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Abstract

Instance detection (InsDet) is a long-lasting problem in robotics and computer
vision, aiming to detect object instances (predefined by some visual examples) in a
cluttered scene. Despite its practical significance, its advancement is overshadowed
by Object Detection, which aims to detect objects belonging to some predefined
classes. One major reason is that current InsDet datasets are too small in scale
by today’s standards. For example, the popular InsDet dataset GMU (published
in 2016) has only 23 instances, far less than COCO (80 classes), a well-known
object detection dataset published in 2014. We are motivated to introduce a new
InsDet dataset and protocol. First, we define a realistic setup for InsDet: training
data consists of multi-view instance captures, along with diverse scene images
allowing synthesizing training images by pasting instance images on them with
free box annotations. Second, we release a real-world database, which contains
multi-view capture of 100 object instances, and high-resolution (6k×8k) testing
images. Third, we extensively study baseline methods for InsDet on our dataset,
analyze their performance and suggest future work. Somewhat surprisingly, using
the off-the-shelf class-agnostic segmentation model (Segment Anything Model,
SAM) and the self-supervised feature representation DINOv2 performs the best,
achieving >10 AP better than end-to-end trained InsDet models that repurpose
object detectors (e.g., FasterRCNN and RetinaNet).

1 Introduction

Instance detection (InsDet) requires detecting specific object instances (defined by some visual
examples) from a scene image [12]. It is practically important in robotics, e.g., elderly-assistant
robots need to fetch specific items (my-cup vs. your-cup) from a cluttered kitchen [40], micro-
fulfillment robots for the retail need to pick items from mixed boxes or shelves [4].

Motivation. InsDet receives much less attention than the related problem of Object Detection
(ObjDet), which aims to detect all objects belonging to some predefined classes [28, 37, 29, 48].
Fig. 1 compares the two problems. One major reason is that there are not large-enough InsDet
datasets by today’s standards. For example, the popular InsDet dataset GMU (published in 2016) [15]
has only 23 object instances while the popular ObjDet dataset COCO has 80 object classes (published
in 2014) [28]. Moreover, there are no unified protocols in the literature of InsDet. The current InsDet
literature mixes multiple datasets to simulate training images and testing scenarios [12]. Note that the
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Figure 1: Object detection (ObjDet) vs. instance detection (InsDet). ObjDet aims to detect all objects
belonging to some predefined classes, whereas InsDet requires detecting specific object instances defined by
some visual examples. Loosely speaking, InsDet treats a single object instance as a class compared to ObjDet.
Please refer to Fig. 2-right for the challenge of InsDet, which is the focus of our work.

training protocol of InsDet does not follow that of ObjDet, which has training images annotated with
bounding boxes. Differently, for InsDet2, its setup should have profile images of instances (cf. right
in Fig. 1) and optionally diverse background images not containing such instances [12]. We release a
new dataset and present a unified protocol to foster the InsDet research.

Overview of our dataset is presented in Fig. 2. In our dataset, profile images (3072x3072) of object
instances and testing images (6144x8192) are high-resolution captured by a Leica camera (commonly
used in today’s cellphones). This inexpensive camera is deployable in current or future robot devices.
Hence, our dataset simulates real-world scenarios, e.g., robotic navigation in indoor scenes. Even
with high-resolution images, objects in testing images appear small, taking only a tiny region in the
high-res images. This demonstrates a clear challenge of InsDet in our dataset. Therefore, our dataset
allows studying InsDet methods towards real-time operation on high-res (as future work).

Preview of technical insights. On our dataset, we revisit existing InsDet methods [26, 12, 16].
Perhaps the only InsDet framework is cut-paste-learn [12], which cuts instances from their profile
images, pastes them on random background images (so being able to derive “free” bounding boxes
annotations), and trains InsDet detectors on such data by following that of ObjDet (e.g., Faster-
RCNN [37]). We study this framework, train different detectors, and confirm that the state-of-the-art
transformer-based detector DINO [48] performs the best, achieving 27.99 AP, significantly better
than CNN-based detector FasterRCNN (19.52 AP). Further, we present a non-learned method that
runs off-the-shelf proposal detectors (SAM [23] in our work) to generate object proposals and use
self-supervised learned features (DINOf [8]3 and DINOv2f [33]) to find matched proposals to in-
stances’ profile images. Surprisingly, this non-learned method resoundingly outperforms end-to-end
learning methods, i.e., SAM+DINOv2f achieves 41.61 AP, much better than DINO (27.99 AP) [48].

Contributions. We make three major contributions.

1. We formulate the InsDet problem with a unified protocol and release a challenging dataset
consisting of both high-resolution profile images and high-res testing images.

2. We conduct extensive experiments on our dataset and benchmark representative methods
following the cut-paste-learn framework [12], showing that stronger detectors perform better.

3. We present a non-learned method that uses an off-the-shelf proposal detector (i.e., SAM [23])
to produce proposals, and self-supervised learned features (e.g., DINOv2f [33]) to find
instances (which are well matched to their profile images). This simple method significantly
outperforms the end-to-end InsDet models.

2 Related Work

Instance detection (InsDet) is a long-lasting problem in computer vision and robotics [49, 12, 32, 3,
15, 21, 4], referring to detecting specific object instances in a scene image. Traditional InsDet methods
use keypoint matching [34] or template matching [19]; more recent ones train deep neural networks
to approach InsDet [32]. Some others focus on obtaining more training samples by rendering realistic
instance examples [22, 21], data augmentation [12], and synthesizing training images by cutting

2In real-world applications (e.g., robot learning), it is infeasible to place objects in diverse scenes, take scene
photos, then annotate instances using boxes towards training images (cf. training data in object detection).

3We add subscript f to indicate that DINOf [8] is the self-supervised learned feature extractor; distinguishing
it from a well-known object detector DINO [48].
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Figure 2: Overview of our instance detection dataset. Left: It contains 100 distinct object instances. For
each of them, we capture 24 profile photos from multiple views. We paste QR code images beneath objects
to allow relative camera estimation (e.g., by COLMAP [41]), just like other existing datasets [20, 5]. Middle:
We take photos in random scenes (which do not contain any of the 100 instances) as background images. The
background images can be optionally used to synthesize training data, e.g., pasting the foreground instances on
them towards box-annotated training images [26, 12, 16] as used in the object detection literature [28]. Right:
high-resolution (6k×8k) testing images of clutter scenes contain diverse instances, including some of the 100
predefined instances and other uninterested ones. The goal of InsDet is to detect the predefined instances in these
testing images. From the zoom-in regions, we see the scene clutters make InsDet a rather challenging problem.

instances as foregrounds and pasting them to background images [26, 12, 16]. Speaking of InsDet
datasets, [15] collects scene images from 9 kitchen scenes with RGB-D cameras and defines 23
instances of interest to annotate with 2D boxes on scene images; [21] creates 3D models of 29
instances from 6 indoor scenes, and uses them to synthesize training and testing data; [4] creates 3D
mesh models of 100 grocery store objects, renders 80 views of images for each instance, and uses
them to synthesize training data.

As for benchmarking protocol of InsDet, [12] synthesizes training data from BigBird [43] and
UW Scenes [25] and tests on the GMU dataset [15]; [21] trains on their in-house data and test on
LM-O [5] and Rutgers APC [38] datasets. Moreover, some works require hardware-demanding
setups [4], some synthesize both training and testing data [21, 26], while others mix existing datasets
for benchmarking [12]. Given that the modern literature on InsDet lacks a unified benchmarking
protocol (till now!), we introduce a more realistic unified protocol along with our InsDet dataset,
allowing fairly benchmarking methods and fostering research of InsDet.

Object detection (ObjDet) is a fundamental computer vision problem [13, 28, 37], requiring
detecting all objects belonging to some predefined categories. The prevalent ObjDet detectors adopt
convolutional neural networks (CNNs) as a backbone and a detector-head for proposal detection and
classification, typically using bounding box regression and a softmax-classifier. Approaches can be
grouped into two categories: one-stage detectors [36, 30, 35, 46] and two-stage detectors [17, 6].
One-stage detectors predict candidate detection proposals using bounding boxes and labels at regular
spatial positions over feature maps; two-stage detectors first produce detection proposals, then
perform classification and bounding box regression for each proposal. Recently, the transformer-
based detectors transcend CNN-based detectors [7, 51, 48], yielding much better performance on
various ObjDet benchmarks. Different from ObjDet, InsDet requires distinguishing individual object
instances within a class. Nevertheless, to approach InsDet, the common practice is to repurpose
ObjDet detectors by treating unique instances as individual classes. We follow this practice and
benchmark various ObjDet methods on our InsDet dataset.

Pretrained models. Pretraining is an effective way to learn features from diverse data. For example,
training on the large-scale ImageNet dataset for image classification [10], a neural network can
serve as a powerful feature extractor for various vision tasks [11, 42]. Object detectors trained on
the COCO dataset [28] can serve as a backbone allowing finetuning on a target domain to improve
detection performance [27]. Such pretraining requires human annotations which can be costly.
Therefore, self-supervised pretraining has attracted increasing attention and achieved remarkable
progress [9, 18, 8, 33]. Moreover, the recent literature shows that pretraining on much larger-scale
data can serve as a foundation model for being able to perform well across domains and tasks.
For example, the Segment Anything Model (SAM) pretrains a class-agnostic proposal detector on
web-scale data and shows an impressive ability to detect and segment diverse objects in the wild [23].
In this work, with our high-res InsDet dataset, we explore a non-learned method by using publicly
available pretrained models. We show that such a simple method significantly outperforms end-to-end
learned InsDet detectors.

3



3 Instance Detection: Protocol and Dataset

In this section, we formulate a realistic unified InsDet protocol and introduce the new dataset. We
release our dataset under the MIT License, hoping to contribute to the broader research community.

3.1 The Protocol

Our InsDet protocol is motivated by real-world indoor robotic applications. In particular, we consider
the scenario that assistive robots must locate and recognize instances to fetch them in a cluttered
indoor scene [40], where InsDet is a crucial component. Realistically, for a given object instance,
the robots should see it only from a few views (at the training stage), and then accurately detect it
in a distance in any scenes (at the testing stage). Therefore, we suggest the protocol specifying the
training and testing setups below. We refer the readers to Fig. 2 for an illustration of this protocol.

• Training. There are profile images of each instance captured at different views and diverse
background images. The background images can be used to synthesize training images with
free 2D-box annotations, as done by the cut-paste-learn methods [26, 12, 16].

• Testing. InsDet algorithms are required to precisely detect all predefined instances from
real-world images of cluttered scenes.

Evaluation metrics. The InsDet literature commonly uses average precision (AP) at IoU=0.5 [12, 2,
32]; others use different metrics, e.g., AP at IoU=0.75 [21], mean AP [3, 15], and F1 score [4]. As a
single metric appears to be insufficient to benchmark methods, we follow the literature of ObjDet
that uses multiple metrics altogether [28].

• AP averages the precision at IoU thresholds from 0.5 to 0.95 with the step size 0.05. It is
the primary metric in the most well-known COCO Object Detection dataset [28].

• AP50 and AP75 are the precision averaged over all instances with IoU threshold as 0.5 and
0.75, respectively. In particular, AP50 is the widely used metric in the literature of InsDet.

• AR (average recall) averages the proposal recall at IoU threshold from 0.5 to 1.0 with
the step size 0.05, regardless of the classification accuracy. AR measures the localization
performance (excluding classification accuracy) of an InsDet model.

Moreover, we tag hard and easy scenes in the testing images based on the level of clutter and
occlusion, as shown by the right panel of Fig. 2.

3.2 The Dataset

We introduce a challenging real-world dataset of indoor scenes (motivated by indoor assistive robots),
including high-resolution photos of 100 distinct object instances, and high-resolution testing images
captured from 14 indoor scenes where there are such 100 instances defined for InsDet. Table 1
summarizes the statistics compared with existing datasets, showing that our dataset is larger in scale
and more challenging than existing InsDet datasets. Importantly, object instances are located far from
the camera in cluttered scenes; this is realistic because robots must detect objects in a distance before
approaching them [1]. Perhaps surprisingly, only a few InsDet datasets exist in the literature. Among
them, Grocery [4], which is the latest and has the most instances like our dataset, is not publicly
available.

Our InsDet dataset contains 100 object instances. When capturing photos for each instance, inspired
by prior arts [43, 20, 5], we paste a QR code on the tabletop, which enables pose estimation, e.g.,
using COLMAP [41]. Yet, we note more realistic scenarios can be hand-holding instances for
capturing [24], which we think of as future work. In Fig. 3, we plot the per-instance frequency in the
testing set. Each instance photo is of 3072×3072 pixel resolution. For each instance, we capture 24
photos from multiple views. The left panel of Fig. 2 shows some random photos for some instances.
For the testing set, we capture high-resolution images (6144×8192) in cluttered scenes, where some
instances are placed in reasonable locations, as shown in the right panel of Fig. 2. We tag these images
as easy or hard based on scene clutter and object occlusion levels. When objects are placed sparsely,
we tag the testing images as easy; otherwise, we tag them as hard. Our InsDet dataset also contains
200 high-res background images of indoor scenes (cf. Fig. 2-middle). These indoor scenes are not
included in testing images. They allow using the cut-paste-learn framework to synthesize training
images [26, 12, 16]. Following this framework, we segment foreground instances using GrabCut [39]
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Table 1: Comparison of our dataset to existing ones. Several datasets are used in the InsDet literature
although they are designed for different tasks. For example, BigBird and LM are designed to study algorithms of
object recognition and object pose estimation, hence they contain instances that are close to the camera. Naively
repurposing them for InsDet leads to saturated performance, impoverishing the exploration space of InsDet.
Instead, ours is more challenging as instances are placed far from the camera, simulating realistic scenarios
where robots must detect instances at a distance. Importantly, our dataset contains far more instances than other
publicly available InsDet datasets.

for what task publicly available #instances #scenes published year resolution

BigBird [43] recognition ✓ 100 N/A 2014 1280x1024
RGBD [26] scene label. ✓ 300 14 2017 N/A
LM [20] 6D pose est. ✓ 15 1 2012 480x640
LM-O [5] 6D pose est. ✓ 20 1 2017 480x640
RU-APC [38] 3D pose est. ✓ 14 1 2016 480x640

GMU [15] InsDet ✓ 23 9 2016 1080x1920
AVD [1] InsDet ✓ 33 9 2017 1080x1920
Grocery [4] InsDet ✗ 100 10 2021 unknown

Ours InsDet ✓ 100 14 2023 6144x8192
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Figure 3: Imbalanced distribution of
instances in test-set. Yet, instances
have the same number of profile im-
ages in training and the metrics aver-
age over all instances. So, the evalua-
tion is unbiased.

size bounding box area

small < 2002

medium 2002 - 4002

large > 4002

Table 2: Following the spirit
of COCO dataset, we tag ob-
jects with different sizes by
small, medium, and large, re-
spectively.
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Figure 4: Distribution of objects
w.r.t their bounding box area in test-
ing images. We split them into small,
medium, and large subgroups to al-
low breakdown analysis.

to paste them on background images. It is worth noting that the recent vision foundation model
SAM [23] makes interactive segmentation much more efficient. Yet, this work is made public after
we collected our dataset. Following the COCO dataset [28], we further tag testing object instances as
small, medium, and large according to their bounding box area, as in Table 2. To determine their size
tags, we plot the distribution of their sizes in Fig. 4, showing an intuitive way to tag them.

4 Methodology

4.1 The Strong Baseline: Cut-Paste-Learn

Cut-Paste-Learn serves as a strong baseline that synthesizes training images with 2D-box anno-
tations [12]. This allows one to train InsDet detectors in the same way as training normal ObjDet
detectors, by simply treating the K unique instances as K distinct classes. It cuts and pastes fore-
ground instances at various aspect ratios and scales on diverse background images, yielding synthetic
training images, as shown in Fig. 5. Cut-paste-learn is model-agnostic, allowing one to adopt any
state-of-the-art detector architecture. In this work, we study five popular detectors, covering the two-
stage detector FasterRCNN [37], and one-stage anchor-based detector RetinaNet [29], and one-stage
anchor-free detectors CenterNet [49], and FCOS [45]; and the transformer-based detector DINO [48].
There are multiple factors in the cut-paste-learn framework, such as the number of inserted objects in
each background image, their relative size, the number of generated training images and blending
methods. We conduct comprehensive ablation studies and report results using the best-tuned choices.
We refer interested readers to the supplement for the ablation studies.
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(a) Box (b) Gaussian blurring (c) Motion (d) Naive pasting

Figure 5: Synthetic training images for cut-paste-learn methods. We use different blending methods to paste
object instances on the same background. We recommend that interested readers refer to the supplement for an
ablation study using different blending methods.

4.2 The Simple, Non-Learned Method

We introduce a simple, non-learned InsDet method by exploiting publicly available pretrained models.
This method consists of three main steps: (1) proposal generation on testing images, (2) matching
proposals and profile images, (3) selecting the best-matched proposals as the detected instances.

Proposal generation. We use the recently released Segment Anything Model (SAM) [23] to generate
proposals. For a proposal, we define a minimum bounding square box encapsulating the masked
instance, and then crop the region from the high-resolution testing image. SAM not only achieves
high recall (Table 4) on our InsDet dataset but detects objects not belonging to the instances of
interest. So the next step is to find interested instances from the proposals.

Feature representation of proposals and profile images. Intuitively, among the pool of proposals,
we are interested in those that are well-matched to any profile images of any instance. The well-
matched ones are more likely to be predefined instances. To match proposals and profile images,
we use off-the-shelf features to represent them. In this work, we study two self-supervised learned
models as feature extractors, i.e. DINOf [8], and DINOv2f [33]. We feed a square crop (of a
proposal) or a profile image to the feature extractor to obtain its feature representation. We use cosine
similarity over the features as the similarity measure between a proposal and a profile image.

Proposal matching and selection. As each instance has multiple profile images, we need to design
the similarity between a proposal and an instance. For a proposal, we compute the cosine similarities
of its feature to all the profile images of an instance and use the maximum as its final similarity
to this instance. We then filter out proposals and instances if they have similarities lower than a
threshold, indicating that they are not matched to any instances or proposals. Finally, we obtain a
similarity matrix between all remaining proposals and all remaining instances. Over this matrix, we
study two matching algorithms to find the best match (hence the final InsDet results), i.e. Rank &
Select, and Stable Matching [14, 31]. The former is a greedy algorithm that iteratively selects the best
match (highest cosine similarity) between a proposal and an instance and removes the corresponding
proposal until no proposal/instance is left. The latter produces an optimal list of matched proposals
and instances, such that there exist no pair of instances and proposals which both prefer each other to
their current correspondence under the matching.

5 Experiments

Synthesizing training images for cut-paste-learn baselines. Our baseline method trains state-of-
the-art ObjDet detectors on data synthesized using the cut-paste-learn strategy [12]. For evaluating
on our InsDet dataset, we generate 19k training examples and 6k validation examples. For each
example, various numbers of foreground objects ranging from 25 to 35 are pasted to a randomly
selected background image. The objects are randomly resized with a scale from 0.15 to 0.5. We use
four blending options [12], including Gaussian blurring, motion blurring, box blurring, and naive
pasting. Fig. 5 shows some random synthetic images. The above factors have a notable impact on the
final performance of trained models, and we have conducted a comprehensive ablation study. We
refer interested readers to the supplement for the study.

Implementation details. We conduct all the experiments based on open-source implementations,
such as Detectron2 [47] (for FasterRCNN and RetinaNet), CenterNet [50], FCOS [44] and DINO [48].
The CNN-based end-to-end detectors are initialized with pretrained weights on COCO [28]. We
fine-tune CNN-based models using SGD and the transformer-based model using AdamW with a
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Table 3: Benchmarking results on our dataset. We summarize three salient conclusions. (1) End-to-end
trained detectors perform better with stronger detector architectures, e.g., the transformer DINO (27.99 AP)
outperforms FasterRCNN (19.54 AP). (2) Interestingly, the non-learned method SAM+DINOv2f performs
the best (41.61 AP), significantly better than end-to-end learned detectors including DINO (27.99 AP). (3) All
methods have much lower AP on hard testing images or small objects (e.g., SAM+DINOv2f yields 28.03 AP
on hard vs. 47.57 AP on easy), showing that future work should focus on hard situations or small instances.

AP AP50 AP75

avg hard easy small medium large

FasterRCNN [37] 19.54 10.26 23.75 5.03 22.20 37.97 29.21 23.26
RetinaNet [29] 22.22 14.92 26.49 5.48 25.80 42.71 31.19 24.98
CenterNet [49] 21.12 11.85 25.70 5.90 24.15 40.38 32.72 23.60
FCOS [45] 22.40 13.22 28.68 6.17 26.46 38.13 32.80 25.47
DINO [48] 27.99 17.89 32.65 11.51 31.60 48.35 39.62 32.19
SAM + DINOf 36.97 22.38 43.88 11.93 40.85 62.67 44.13 40.42
SAM + DINOv2f 41.61 28.03 47.57 14.58 45.83 69.14 49.10 45.95

Table 4: Benchmarking results w.r.t average recall (AR) for small, medium and large instances.
“AR@max10” means AR within the top-10 ranked detections. In computing AR, we rank detections by
using the detection confidence scores of the learning-based methods (e.g., FasterRCNN) or similarity scores in
the non-learned methods (e.g., SAM+DINOf ). ARs, ARm, and ARl are breakdowns of AR for small, medium
and large testing object instances. Results show that (1) the non-learned methods that use SAM generally recall
more instances than others, and (2) all methods suffer from small instances. In sum, results show that methods
yielding higher recall achieve higher AP metrics (cf. Table 3).

AR@max10 AR@max100 ARs@max100 ARm@max100 ARl@max100

FasterRCNN [37] 26.24 39.24 14.83 44.87 60.05
RetinaNet [29] 26.33 49.38 22.04 56.76 69.69
CenterNet [49] 23.55 44.72 17.84 52.03 64.58
FCOS [45] 25.82 46.28 22.09 52.85 64.11
DINO [48] 29.84 54.22 32.00 59.43 72.92
SAM + DINOf 31.25 63.05 31.65 70.01 90.63
SAM + DINOv2f 40.02 63.06 31.11 70.40 90.36

learning rate of 1e-3 and a batch size of 16. We fine-tune all the models for 5 epochs (which are
enough for training to converge) and evaluate checkpoints after each epoch for model selection. The
models are trained on a single Tesla V100 GPU with 32G memory.

If applied, we preprocess object instance profile images and proposals. Specifically, for a profile
image, we remove the background pixels (e.g., pixels of QR code) using foreground segmentation
(i.e., GrabCut). For each proposal, we crop its minimum bounding square box. We also study whether
removing background pixels by using SAM’s mask output performs better. We use DINOf and
DINOv2f to compute feature representations.

5.1 Benchmarking Results

Quantitative results. To evaluate the proposed InsDet protocol and dataset, we first train detec-
tors from a COCO-pretrained backbone following the cut-past-learn baseline. Table 3 lists detailed
comparisons and Fig. 6 plots the precision-recall curves for the compared methods. We can see that de-
tectors with stronger architectures perform better, e.g. DINO (27.99% AP) vs. FasterRCNN (19.54%
AP). Second, non-learned methods outperform end-to-end trained models, e.g., SAM+DINOv2f

(41.61% AP) vs. DINO (27.99% AP). Third, all the methods perform poorly on hard scenes and
small instances, suggesting future work focusing on such cases.

Table 4 compares methods w.r.t the average recall (AR) metric. “AR@max10” means AR within the
top-10 ranked detections. In computing AR, we rank detections by using the detection confidence
scores of the learning-based methods (e.g., FasterRCNN) or similarity scores in the non-learned
methods (e.g., SAM+DINOf ). ARs, ARm, and ARl are breakdowns of AR for small, medium, and
large testing object instances. Results show that (1) the non-learned methods that use SAM generally
recall more instances than others, and (2) all methods suffer from small instances. In sum, results
show that methods yielding higher recall achieve higher AP metrics (cf. Table 3). Table 5 further
studies AR in hard and easy scenes. We can observe that: (1) the non-learned methods that use SAM
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Table 5: Benchmarking results w.r.t average recall (AR) for hard and easy scenes. We add a breakdown
analysis of testing images on hard and easy scenes. Results show that (1) the non-learned methods that use
SAM generally recall more instances than others, and (2) all methods suffer from hard scenes.

AR@max10 AR@max100

avg hard easy avg hard easy

FasterRCNN [37] 26.24 12.92 32.33 39.24 16.91 49.43
RetinaNet [29] 26.33 15.38 31.33 49.38 29.00 58.69
CenterNet [49] 23.55 11.87 28.87 44.72 24.88 53.76
FCOS [45] 25.82 12.81 31.74 46.28 26.55 55.27
DINO [48] 29.84 16.63 35.84 54.22 36.46 62.30
SAM + DINOf 31.25 16.96 37.73 63.05 42.46 72.41
SAM + DINOv2f 40.02 27.64 45.36 63.06 43.47 71.96
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Figure 6: Precision-recall curves with IoU=0.5
(AP50 in the legend) on our InsDet dataset.
Stronger detectors perform better, e.g., DINO,
a transformer-based detector significantly outper-
forms FasterRCNN. Furthermore, even with a
simple non-learned method, leveraging pretrained
models, e.g., SAM+DINOv2f , outperforms end-
to-end learned methods.

recall more proposals than other competitors in both hard and easy scenes; (2) all methods basically
suffer from hard scenes.

Qualitative results. Fig. 7 visualizes qualitative results on two testing examples from the InsDet
dataset. Stronger detectors, e.g., the non-learned method SAM+DINOv2f , produce fewer false
negatives. Even so, all detectors still struggle to detect instances with presented barriers such as
heavy occlusion, instance size being too small, etc. As shown in Fig. 6, the non-learned method
SAM+DINOv2f outperforms end-to-end learned methods in a wide range of recall thresholds.

5.2 Ablation Study

Due to the space limit, we ablate the instance crop and stable matching in the main paper and put
more (including ablation studies for the cut-paste-learn methods) in the supplement.

Proposal feature extraction in the non-learned method. Given a box crop (encapsulating the
proposal) generated by SAM in the non-learned method, we study how to process the crop to improve
InsDet performance. Here, we can either crop and feed its minimum bounding box to compute
DINOv2f features, or we can use the mask to remove the background in the box. Table 6 shows the
comparison. Clearly, the latter performs remarkably better in both hard and easy scenarios.

Proposal-instance match in the non-learned method. After generating proposals by SAM, we
need to compare them with instance profile images to get the final detection results. We study the
InsDet performance of the two matching algorithms. Rank & Select is a greedy algorithm that
iteratively finds the best match between any proposals and instances until no instances/proposals
are left unmatched; stable matching produces an optimal list of matched proposals and instances
such that there does not exist a pair in which both prefer other proposals/instances to their current
correspondence under the matching. Table 7 compares these two methods, clearly showing that stable
matching works better.

Impact of different image/proposal resolutions. We study the InsDet performance when using
images of different sizes for SAM, and using different resolutions of crops fed into DINOv2f . For
example, we can use SAM on images of size 3072×4096 to generate proposals, we can resize crops
of proposals to 224×224 to feed into DINOv2f if they are larger than 224×224 (otherwise, keep
them unchanged). Table 8 lists detailed comparisons. We have two observations. (1) The InsDet
performance generally increases with the image resolution but starts to drop when the input image is
too large, i.e., 6144×8192. This is because SAM tends to produce object parts as individual instances,
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Figure 7: Visual results of FasterRCNN, DINO, and SAM+DINOv2f on our InsDet dataset. The top row
illustrates the sparse placement of instances (i.e., easy scenario), while the bottom contains more cluttered
instances (i.e., hard scenario). We drop predicted instance names for brevity. SAM helps localize instances
with more precise bounding boxes, e.g., as arrows labeled in the upper row. DINOv2f provides more precise
recognition of localized instances, e.g., five instances in the right of the bottom row. Compared with DINO,
SAM+DINOv2f is better at locating occluded instances.

Table 6: Ablation study: whether to remove background in crops for feature computation. Based on a
proposal given by SAM, we can crop and feed its minimum bounding square to compute DINOv2f feature, or
we can use the mask to remove the background in the square before computing the feature. Clearly, the latter
performs remarkably better.

strategy AP AP50 AP75

avg hard easy avg hard easy avg hard easy

w/o background removal 36.04 23.04 42.37 43.84 29.12 51.00 39.59 25.74 46.13
w/ background removal 39.12 24.00 47.17 46.72 30.81 54.66 42.86 26.40 51.58

Table 7: Ablation study: whether to generate unique proposal-instance match. In contrast to Rank&Select,
Stable Matching produces a unique match to proposal/instance for each instance/proposal, yielding better
performance than Rank&Select.

strategy AP AP50 AP75

avg hard easy avg hard easy avg hard easy

Rank & Select 38.62 23.95 46.31 46.04 30.77 53.64 42.37 26.39 50.61
Stable Matching 39.12 24.00 47.17 46.72 30.81 54.66 42.86 26.40 51.58

Table 8: Ablation study: which image/proposal size to use for SAM and DINOv2f . We notice that InsDet
performance generally increases with the input image resolution, but starts to drop when the image is too large.
When using larger proposals for DINOv2f , InsDet performance also gets better.

image resolution input size AP AP50 AP75

for SAM for DINOv2f avg hard easy avg hard easy avg hard easy

768×1024

224×224

36.46 21.67 43.88 46.22 29.52 54.11 41.53 24.95 49.99
1536×2048 39.12 24.00 47.17 46.72 30.81 54.66 42.86 26.40 51.58
3072×4096 39.17 24.08 46.60 45.71 30.34 53.07 41.90 26.12 49.71
6144×8192 38.74 23.39 46.29 45.24 29.24 52.78 40.81 25.14 48.65

1536×2048
112×112 26.46 16.52 31.32 30.83 20.94 36.26 28.89 18.81 33.73
224×224 39.12 24.00 47.17 46.72 30.81 54.66 42.86 26.40 51.58
448×448 41.61 28.03 47.57 49.10 36.64 54.84 45.95 31.41 52.03
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method time (sec) AP (%)
FasterRCNN [37] 0.00399 19.54
RetinaNet [29] 0.00412 22.22
CenterNet [49] 0.00376 21.12
FCOS [45] 0.00271 22.40
DINO [48] 1.90625 27.99
SAM + DINOf 15.10 36.97
SAM + DINOv2f 14.70 41.61

Table 9: We compare the inference runtime (second/image)
of different methods, along with their InsDet performance in
AP (%). Clearly, there is a trade-off between runtime and de-
tection precision. For example, among the methods studied in
our work, SAM+DINOv2f achieves the highest AP (41.61)
but is four orders of magnitude slower than FasterRCNN
(19.54 AP). Developing faster and better InsDet methods is
apparently future work.

resulting in more false positives. (2) When using larger proposals for DINOv2f , InsDet performance
gets better, e.g., 41.61% (448×448) vs. 39.12% (224×224).

5.3 Runtime Comparison

Table 9 compares the runtime of different methods, along with their InsDet performance. There is a
trade-off between runtime and detection precision. For example, among the methods studied in our
work, SAM+DINOv2f achieves the highest AP (41.61) but is four orders of magnitude slower than
FasterRCNN (19.54 AP). Developing faster and better InsDet methods is future work.

5.4 Discussions

Societal impact. InsDet is a crucial component in various robotic applications such as elderly-
assistive agents. Hence, releasing a unified benchmarking protocol contributes to broader commu-
nities. While our dataset enables InsDet research to move forward, similar to other works, directly
applying algorithms brought by our dataset is risky in real-world applications.

Limitations. We note several limitations in our current work. First, while our work uses normal
cameras to collect datasets, we expect to use better and cheaper hardware (e.g., depth camera and IMU)
for data collection. Second, while the cut-paste-learn method we adopt does not consider geometric
cues when synthesizing training images, we hope to incorporate such information to generate better
and more realistic training images, e.g., pasting instances only on up-surfaces like tables, desks,
and floors. Third, while SAM+DINOv2f performs the best, this method is time-consuming (see a
run-time study in the supplement); real-world applications should consider real-time requirements.

Future work. In view of the above limitations, the future work includes: (1) Exploring high-
resolution images for more precise detection on hard situations, e.g., one can combine proposals
generated from multi-scale and multi-resolution images. (2) Developing faster algorithms, e.g., one
can use multi-scale detectors to attend to regions of interest for progressive detection. (3) Bridging
end-to-end fast models and powerful yet slow pretrained models, e.g., one can train lightweight
adaptors atop pretrained models for better InsDet.

6 Conclusion

We explore the problem of Instance Detection (InsDet) by introducing a new dataset consisting
of high-resolution images and formulating a realistic unified protocol. We revisit representative
InsDet methods in the cut-paste-learn framework and design a non-learned method by leveraging
publicly-available pretrained models. Extensive experiments show that the non-learned method
significantly outperforms end-to-end InsDet models. Yet, the non-learned method is slow because
running large pretrained models takes more time than end-to-end trained models. Moreover, all
methods struggle in hard situations (e.g., in front of heavy occlusions and a high level of clutter in the
scene). This shows that our dataset serves as a challenging venue for the community to study InsDet.
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