisons of the SR results by the uniform sampling (uniform SR) and the inverse
sampling (inverse SR), and the corresponding error maps with the GT.

Implementation Details. During training, we fix the patch size of the HR image as 128× 128 for
2×, 4× SR, and 129 × 129 for 3× SR. We follow ClassSR [19] for data preprocessing in inverse
sampling, which crops the whole image into multiple sub-images with sliding and overlap. For 2×,
3× SR, 4× SR, it produces 499875, 502200, 499875 sub-images, respectively. Following [39], the
number of the data repetition is set to 1. The training data is augmented by random flipping and
rotation. We use Adam optimizer with β1 = 0.9, β2 = 0.999 to train the SR models. The mini-batch
size is set to 16. The learning rate is initialized as 2e − 4 and reduced by half per 200 epochs for
400 epochs totally. The unbalanced factor for the inverse sampling data is set to 10 and β is set to
0.1. The interval of alternate training is 50 epochs and the number of classes of inverse sampling for
DIV2K training dataset is 10. In our experiments, µ is derived to 0.7743 according to the number of
classes and the unbalanced factor. All the experiments are conducted with PyTorch framework on
NVIDIA 2080Ti GPUs. Besides, objective criteria, i.e., peak signal-to-noise ratio (PSNR), structural
similarity (SSIM) are utilized to evaluate the model performance. Note that the two metrics are both
calculated on the Y channel of the YCbCr space as adopted in the previous works [6, 52].

4.2 Ablation Study

In this subsection, we mainly give a detailed analysis about the proposed bi-sampling parameter
attribution (BSPA) for accurate image SR. Following [31], EDSR_baseline (16 residual blocks with
64 feature channels) is exploited as the backbone network.

Bi-sampling Strategy. The bi-sampling strategy is adopted to capture the training samples for
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Figure 5: The histogram distribution of all train-
ing sub-images in DIV2K for EDSR_baseline
and BSPA (4× SR). It is observed that the dis-
tribution of BSPA becomes short-tailed.

the two-step iterative optimization procedure.
Uniform sampling ensures the original data distri-
bution, while inverse sampling mainly enhances
the feature extraction for the edge and texture
regions. Note that all the cropped sub-images
are grouped as 10 classes for inverse sampling in
our experiments. In Tab. 1, it is observed that
the baseline model obtains 28.22 dB in PSNR
on Set14, while the model trained with inverse
sampling for unbalanced factor 10 achieves 28.25
dB. Besides, we present the average PSNR value
of each class on the cropped DIV2K training and
validation sub-image dataset for the SR model
separately trained by uniform sampling and in-
verse sampling in Fig. 3. It illustrates that the
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Table 1: Ablation studies about the bi-sampling parameter attribution on benchmarks for 4× SR.
Model Baseline (uniform sampling) inverse sampling w/o IG FIG WIG
Set14 28.22 28.25 28.28 28.32 28.37
B100 27.31 27.33 27.35 27.38 27.40
Urban100 25.27 25.34 25.38 25.47 25.53
DIV2K valid 29.97 30.02 30.06 30.09 30.13

Table 2: The quantitative comparisons
(PSNR) of different selective ratios on bench-
marks for 4× SR.

β 0.1 0.5 0.8 1.0
Set14 28.37 28.35 28.34 28.32
B100 27.40 27.37 27.35 27.31
Urban100 25.53 25.51 25.46 25.43
DIV2K valid 30.13 30.10 30.07 30.05

Table 3: The quantitative comparisons
(PSNR) of different unbalanced factors on
benchmarks for 4× SR.

Unbalanced factor 10 50 100 200
Set14 28.37 28.33 28.28 28.21
B100 27.40 27.35 27.31 27.23
Urban100 25.53 25.49 25.42 25.30
DIV2K valid 30.13 30.06 30.00 29.91

SR model trained with inverse sampling performs
much better than the SR model with the uniform sampling on the tail hard classes, while performing
worse than the SR model with the uniform sampling on the simple classes. Therefore, inverse
sampling helps the feature extraction on hard texture regions. We also visualize the SR results and
their error maps with the GT of uniform sampling (uniform SR) and inverse sampling (inverse SR) in
Fig. 4. It shows that inverse SR has a smaller error than the uniform SR on the texture region.

Integrated Gradient. To demonstrate the effect of the integrated gradient (IG), we first use uniformly
sampled and inversely sampled data to alternately train the SR model. As the model “w/o IG” shows
in Tab. 1, the hybrid training obtains 0.06 dB improvement in PSNR against the baseline model on
Set14. Besides, we compare the filter-level IG (FIG) and weight-level IG (WIG), which denote the
parameter granularity in Eq.10 for each filter and each parameter. It is observed that WIG achieves
the best PSNR, which illustrates that the weight is more discriminative than the filter for the model
performance. Note that we adopt the weight-level IG in the experiments. Besides, we visualize the
distribution curve if the MSE values are evaluated by the model trained with BSPA. As Fig. 5 shows,
it is observed that the histogram distribution of BSPA becomes short-tailed. The reason is that the SR
performance on the tail data is improved, while the performance on the head data is kept. Therefore,
it demonstrates that our BSPA is effective in obtaining a more compact representation.

Effect of Selective Ratio. The selective factor in Eq. (11) aims to control the proportion of the
significant parameters and update the remaining trivial parameters. As shown in Tab. 2, we give the
quantitative comparisons of different β values for the selective ratio. It can be observed that the best
PSNR is obtained when β is 0.1. Therefore, we fix β as 0.1 in our experiments.

Effect of Unbalanced Factor. To demonstrate the effect of the unbalanced factor used for inverse
sampling data generation, we give the results of our BSPA with different unbalanced factors as shown
in Table 3. It shows that the best PSNR is obtained when the unbalanced factor is equal to 10. Since
the unbalanced factor determines the sampling probability of each class in inverse sampling, the large
factor causes multiple repetitive sampling to the tail hard samples. It may bring about the overfitting
on these areas so as to hinder the model representation.

Effect of the Number of Classes. For the classes, we compare different number of classes in Table
5. It shows that the SR performance changes little to the number of classes. Because the data in
different classes can be sampled according to their proportions by means of inverse sampling so as to
remedy the unbalanced data bias. In our experiments, we set the number of classes to 10.

4.3 Comparisons with the State-of-the-arts

To demonstrate the effectiveness of our BSPA, we integrate it with three representative SR models
with different model capacities, i.e., FSRCNN [10] (small), EDSR_baseline [23] (medium), and
RCAN [52] (large). Besides, we compare BSPA with SamplingAug [39] (a sampling-based data
augmentation method) and UDN [31] (a loss reweighting method). All these SR models are retrained
under the same experimental settings with the released codes.

Quantitative Results. In Tab. 4, it shows that SamplingAug and our BSPA outperform the baseline
methods with different model capacities for all scaling factors, which is even higher 1.32dB than the
original FSRCNN on DIV2K validation dataset for 2× SR. The results of UDN on some datasets are
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Table 4: The quantitative comparison results of average PSNR/SSIM for 2×, 3×, 4× image SR. The
best results are highlighted in black bold and the second best is in underline.

Scale Method Params Set5 Set14 B100 Urban100 Manga109 DIV2K valid
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

2×

FSRCNN [10] 24.5K 33.09/0.9180 30.02/0.8625 29.44/0.8396 26.77/0.8320 30.29/0.9172 32.18/0.8989
SamplingAug [39] 24.5K 34.71/0.9414 31.24/0.8942 30.51/0.8766 27.83/0.8667 32.28/0.9452 33.46/0.9225
UDN [31] 24.5K 34.79/0.9412 31.29/0.8940 30.50/0.8758 27.81/0.8660 32.34/0.9448 33.47/0.9223
BSPA (ours) 24.5K 34.80/0.9420 31.27/0.8943 30.54/0.8772 27.86/0.8682 32.27/0.9454 33.50/0.9232
EDSR_baseline [23] 1.4M 37.58/0.9590 33.15/0.9140 31.89/0.8959 30.89/0.9156 37.57/0.9745 35.54/0.9411
SamplingAug [39] 1.4M 37.65/0.9591 33.25/0.9146 31.96/0.8969 31.15/0.9184 37.76/0.9747 35.66/0.9420
UDN [31] 1.4M 37.60/0.9590 33.12/0.9137 31.89/0.8960 30.93/0.9160 37.67/0.9747 35.56/0.9411
BSPA (ours) 1.4M 37.70/0.9594 33.27/0.9149 31.96/0.8968 31.18/0.9185 37.78/0.9752 35.69/0.9420
RCAN [52] 15.4M 37.71/0.9596 33.31/0.9151 31.99/0.8976 31.41/0.9213 37.93/0.9755 35.74/0.9428
SamplingAug [39] 15.4M 37.89/0.9599 33.47/0.9161 32.05/0.8978 31.69/0.9240 38.39/0.9762 35.91/0.9436
UDN [31] 15.4M 37.86/0.9601 33.43/0.9162 32.05/0.8983 31.65/0.9239 38.15/0.9760 35.89/0.9440
BSPA (ours) 15.4M 37.94/0.9603 33.58/0.9181 32.14/0.8994 31.98/0.9272 38.49/0.9767 36.06/0.9449

3×

FSRCNN [10] 24.5K 29.91/0.8520 27.26/0.7625 27.07/0.7309 24.34/0.7237 26.46/0.8318 29.38/0.8221
SamplingAug [39] 24.5K 31.02/0.8794 28.13/0.7978 27.69/0.7657 24.97/0.7574 27.58/0.8632 30.18/0.8476
UDN [31] 24.5K 31.21/0.8825 28.27/0.8018 27.75/0.7701 25.03/0.7613 27.78/0.8682 30.28/0.8504
BSPA (ours) 24.5K 31.13/0.8823 28.20/0.8008 27.74/0.7693 25.01/0.7611 27.65/0.8680 30.24/0.8498
EDSR_baseline [23] 1.6M 33.79/0.9219 29.91/0.8340 28.83/0.7979 27.21/0.8305 32.30/0.9345 31.87/0.8787
SamplingAug [39] 1.6M 33.85/0.9223 30.00/0.8353 28.86/0.7987 27.35/0.8344 32.55/0.9361 31.95/0.8800
UDN [31] 1.6M 33.75/0.9216 29.89/0.8335 28.82/0.7978 27.15/0.8298 32.33/0.9344 31.85/0.8786
BSPA (ours) 1.6M 33.97/0.9237 30.03/0.8361 28.89/0.7999 27.42/0.8359 32.60/0.9372 31.99/0.8807
RCAN [52] 15.6M 33.70/0.9206 29.87/0.8328 28.78/0.7970 27.11/0.8274 32.10/0.9320 31.81/0.8776
SamplingAug [39] 15.6M 34.15/0.9247 30.20/0.8390 28.96/0.8011 27.78/0.8439 33.13/0.9403 32.14/0.8830
UDN [31] 15.6M 34.26/0.9255 30.22/0.8397 29.00/0.8026 27.80/0.8448 33.05/0.9407 32.23/0.8846
BSPA (ours) 15.6M 34.35/0.9268 30.31/0.8413 29.07/0.8044 28.15/0.8519 33.35/0.9432 32.36/0.8867

4×

FSRCNN [10] 24.5K 28.14/0.7960 25.91/0.6979 25.94/0.6660 23.14/0.6537 24.71/0.7705 28.00/0.7710
SamplingAug [39] 24.5K 29.02/0.8242 26.52/0.7266 26.37/0.6936 23.59/0.6813 25.40/0.7950 28.57/0.7919
UDN [31] 24.5K 29.11/0.8250 26.53/0.7272 26.37/0.6936 23.58/0.6811 25.45/0.7965 28.60/0.7927
BSPA (ours) 24.5K 29.04/0.8241 26.51/0.7261 26.35/0.6921 23.55/0.6790 25.40/0.7957 28.56/0.7912
EDSR_baseline [23] 1.5M 31.57/0.8861 28.22/0.7723 27.31/0.7268 25.27/0.7574 29.27/0.8902 29.97/0.8265
SamplingAug [39] 1.5M 31.72/0.8876 28.29/0.7735 27.34/0.7281 25.39/0.7624 29.57/0.8936 30.04/0.8279
UDN [31] 1.5M 31.44/0.8833 28.15/0.7707 27.27/0.7257 25.17/0.7539 29.05/0.8866 29.90/0.8253
BSPA (ours) 1.5M 31.80/0.8897 28.37/0.7765 27.40/0.7312 25.53/0.7685 29.72/0.8972 30.13/0.8312
RCAN [52] 15.6M 31.92/0.8910 28.38/0.7763 27.40/0.7306 25.54/0.7684 29.77/0.8982 30.16/0.8311
SamplingAug [39] 15.6M 32.00/0.8915 28.48/0.7788 27.47/0.7323 25.80/0.7771 30.17/0.9027 30.23/0.8331
UDN [31] 15.6M 31.91/0.8907 28.45/0.7773 27.45/0.7311 25.70/0.7721 29.86/0.8989 30.21/0.8321
BSPA (ours) 15.6M 32.18/0.8943 28.56/0.7807 27.54/0.7348 26.02/0.7839 30.34/0.9060 30.39/0.8363

even inferior to the baseline model, which may originate from the inaccurate estimation of uncertainty.
Note that the model’s performance on FSRCNN for 3× and 4× scale is worse than UDN. FSRCNN
is an extremely lightweight model, which has only 24.5K parameters and several convolutional layers.
The model representation ability is restricted. Therefore, it may not fit the training well no matter the
easy data or the hard data by the limited model capacity, especially for large scaling factors. Although
the bi-sampling strategy increases the data diversity, there lacks sufficient model capacity to it. UDN
is a loss re-weighting method for solving the data imbalance problem. It provides a regularization
constraint for shrinking the solution space. Besides, our method has advantages over other compared
methods on large models. For EDSR and RCAN, our BSPA almost performs the best for all scaling
factors against the compared methods.

Qualitative Results. The visual comparisons on benchmark datasets for 4× SR are shown in Fig.
6. For images “img042” and “img092” in Urban100 dataset, we can observe that BSPA is more
favorable and can recover more texture details than other compared methods. Therefore, our proposal
can not only achieve excellent performance but also be superior in the visual effect. Besides, we also
provide the perceptual metrics (NIQE/LPIPS) comparisons for RCAN in Table 6. It shows that our
method obtains superior NIQE and LPIPS values against the compared methods.

Table 5: The quantitative comparisons
(PSNR) of different numbers of classes on
benchmarks for 4× SR.

Classes (K) 5 10 20
Set14 28.36 28.37 28.38
B100 27.41 27.40 27.42
Urban100 25.53 25.53 25.54
DIV2K valid 30.13 30.13 30.14

Table 6: The quantitative comparison results
(NIQE/LPIPS) on benchmarks for 4× SR.

Model Set14 B100 Urban100 DIV2K valid
RCAN 6.59/0.2932 6.73/0.3868 5.83/0.2508 6.03/0.2836
SamplingAug 6.33/0.2876 6.53/0.3809 5.60/0.2416 5.83/0.2784
UDN 6.61/0.2926 6.69/0.3850 5.76/0.2475 5.85/0.2813
BSPA (ours) 6.26/0.2844 6.46/0.3750 5.61/0.2314 5.79/0.2748
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Figure 6: Visual comparisons of our BSPA with other methods on Set14 and Urban100 for 4× SR.

4.4 Limitations

We adopt a re-sampling strategy to address the unbalanced data distribution problem for image SR. It
has several limitations. 1) Unlike the end-to-end loss re-weighting methods [31], our method needs to
implement extra data pre-processing for classifying sub-images at first. 2) Inverse sampling allocates
larger weights for the tail training samples, which may lead to over-fit upon these data. Therefore,
it is important to define an appropriate unbalanced factor. Most of the existing SR models only
consider that different image regions have different reconstruction diîculties, and then mainly focus
on the delicate structure design (like attention mechanism) or complex regularization constraints.
Few discuss the sampling strategies of training data and model this as a long-tail problem. The key
idea behind the proposed Bi-Sampling Parameter Attribution method is to reconcile the unbalanced
inherent data bias, namely the heavy-tailed distribution are visually more important than smooth
areas. The newly developed technique with integrate gradient involves an inverse sampling strategy
for enhancing the feature extraction ability of the model on the hard samples. We believe that our
method has such potential for fully mining the dataset information and may inspire the research of
this direction in the future.

5 Conclusion

In this paper, we rethink the current paradigm of merely using uniform sampling to capture the mini-
batch data for training the SR model, which would lead to the notorious data unbalanced problem.
To address this issue, we propose a bi-sampling parameter attribution (BSPA) method for accurate
image SR. The bi-sampling is introduced to remedy the unbalanced data distribution, including
the usually adopted uniform sampling and inverse sampling. The former aims to keep the intrinsic
data distribution, the latter is designed to promote the model performance on the few hard samples,
which is inversely proportional to the number of each class. To achieve this, we divide the whole
training dataset into multiple sub-images and group these sub-images into different classes according
to the reconstruction error. Moreover, the integrated gradient method is introduced to calculate the
parameter importance, with which the significant parameters are fixed and the remaining trivial
parameters are further refined. Extensive experiments on SR benchmark datasets have demonstrated
that our proposal achieves superior performance against the baseline methods. In our future work, we
will apply the proposal to other low-level tasks based on patch training.
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