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Abstract

Imperfect score-matching leads to a shift between the training and the sampling1

distribution of diffusion models. Due to the recursive nature of the generation2

process, errors in previous steps yield sampling iterates that drift away from the3

training distribution. Yet, the standard training objective via Denoising Score4

Matching (DSM) is only designed to optimize over non-drifted data. To train5

on drifted data, we propose to enforce a Martingale property (MP) which states6

that predictions of the model on its own generated data follow a Martingale, thus7

being consistent with the outputs that it generates. Theoretically, we show that8

the differential equation that describes MP together with the one that describes9

conservative vector field, have a unique solution given some initial condition.10

Consequently, if the score is learned well on non-drifted points via DSM (enforcing11

the true initial condition) then enforcing MP on drifted points propagates true score12

values. Empirically we show that enforcing MP improves the generation quality for13

conditional and unconditional generation in CIFAR-10, and in AFHQ and FFHQ.14

1 Introduction15

The diffusion-based [45, 47, 17] approach to generative models has been successful across various16

modalities, including images [39, 42, 13, 37, 28, 49, 41, 15, 9, 10], videos [18, 19, 20], audio [31],17

3D structures [38], proteins [1, 51, 43, 8], and medical applications [22, 3].18

Diffusion models generate data by first drawing a sample from a noisy distribution and slowly19

denoising this sample to ultimately obtain a sample from the target distribution. This is achieved by20

sampling, in reverse from time t = 1 down to t = 0, a stochastic process {xt}t∈[0,1] wherein x0 is21

distributed according to the target distribution p0 and, for all t,22

xt ∼ pt where pt := p0 ⊕N(0, σ2
t Id). (1)

That is, pt is the distribution resulting from corrupting a sample from p0 with noise sampled from23

N(0, σ2
t Id), where σt is an increasing function such that σ0 = 0 and σ1 is sufficiently large so that24

p1 is nearly indistinguishable from pure noise. We note that diffusion models have been generalized25

to other types of corruptions by the recent works of Daras et al. [11], Bansal et al. [4], Hoogeboom26

and Salimans [21], Deasy et al. [12], Nachmani et al. [36].27

In order to sample from a diffusion model, i.e. sample the afore-described process in reverse time, it28

suffices to know the score function s(x, t) = ∇x log p(x, t), where p(x, t) is the density of xt ∼ pt.29

Indeed, given a sample xt ∼ pt, one can use the score function at xt, i.e. s(xt, t), to generate a30

sample from pt−dt by taking an infinitesimal step of a stochastic or an ordinary differential equation31
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[49, 46], or by using Langevin dynamics [16, 48].1 Hence, in order to train a diffusion model to32

sample from a target distribution of interest p∗0 it suffices to learn the score function s∗(x, t) using33

samples from the corrupted distributions p∗t resulting from p∗0 and a particular noise schedule σt.34

Notice that those samples can be easily drawn given samples from p∗0.35

The Sampling Drift Challenge: Unfortunately the true score function s∗(x, t) is not perfectly36

learned during training. Thus, at generation time, the samples xt drawn using the learned score37

function, s(x, t), in the ways discussed above, drift astray in distribution from the true corrupted38

distributions p∗t . This drift becomes larger for smaller t due to compounding of errors and is39

accentuated by the fact that the further away a sample xt is from the likely support of the true p∗t40

the larger is also the error ∥s(xt, t)− s∗(xt, t)∥ between the learned and the true score function at41

xt, which feeds into an even larger drift between the distribution of xt′ from p∗t′ for t′ < t; see e.g.42

[44, 17, 37, 5]. These challenges motivate the question:43

Question 1. How can one train diffusion models to improve the error ∥s(x, t)− s∗(x, t)∥ between the44

learned and true score function on inputs (x, t) where x is unlikely under the target noisy distribution45

p∗t ?46

A direct approach to this challenge is to train our model to minimize the afore-described error on47

pairs (x, t) where x is sampled from distributions other than p∗t . However, there is no straightforward48

way to do so, because we do not have direct access to the values of the true score function s∗(x, t).49

This motivates us to propose a training method to mitigate sampling drift by enforcing that the50

learned score function satisfies an invariant, that we call the Martingale Property (MP). This property51

relates multiple inputs to s(·, ·) and can be optimized without using any samples from the target52

distribution p∗0. We will show that theoretically, enforcing MP on drifted points, in conjunction with53

minimizing the standard score matching objective on non drifted points, suffices to learn the correct54

score everywhere - at least in the theoretical limit where the error approaches zero and when one55

also enforces conservative vector field. We also provide experiments illustrating that regularizing the56

standard score matching objective using our MP improves sample quality. Further, we provide an57

ablation study that further provides evidence to this phenomena of score propagation.58

Our Approach: The true score function s∗(x, t) is closely related to another function, called59

optimal denoiser, which predicts a clean sample x0 ∼ p∗0 from a noisy observation xt = x0 + σtη60

where the noise is η ∼ N(0, Id). The optimal denoiser (under the ℓ2 loss) is the conditional61

expectation:62

h∗(x, t) := E[x0 | xt = x],

and the true score function can be obtained from the optimal denoiser as follows: s∗(x, t) =63

(h∗(x, t)− x)/σ2
t . Indeed, the standard training technique, via score-matching, explicitly trains for64

the score through the denoiser h∗ [52, 14, 34, 29, 33].65

We are now ready to state our Martingale Property (MP). We will say that a (denoising) function66

h(x, t) satisfies MP iff67

∀t,∀x : E[x0|xt = x] = h(x, t),

where the expectation is with respect to a sample from the learned reverse process, defined in terms68

of the implied score function s(x, t) = (h(x, t)− x)/σ2
t , when this is initialized at xt = x and run69

backwards in time to sample x0. See Eq. (3) for the precise stochastic differential equation and its70

justification. In particular, h satisfies MP if the prediction h(x, t) of the conditional expectation of the71

clean image x0 given xt = x equals the expected value of an image that is generated by the learned72

reversed process, starting from xt = x. Equivalently, one can formulate this property as requiring xt73

to follow an inverse Martingale (see Lemma 3.1).74

While there are several other properties that the score function of a diffusion process must satisfy,75

e.g. the Fokker-Planck equation [32], our first theoretical result is that the h(x, t) satisfying the76

Martingale property suffices (in conjunction with the conservativeness of its score function s(x, t) =77

(h(x, t) − x)/σ2
t ) to guarantee that s must be the score function of a diffusion process (and must78

thus satisfy any other property that a diffusion process must satisfy). If additionally s(x, t) equals79

the score function s∗(x, t) of a target diffusion process at a single time t = t0 and an open subset of80

1Some of these methods, such as Langevin dynamics, require also to know the score function in the
neighborhood of xt.
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x ∈ Rd, then it equals s∗ everywhere. We comment that the formal theorem is proved for an idealistic81

setting when the error is (or approaches) zero. Still, it is likely to believe that even in the finite-error82

regime, training with DSM in-sample and enforcing MP off-sample is expected to improve the score83

function values off-sample. The formal statement is summarized as follows below:84

Theorem 1.1 (informal). If some denoiser h(x, t) satisfies MP and its corresponding score function85

s(x, t) = (h(x, t) − x)/σ2
t is a conservative field, then s(x, t) is the score function of a diffusion86

process, i.e. the generation process using score function s, is the inverse of a diffusion process. If87

additionally s(x, t) = s∗(x, t) for a single t = t0 and for all x in an open subset of Rd, where s∗ is88

the score function of a target diffusion process, then s(x, t) = s∗(x, t) everywhere.89

Simply put, the above statement states that: i) satisfying MP and being a conservative vector field is90

enough to guarantee that the sampling process is the inverse of some diffusion process and ii) to learn91

the score function everywhere it suffices to learn it for a single t0 and an open subset of x’s.92

We propose a loss function to train for the Martingale Propety and we show experimentally that93

regularizing the standard score matching objective using our property leads to better models.94

Summary of Contributions:95

1. We identify an invariant property, the denoiser h being a Martingale, that any perfectly96

trained model should satisfy.97

2. We prove that if the denoiser h(x, t) satisfies MP and its implied score function s(x, t) =98

(h(x, t)− x)/σ2
t is a conservative field, then s(x, t) is the score function of some diffusion99

process, even if there are learning errors with respect to the score of the target process, which100

generates the training data.101

3. We prove that optimizing for the score in a subset of the domain and enforcing these two102

properties, guarantees that the score is learned correctly in all the domain, in the limit where103

the error approaches zero.104

4. We propose a novel training objective that enforces the Martingale Property. Our new105

objective optimizes the network to have consistent predictions on data points from the106

learned distribution.107

5. We show experimentally that, paired with the original Denoising Score Matching (DSM)108

loss, our objective improves generation quality on conditional and unconditional generation109

in CIFAR10, and in AFHQ and FFHQ.110

6. We conduct an ablation study which showcases that even if we do not optimize for DSM for111

some values of t, satisfying MP enforces good score approximation there.112

2 Background113

Diffusion processes, score functions and denoising. Diffusion models are trained by solving a114

supervised regression problem [47, 17]. The function that one aims to learn, called the score function,115

defined below, is equivalent (up to a linear transformation) to a denoising function [14, 52], whose116

goal is to denoise an image that was injected with noise. In particular, for some target distribution p0,117

one’s goal is to learn the following function h : Rd × [0, 1] → Rd:118

h(x, t) = E[x0 | xt = x]; x0 ∼ p0, xt ∼ N(x0, σ
2
t Id). (2)

In other words, the goal is to predict the expected “clean” image x0 given a corrupted version of119

it, assuming that the image was sampled from p0 and its corruption was done by adding to it noise120

from N(0, σ2
t Id), where σ2

t is a non-negative and increasing function of t. Given such a function h,121

we can generate samples from p0 by solving a Stochastic Differential Equation (SDE) that depends122

on h [49]. Specifically, one starts by sampling x1 from some fixed distribution and then runs the123

following SDE backwards in time:124

dxt = −g(t)2
h(xt, t)− xt

σ2
t

dt+ g(t)dBt, (3)

where Bt is a reverse-time Brownian motion and g(t)2 =
dσ2

t

dt . To explain how Eq. (3) was derived,125

consider the forward SDE that starts with a clean image x0 and slowly injects noise:126

dxt = g(t)dBt, x0 ∼ p0. (4)
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We notice here that the xt under Eq. (4) is N(x0, σ
2
t Id), where x0 ∼ p0, so it has the same distribution127

that it has in Eq. (2). Remarkably, such SDEs are reversible in time [2]. Hence, the diffusion process128

of Eq. (4) can be viewed as a reversed-time diffusion:129

dxt = −g(t)2∇x log p(xt, t)dt+ g(t)dBt, (5)

where p(xt, t) is the density of xt at time t. We note that s(x, t) := ∇x log p(x, t) is called the score130

function of xt at time t. Using Tweedie’s lemma [14], one obtains the following relationship between131

the denoising function h and the score function:132

∇x log p(x, t) =
h(x, t)− x

σ2
t

. (6)

Substituting Eq. (6) in Eq. (5), one obtains Eq. (3).133

Training via denoising score matching. The standard way to train for h is via denoising score134

matching. This is performed by obtaining samples of x0 ∼ p0 and xt ∼ N(x0, σ
2
t Id) and training to135

minimize136

Ex0∼p0,xt∼N(x0,σ2
t Id)

L1
t,xt,x0

(θ) = Ex0∼p0,xt∼N(x0,σ2
t Id)

∥hθ(xt, t)− x0∥2 ,

where the optimization is over some family of functions, {hθ}θ∈Θ. It was shown by Vincent [52]137

that optimizing Eq. (2) is equivalent to optimizing h in mean-squared-error on a random point xt that138

is a noisy image, xt ∼ N(x0, σ
2
t Id) where x0 ∼ p0:139

Ext
∥hθ(xt, t)− h∗(xt, t)∥2 ,

where h∗ is the true denoising function from Eq. (2).140

3 Theory141

We define below the Martingale Property that a function h should satisfy. Simply put, it states that142

the output of h(x, t) (which is meant to approximate the conditional expectation of x0 conditioned143

on xt = x) is consistent with the average point x0 generated using h and conditioning on xt = x.144

Recall from the previous section that generation according to h conditionning on xt = x is done by145

running the following SDE backwards in time conditioning on xt = x:146

dxt = −g(t)2
h(xt, t)− xt

σ2
t

dt+ g(t)2dBt, (7)

MP is therefore defined as follows:147

Property 1 (Martingale Property.). A function h : Rd × [0, 1] → Rd is said to satisfy MP iff for all148

t ∈ (0, 1] and all x ∈ Rd,149

h(x, t) = Eh[x0 | xt = x], (8)
where Eh[x0 | xt = x] corresponds to the conditional expectation of x0 in the process that starts with150

xt = x and samples x0 by running the SDE of Eq. (7) backwards in time (where note that the SDE151

uses h).152

The following Lemma states that Property 1 holds if and only if the model prediction, h(x, t), h(xt, t)153

is a reverse-Martingale under the same process of Eq. (7).154

Lemma 3.1. Property 1 holds if and only if the following two properties hold:155

• The function h is a reverse-Martingale, namely: for all t > t′ and for any x:156

h(x, t) = Eh[h(xt′ , t
′) | xt = x],

where the expectation is over xt′ that is sampled according to Eq. (7) with the same function157

h, given the initial condition xt = x.158

• For all x ∈ Rd, h(x, 0) = x.159

The proof of this Lemma is included in Section B.2. Further, we introduce one more property that160

will be required for our theoretical results: the learned vector-field should be conservative.161
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Property 2 (Conservative vector field / Score Property.). Let h : Rd × [0, 1] → Rd. We say that h162

induces a conservative vector field (or that is satisfies the score property) if for any t ∈ (0, 1] there163

exists some probability density p(·, t) such that164

h(x, t)− x

σ2
t

= ∇ log p(x, t).

We note that the optimal denoiser, i.e. h defined as in Eq. (2) satisfies both of the properties we165

introduced. In the paper, we will focus on enforcing MP and we are going to assume conservativeness166

for our theoretical results. This assumption can be relieved to hold only at a single t ∈ (0, 1] using167

the results of Lai et al. [32].168

Next, we show the theoretical consequences of enforcing Properties 1 and 2. First, we show that169

this enforces h to indeed correspond to a denoising function, namely, h satisfies Eq. (2) for some170

distribution p′0 over x0. Yet, this does not imply that p0 is the correct underlying distribution that we171

are trying to learn. Indeed, these properties can apply to any distribution p0. Yet, we can show that172

if we learn h correctly for some inputs and if these properties apply everywhere then h is learned173

correctly everywhere.174

Theorem 3.2. Let h : Rd × [0, 1] → Rd be a bounded continuous function. Then:175

1. The function h satisfies both Properties 1 and 2 if and only if h is defined by Eq. (2) for some176

distribution p0.177

2. Assume that h satisfies Properties 1 and 2. Further, let h∗ be another function that cor-178

responds to Eq. (2) with some initial distribution p∗0. Assume that h = h∗ on some open179

set U ⊆ Rd and some fixed t0 ∈ (0, 1], namely, h(x, t0) = h∗(x, t0) for all x ∈ U . Then,180

h∗(x, t) = h(x, t) for all x and all t.181

Remark 3.3. While our theorem uses Eq. (2) which which describes the VE-SDE, it is also valid for182

VP-SDE, as these two SDEs are equivalent up to appropriate scaling (see e.g. [30, 27]).183

4 Method184

Theorem 3.2 motivates enforcing MP on the learned model. We notice that the MP Equation Eq. (8)185

may be expensive to train for, because it requires one to generate whole trajectories. Rather, we use186

the equivalent Martingale assumption of Lemma 3.1, which can be observed locally with only partial187

trajectories:2 We suggest the following loss function, for some fixed t, t′ and x:188

L2
t,t′,x(θ) = (Eθ[hθ(xt′ , t

′) | xt = x]− hθ(x, t))
2
/2,

where the expectation Eθ[· | xt = x] is taken according to process Eq. (7) parameterized by hθ with189

the initial condition xt = x. Differentiating this expectation, one gets the following (see Section B.1190

for full derivation):191

∇L2
t,t′,x(θ) = Eθ [hθ(xt′ , t

′)− hθ(xt, t) | xt = x]
⊤ Eθ

[
hθ(xt′ , t

′)∇θ log (pθ(xt′ | xt = x))+

∇θhθ(xt′ , t
′)−∇θhθ(xt, t)

∣∣∣∣ xt = x

]
,

where pθ corresponds to the same probability measure where the expectation Eθ is taken from and192

∇θhθ corresponds to the Jacobian matrix of hθ where the derivatives are taken with respect to θ.193

Notice, however, that computing the expectation accurately might require a large number of samples.194

Instead, it is possible to obtain a stochastic gradient of this target by taking two samples, xt′ and xt′ ,195

independently, from the conditional distribution of xt′ conditioned on xt = x and replace each of the196

two expectations in the formula above with one of these two samples.197

We further notice the gradient of the MP loss can be written as198

∇θL
2
t,t′,x(θ) =

1

2
∇θ ∥Eθ[hθ(xt′ , t

′)]− hθ(x, t)∥
2
+

Eθ [hθ(xt′ , t
′)− hθ(x, t)]

⊤ Eθ []∇θ log (p(xt′))hθ(xt′ , t
′)]

2According to Lemma 3.1, in order to completely train for Property 1, one has to also enforce h(x, 0) = x,
however, this is taken care from the denoising score matching objective Eq. (2).

5



In order to save on computation time, we trained by taking gradient steps with respect to only the199

first summand in this decomposition and notice that if MP is preserved then this term becomes zero,200

which implies that no update is made, as desired.201

It remains to determine how to select t, t′ and xt′ . Notice that t has to vary throughout the whole range202

of [0, 1] whereas t′ can either vary over [0, t], however, it sufficient to take t′ ∈ [t− ϵ, t]. However, the203

further away t and t′ are, we need to run more steps of the reverse SDE to avoid large discretization204

errors. Instead, we enforce the property only on small time windows using that consistency over small205

intervals implies global consistency. We notice that xt can be chosen arbitrarily and two possible206

choises are to sample it from the target noisy distribution pt or from the model.207

Remark 4.1. It is important to sample xt′ conditioned on xt according to the specific SDE Eq. (7).208

While a variety of alternative SDEs exist which preserve the same marginal distribution at any t, they209

might not preseve the conditionals.210

5 Experiments211

For all our experiments, we rely on the official open-sourced code and the training and evaluation212

hyper-parameters from the paper “Elucidating the Design Space of Diffusion-Based Generative213

Models” [27] that, to the best of our knowledge, holds the current state-of-the-art on conditional214

generation on CIFAR-10 and unconditional generation on CIFAR-10, AFHQ (64x64 resolution),215

FFHQ (64x64 resolution). We refer to the models trained with our regularization as “MDM (Ours)”216

and to models trained with vanilla Denoising Score Matching (DSM) as “EDM” models. “MDM”217

models are trained with the weighted objective:218

Lours
λ (θ) = Et

[
Ex0∼p0,xt∼N (x0,σ2

t Id)
L1
t,xt,x0

(θ) + λExt∼pt
Et′∼U [t−ϵ,t]L

2
t,t′,xt

(θ)

]
,

while the “EDM” models are trained only with the first term of the outer expectation. We also denote219

in the name whether the models have been trained with the Variance Preserving (VP) [49, 17] or the220

Variance Exploding [49, 48, 47], e.g. we write EDM-VP. Finally, for completeness, we also report221

scores from the models of Song et al. [49], following the practice of the EDM paper. We refer to the222

latter baselines as “NCSNv3” baselines.223

We train diffusion models, with and without our regularization, for conditional generation on CIFAR-224

10 and unconditional generation on CIFAR-10 and AFHQ (64x64 resolution). For the re-trained225

models on CIFAR-10, we use exactly the same training hyperparameters as in Karras et al. [27] and226

we verify that our re-trained models match (within 1%) the FID numbers mentioned in the paper. For227

AFHQ, we droped the batch size from the suggested value of 512 to 256 to save on computational228

resources, which increased the FID from 1.96 (reported value) to 2.29. All models were trained229

for 200k iterations, as in Karras et al. [27]. Finally, we retrain a baseline model on FFHQ for 150k230

iterations and we finetune it for 5k steps using our proposed objective.231

Implementation Choices and Computational Requirements. As mentioned, when enforcing232

MP, we are free to choose t′ anywhere in the interval [0, t]. When t, t′ are far away, sampling x′
t233

from the distribution pθt′(x
′
t|xt) requires many sampling steps (to reduce discretization errors). Since234

this needs to be done for every Gradient Descent update, the training time increases significantly.235

Instead, we notice that local consistency implies global consistency. Hence, we first fix the number236

of sampling steps to run in every training iteration and then we sample t′ uniformly in the interval237

[t − ϵ, t] for some specified ϵ. For all our experiments, we fix the number of sampling steps to 6238

which roughly increases the training time needed by 1.5x. We train all our models on a DGX server239

with 8 A100 GPUs with 80GBs of memory each.240

5.1 Martingale Property Testing241

We are now ready to present our results. The first thing that we check is whether regularizing for242

MP actually leads to models that are more consistent with their predictions, as the property implies.243

Specifically, we want to check that the model trained with Lours
λ achieves lower Martingale error, i.e.244

lower L2
t,t′,xt

. To check this, we do the following two tests: i) we fix t = 1 and we show how L2
t,t′,xt

245

changes as t′ changes in [0, 1], ii) we fix t′ = 0 and we show how the loss is changing as you change246

t in [0, 1]. Intuitively, the first test shows how the violation of MP splits across the sampling process247
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and the second test shows how much you finally (t′ = 0) violate the property if the violation started248

at time t. The results are shown in Figures 1a, 1b, respectively, for the models trained on AFHQ. We249

include additional results for CIFAR-10, FFHQ in Figures 4, 5, 6, 7 of the Appendix. As shown,250

indeed regularizing for the MP Loss drops the L2
t,t′,xt

as expected.251
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(a) Martingale Property Testing on AFHQ. The
plot illustrates how the Martingale Loss, L2

t,t′,xt
,

behaves for t′ = 0, as t changes.
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(b) Martingale Property Testing on AFHQ. The
plot illustrates how the Martingale Loss, L2

t,t′,xt
,

behaves for t = 0, as t′ changes.

Figure 1: Martingale Property Testing on AFHQ.

(a) Uncurated images by our model trained on
AFHQ. FID: 2.21, NFEs: 79.

(b) Uncurated images by our conditional CIFAR-
10 model. FID: 1.77, NFEs: 35.

Figure 2: Comparison of uncurated images generated by two different models.

Performance. We evaluate performance of the models trained from scratch. Following the methodol-252

ogy of Karras et al. [27], we generate 150k images from each model and we report the minimum FID253

computed on three sets of 50k images each. We keep checkpoints during training and we report FID254

for 30k, 70k, 100k, 150k, 180k and 200k iterations in Table 1. We also report the best FID found for255

each model, after evaluating checkpoints every 5k iterations (i.e. we evaluate 40 models spanning256

200k steps of training). As shown in the Table, the proposed MP regularization yields improvements257

throughout the training. In the case of CIFAR-10 (conditional and unconditional) where the re-trained258

baseline was trained with exactly the same hyperparameters as the models in the EDM [27] paper,259

our MDM models achieve a new state-of-the-art.260
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Model 30k 70k 100k 150k 180k 200k Best
MDM-VP (Ours)

AFHQ

3.00 2.44 2.30 2.31 2.25 2.44 2.21
EDM-VP (retrained) 3.27 2.41 2.61 2.43 2.29 2.61 2.26

EDM-VP (reported)∗3 1.96
EDM-VE (reported)∗ 2.16

NCSNv3-VP (reported)∗ 2.58
NCSNv3-VE (reported)∗ 18.52

MDM-VP (Ours) 2.44 1.94 1.88 1.88 1.80 1.82 1.77
EDM-VP (retrained) 2.50 1.99 1.94 1.85 1.86 1.90 1.82
EDM-VP (reported) CIFAR10 1.79
EDM-VE (reported) (cond.) 1.79

NCSNv3-VP (reported) 2.48
NCSNv3-VE (reported) 3.11

MDM-VP (Ours) 2.83 2.21 2.14 2.08 1.99 2.03 1.95
EDM-VP (retrained) 2.90 2.32 2.15 2.09 2.01 2.13 2.01
EDM-VP (reported) CIFAR10 1.97
EDM-VE (reported) (uncond.) 1.98

NCSNv3-VP (reported) 3.01
NCSNv3-VE (reported) 3.77

Table 1: FID results for deterministic sampling, using the Karras et al. [27] second-order samplers.
For the CIFAR-10 models, we do 35 function evaluations and for AFHQ 79.

We further show that our MP regularization can be applied on top of a pre-trained model. Specifically,261

we train a baseline EDM-VP model on FFHQ 64x64 for 150k using vanilla Denoising Score Matching.262

We then do 5k steps of finetuning, with and without our MP regularization and we measure the FID263

score of both models. The baseline model achieves FID 2.68 while the model finetuned with MP264

regularization achieves 2.61. This experiment shows the potential of applying our MP regularization265

to pre-trained models, potentially even at large scale, e.g. we could apply this idea with text-to-image266

models such as Stable Diffusion [40]. We leave this direction for future work.267

Uncurated samples from our best models on AFHQ, CIFAR-10 and FFHQ are given in Figures 2a, 2b268

and 8. One benefit of the deterministic samplers is the unique identifiability property [49]. Intuitively,269

this means that by using the same noise and the same deterministic sampler, we can directly compare270

visually models that might have been trained in completely different ways. We select a couple of271

images from Figure 2a (AFHQ generations) and we compare the generated images from our model272

with the ones from the EDM baseline for the same noises. The results are shown in Figure 3. As273

shown, the MP regularization fixes several geometric inconsistencies for the picked images. We274

underline that the shown images are examples for which MP regularization helped and that potentially275

there are images for which the baseline models give more realistic results.276

Figure 3: Visual comparison of EDM model
(top) and MDM model (Ours, bottom) us-
ing deterministic sampling initiated with the
same noise. As seen, the MP regularization
fixes several geometric inconsistencies and
artifacts in the generated images.

Model FID
EDM (baseline) 5.81

MDM, all times t 5.45

MDM, for some t 6.59

MDM, for some t 14.52early stopped sampling

Table 2: Ablation study on removing the
DSM loss for some t. Table reports FID re-
sults after 10k steps of training in CIFAR-10.

Ablation Study for Theoretical Predictions. One interesting implication of Theorem 3.2 is that277

it suggests that we only need to learn the score perfectly on some fixed t0 and then the MP implies278

that the score is learned everywhere (for all t and in the whole space). This motivates the following279
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experiment: instead of using as our loss the weighted sum of DSM and our MP regularization for all280

t, we will not use DSM for t ≤ tthreshold, for some tthreshold that we test our theory for.281

We pick tthreshold such that for 20% of the diffusion (on the side of clean images), we do not train282

with DSM. For the rest 80% we train with both DSM and our MP regularization. Since this is only283

an ablation study, we train for only 10k steps on (conditional) CIFAR-10. We report FID numbers for284

three models: i) training with only DSM, ii) training with DSM and MP regularization everywhere,285

iii) training with DSM for 80% of times t and MP regularization everywhere. In our reported models,286

we also include FID of an early stopped sampling of the latter model, i.e. we do not run the sampling287

for t < tthreshold and we just output hθ(xtthreshold , tthreshold). The numbers are summarized in Table288

2. As shown, the theory is predictive since early stopping the generation at time t gives significantly289

worse results than continuing the sampling through the times that were never explicitly trained for290

approximating the score (i.e. we did not use DSM for those times). That said, the best results are291

obtained by combining DSM and our MP regularization everywhere, which is what we did for all the292

other experiments in the paper.293

6 Related Work294

The fact that imperfect learning of the score function introduces a shift between the training and295

the sampling distribution has been well known. Chen et al. [5, 6] analyze how the l2 error in the296

approximation of the score function propagates to Total Variation distance error bounds between the297

true and the learned distribution. Several methods for mitigating this issue have been proposed, but298

the majority of the attempts focus on changing the sampling process [49, 27, 23, 44]. A related work299

is the Analog-Bits paper [7] that conditions the model during training with past model predictions.300

Karras et al. [27] discusses potential violations of invariances, such as the non-conservativity of301

the induced vector field, due to imperfect score matching. However, they do not formally test or302

enforce this property. Lai et al. [32] study the problem of regularizing diffusion models to satisfy the303

Fokker-Planck equation. While we show in Theorem 3.2 that perfect conservative training enforces304

the Fokker-Planck equation, we notice that their training method is different: they suggest to enforce305

the equation locally by using the finite differences method to approximate the derivatives. Further,306

they do not train on drifted data. Instead, we notice that our MP loss is well suited to handle drifted307

data since it operates across trajectories generated by the model. A concurrent work by Song et al.308

[50] proposes a new class of generative models that map each noisy iterate of the diffusion trajectory309

to the same image. This idea resembles the consistency in the model outputs that we enforce through310

MP, but we only require this on expectation and this helps us correct the diffusion sampling drift.311

7 Conclusions and Future Work312

We proposed an objective that enforces the trained network to follow a reverse Martingale, thereby313

having self-consistent predictions over time. We optimize this objective with points from the sampling314

distribution, effectively reducing the sampling drift observed in prior empirical works. Theoretically,315

we show that MP implies that we are sampling from the reverse of some diffusion process. Together316

with the assumption that the network has learned the score correctly in a subset of the domain, we317

can prove that MP (together with conservativity of the vector field) implies that the score is learned318

correctly everywhere - in the limit where the error approaches zero. Empirically, we use our objective319

to obtain state-of-the-art for CIFAR-10 and baseline improvements on AFHQ and FFHQ.320

There are limitations of our method and several directions for future work. The proposed regular-321

ization increases the training time by approximately 1.5x. It would be interesting to explore how to322

enforce MP in more effective ways in future work. Further, our method does not test nor enforce323

that the induced vector-field is conservative, which is a key theoretical assumption. Our method324

guarantees only indirectly improve the performance in the samples from the learned distribution by325

enforcing some invariant. Finally, our theoretical result holds in the limit where the error of our326

regularized objective approaches zero and it would be meaningful to theoretically study also the327

constant-error regime.328
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A Proof of Theorem 3.2465

In Section A.1 we present a proof overview, in Section A.2 we present some preliminaries to the proof,466

in Section A.3 we include the proof, with proofs of some lemmas ommitted and in the remaining467

sections we prove these lemmas.468

A.1 Proof overview469

We start with the first part of the theorem. We assume that h satisfies Properties 1 and 2 and we will470

show that h is defined by Eq. (2) for some distribution p0 (while the other direction in the equivalence471

follows trivially from the definitions of these properties). Motivated by Eq. (6), define the function472

s : Rd × (0, 1] according to473

s(x, t) =
h(x, t)− x

σ2
t

. (9)

We will first show that s satisfies the partial differential equation474

∂s

∂t
= g(t)2

(
Jss+

1

2
△s

)
, (10)

where Js ∈ Rd×d is the Jacobian of s, (Js)ij = ∂si
xj

and each coordinate i of △s ∈ Rd is the475

Laplacian of coordinate i of s, (△s)i =
∑n

j=1
∂2si
∂x2

j
. In order to obtain Eq. (10), first, we use a476

generalization of Ito’s lemma, which states that for an SDE477

dxt = µ(xt, t)dt+ g(t)dBtx (11)

and for f : Rd × [0, 1] → Rd, f(xt, t) satisfies the SDE478

df(xt, t) =

(
∂f

∂t
+ Jfµ− g(t)2

2
△f

)
dt+ g(t)JfdBt.

If f is a reverse-Martingale then the term that multiplies dt has to equal zero, namely,479

∂f

∂t
+ Jfµ− g(t)2

2
△f = 0.

By Lemma 3.1, h(xt, t) is a reverse Martingale, therefore we can substitute f = h and substitute480

µ = −g(t)2s according to Eq. (7), to deduce that481

∂h

∂t
− g(t)2Jhs−

g(t)2

2
△h = 0.

Substituting h(x, t) = σ2
t s(x, t) + x according to Eq. (6) yields Eq. (10) as required.482

Next, we show that any s′ that is the score-function (i.e. gradient of log probability) of some diffusion483

process that follows the SDE Eq. (4), also satisfies Eq. (10). To obtain this, one can use the Fokker-484

Planck equation, whose special case states that the density function p(x, t) of any stochastic process485

that satisfies the SDE Eq. (4) satisfies the PDE486

∂p

∂t
=

g(t)2

2
△p

where △ corresponds to the Laplacian operator. Using this one can obtain a PDE for ∇x log p which487

happens to be exactly Eq. (10) if the process is defined by Eq. (4).488

Next, we use Property 2 to deduce that there exists some densities p(·, t) for t ∈ [0, 1] such that489

s(x, t) =
h(x, t)− x

σ2
t

= ∇x log p(x, t).

Denote by p′(x, t) the score function of the diffusion process that is defined by the SDE of Eq. (4)490

with the initial condition that p(x, 0) = p′(x, 0) for all x. Denote by s′(x, t) = ∇x log p
′(x, t) the491

score function of p′. As we proved above, both s and s′ satisfy the PDE Eq. (10) and the same initial492
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condition at t = 0. By the uniqueness of the PDE, it holds that s(x, t) = s′(x, t) for all t ≥ t0.493

Denote by h∗ the function that satisfies Eq. (2) with the initial condition x0 ∼ p0. By Eq. (6),494

s′(x, t) =
h∗(x, t)− x

σ2
t

.

By Eq. (9) and since s = s′, it follows that h = h∗ and this is what we wanted to prove.495

We proceed with proving part 2 of the theorem. We use the notion of an analytic function on Rd: that496

is a function f : Rd → R such that at any x0 ∈ Rd, the Taylor series of f centered at x0 converges for497

all x ∈ Rd to f(x). We use the property that an analytic function is uniquely determined by its value498

on any open subset: If f and g are analytic functions that identify in some open subset U ⊂ Rd then499

f = g everywhere. We prove this statement in the remainder of this paragraph, as follows: Represent500

f and g as Taylor series around some x0 ∈ U . The Taylor series of f and g identify: indeed, these501

series are functions of the derivatives of f and g which are functions of only the values in U . Since f502

and g equal their Taylor series, they are equal.503

Next, we will show that for any diffusion process that is defined by Eq. (4), the probability density of504

p(x, t0) at any time t0 > 0 is analytic as a function of x. Recall that the distribution of x0 is defined505

in Eq. (4) as p0 and it holds that the distribution of xt0 is obtained from p0 by adding a Gaussian506

noise N(0, σ2
t I) and its density at any x equals507

p(x, t0) =

∫
a∈Rd

1√
2πσt0

exp

(
− (x− a)2

2σ2
t

)
dp0(a).

Since the function exp(−(x− a)2/(2σ2
t )) is analytic, one could deduce that p(x, t0) is also analytic.508

Further, p(x, t0) > 0 for all x which implies that there is no singularity for log p(x, t0) which can be509

used to deduce that log p(x, t0) is also analytic and further that ∇x log p(x, t0) is analytic as well.510

We use the first part of the theorem to deduce that s is the score function of some diffusion process511

hence it is analytic. By assumption, s identifies with some target score function s∗ in some open512

subset U ⊆ Rd at some t0, which, by the fact that s(x, t0) and s∗(x, t0) are analytic, implies that513

s(x, t0) = s∗(x, t0) for all x. Finally, since s and s∗ both satisfy the PDE Eq. (10) and they satsify514

the same initial condition at t0, it holds that by uniqueness of the PDE s(x, t) = s∗(x, t) for all x515

and t.516

A.2 Preliminaries517

Preliminaries on diffusion processes In the next definition we define for a function F : Rd → Rd518

its Jacobian JF , its divergence ∇ · F and its Laplacian △F that is computed separately on each519

coordinate of F :520

Definition A.1. Given a function F = (f1, . . . , fn) : Rd → Rd, denote by JF : Rd → Rd×d its521

Jacobian:522

(JF )ij =
∂fi(x)

∂xj
.

The divergence of F is defined as523

∇ · F (x) :=

n∑
i=1

∂fi(x)

∂xi
.

Denote by △F : Rd → Rd the function whose ith entry is the Laplacian of fi:524

(△F (x))i =

n∑
j=1

∂2fi(x)

∂x2
j

.

If F is a function of both x ∈ Rd and t ∈ R, then JF , △f and ∇ · F correspond to F as a function525

of x, whereas t is kept fixed. In particular,526

(JF (x, t))ij =
∂fi(x, t)

∂xj
, (△F (x, t))i =

n∑
j=1

∂2fi(x, t)

∂x2
j

, ∇ · F =

n∑
i=1

∂fi(x, t)

∂xi
.
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We use the celebrated Ito’s lemma and some of its immediate generalizations:527

Lemma A.2 (Ito’s Lemma). Let xt be a stochastic process xt ∈ Rd, that is defined by the following528

SDE:529

dxt = µ(xt, t)dt+ g(t)dBt,

where Bt is a standard Brownian motion. Let f : Rd × R → R. Then,530

df(xt, t) =

(
df

dt
+∇xf

⊤µ(xt, t) +
g(t)2

2
△f

)
dt+ g(t)∇xf

⊤dBt.

Further, if F : Rd × R → Rd is a multi-valued function, then531

dF (xt, t) =

(
dF

dt
+ JFµ+

g(t)2

2
△F

)
dt+ g(t)JF dBt.

Lastly, if xt is instead defined with a reverse noise,532

dxt = µ(xt, t)dt+ g(t)dBt,

then the multi-valued Ito’s lemma is modified as follows:533

dF (xt, t) =

(
dF

dt
+ JFµ− g(t)2

2
△F

)
dt+ g(t)JF dBt. (12)

Lastly, we present the Fokker-Planck equation which states that the probability distribution that534

corresponds to diffusion processes satisfy a certain partial differential equation:535

Lemma A.3 (Fokker-Planck equation). Let xt be defined by536

dxt = µ(xt, t)dt+ g(t)dBt,

where xt, µ(x, t) ∈ Rd and Bt is a Brownian motion in Rd. Denote by p(x, t) the density at point x537

on time t. Then,538

∂

∂t
p(x, t) = −∇ · (µ(x, t)p(x, t)) + g(t)2

2
△p(x, t) = −p∇ · µ− µ∇ · p+ g(t)2

2
△p.

Preliminaries on analytic functions539

Definition A.4. A function f : Rd → R is analytic on Rd if for any x0, x ∈ Rd, the Taylor series540

of f around x0, evaluated at x, converges to f(x). We say that F = (f1, . . . , fn) : Rd → Rd is an541

analytic function if fi is analytic for all i ∈ {1, . . . , n}.542

The following holds:543

Lemma A.5. If F,G : Rd → Rd are two analytic functions and if F = G for all x ∈ U where544

U ⊆ Rd, U ̸= 0, is an open set, then F = G on all Rd.545

This is a well known result and a proof sketch was given in Section 3.546

The heat equation. The following is a Folklore lemma on the uniqueness of the solutions to the547

heat equation:548

Lemma A.6. Let p and p′ be two continuous functions on Rd × [t0, 1] that satisfy the heat equation549

∂p

∂t
=

g(t)2

2
△p. (13)

Further, assume that p(·, t0) = p′(·, t0). Then, p = p′ for all t ∈ [t0, 1].550

A.3 Main proof551

In what appears below we denote552

s(x, t) :=
h(x, t)− x

σ2
t

. (14)

We start by claiming that if h satisfies Property 1, then s satisfies the PDE Eq. (10): (proof in553

Section A.4)554
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Lemma A.7. Let h satisfy Property 1 and define s according to Eq. (14). Then, s satisfies Eq. (10).555

Next, we claim that the score function of any diffusion process satisfies the PDE Eq. (10): (proof in556

Section A.5)557

Lemma A.8. Let s be the score function of some diffusion process that is defined by Eq. (4). Then, s558

satisfies the PDE Eq. (10).559

To complete the first part of the proof, denote by p(·, t) the probability distribution such that s(x, t) =560

∇ log p(x, t), whose existence follows from Property 2. We would like to argue that {p(·, t)}t∈(0,1]561

corresponds the probability density of the diffusion562

dxt = g(t)dBt. (15)

It suffices to show that for any t0 > 0, {p(·, t)}t∈(t0,1] corresponds to the same diffusion. To show the563

latter, let t0 ∈ (0, 1) and consider the diffusion process according to Eq. (15) with the initial condition564

that xt0 ∼ p(·, t0). Denote its score function by s′ and notice that it satisfies the PDE Eq. (10) and565

the initial condition s′(x, t0) = ∇x log p(x, t0) = s(x, t0), where the first equality follows from566

the definition of a score function and the second from the construction of p(x, t0). Further, recall567

that s(x, t) satisfies the same PDE Eq. (10) by Lemma A.4. Next we will show that s = s′ for all568

t ∈ [t0, 1], and this will follow from the following lemma: (proof in Section A.6)569

Lemma A.9. Let s and s′ be two solutions for the PDE (10) on the domain Rd × [t0, 1] that570

satisfy the same initial condition at t0: s(x, t0) = s′(x, t0) for all x. Further, assume that for all571

t ∈ [t0, 1] there exist probability densities p(·, t) and p′(·, t) such that s(x, t) = ∇x log p(x, t) and572

s′(x, t) = ∇x log p
′(x, t) for all x. Then, s = s′ on all of Rd × [t0, 1].573

Then, by uniqueness of the PDE one obtains that s = s′ for all t ∈ [t0, 1]. Hence, s is the score of a574

diffusion for all t ≥ t0 and this holds for any t0 > 0, hence this holds for any t > 0. This concludes575

the proof of the first part of the theorem.576

For the second part, let s∗ denote some score function of a diffusion process that satisfies Eq. (4).577

Assume that for some t0 > 0 and some open subset U ⊆ Rd, s = s∗, namely s(x, t0) = s∗(x, t0)578

for all t0 > 0 and all x ∈ U . First, we would like to argue that if s(x, t) is the score function of579

some diffusion process that satisfies Eq. (4), then for any t0 > 0 it holds that s(x, t0) is an analytic580

function (proof in Section A.7)581

Lemma A.10. Let xt obey the SDE Eq. (4) with the initial condition x0 ∼ µ0. Let t > 0 and let582

s(x, t) denote the score function of xt, namely, s(x, t) = ∇x log p(x, t) where p(x, t) is the density583

of xt. Assume that µ0 is a bounded-support distribution. Then, s(x, t) is an analytic function.584

Since both s and s∗ are scores of diffusion processes, then s(x, t0) and s∗(x, t0) are analytic functions.585

Using the fact that s = s∗ on U × {t0} and using Lemma A.5 we derive that s(x, t0) = s∗(x, t0)586

for all x. Let p and p∗ denote the densities that correspond to the score functions s and s∗ and by587

definition of a score function, we obtain that for all x,588

∇ log p(x, t0) = s(x, t0) = s∗(x, t0) = ∇ log p∗(x, t0),

which implies, by integration, that589

log p(x, t0) = log p∗(x, t0) + c

for some constant c ∈ R. However, c = 0. Indeed,590

1 =

∫
p(x, t0)dx =

∫
elog p(x,t0)dx =

∫
elog p∗(x,t0)+cdx =

∫
p∗(x, t0)e

cdx = ec,

which implies that c = 0 as required. As a consequence, the following lemma implies that p(x, 0) =591

p∗(x, 0) for all x (proof in Section A.8):592

Lemma A.11. Let xt and yt be stochastic processes that follow Eq. (4) with initial conditions593

x0 ∼ µ0 and y0 ∼ µ′
0 and assume that µ0 and µ′

0 are bounded-support. Assume that for some t0 > 0,594

xt0 and yt0 have the same distribution. Then, µ0 = µ′
0.595

Without loss of generality, one can replace 0 with any t̃ ∈ (0, t0), to obtain that p(x, t̃) = p∗(x, t̃) for596

any t̃ ∈ [0, t0]. Now, p(x, t0) is analytic, from Lemma A.5, hence it is continuous. Consequently,597

Lemma A.6 implies that p = p∗ in Rd × [t0, 1]. This concludes that p = p∗ in all the domain, which598

implies that s = ∇ log p = ∇ log p∗ = s∗, as required.599
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A.4 Proof of Lemma A.7600

We use Ito’s lemma, and in particular Eq. (12), to get a PDE for the function h(xt, t) where xt601

satisfies the stochastic process602

dxt = −g(t)2s(xt, t)dt+ g(t)dBt.

Ito’s formula yields that603

dh(xt, t) =

(
∂h

∂t
− g(t)2JF s−

g(t)2

2
△h

)
dt+ σJhdB̄t.

Since (h, s) satisfies Property 1 and using Lemma 3.1, h is a reverse martingale which implies that604

the term that multiplies dt has to equal zero. In particular, we have that605

∂h

∂t
− g(t)2Jhs−

g(t)2

2
△h = 0. (16)

By Eq. (14),606

s =
h− x

σ2
t

.

Therefore,607

h = x+ σ2
t s.

Substituting this in Eq. (16) and using the relation dσ2
t /dt = g(t)2 that follows from Eq. (14), one608

obtains that609

0 =
∂

∂t
(x+ σ2

t s)− g(t)2Jx+σ2
t s
s− g(t)2

2
△(x+ σ2

t s)

= g(t)2s+ σ2
t

∂s

∂t
− g(t)2(I + σ2

t Js)s−
g(t)2σ2

t

2
△s

= σ2
t

∂s

∂t
− g(t)2σ2

t Jss−
g(t)2σ2

t

2
△s.

Dividing by σ2
t , we get that610

∂s

∂t
− g(t)2Jss−

g(t)2

2
△s = 0,

which is what we wanted to prove.611

A.5 Proof of Lemma A.8612

We present as a consequence of the Fokker-Plank equation (Lemma A.3) a PDE for the log density613

log p:614

Lemma A.12. Let xt be defined by615

dxt = µ(xt, t)dt+ g(t)dBt.

Then,616

∂ log p

∂t
= −∇ · µ− µ∇ · log p+ g(t)2∥∇ log p∥2

2
+

g(t)2△ log p

2

Proof. We would like to replace the partial derivatives of p that appears in Lemma A.3 with the617

partial derivatives of log p. Using the formula618

∂ log p

∂t
=

1

p

∂p

∂t
,

one obtains that619
∂p

∂t
= p

∂ log p

∂t
.

Similarly,620

∂p

∂xi
= p

∂ log p

∂xi
(17)
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which also implies that621

∇p = p∇ log p, ∇ · p = p∇ · log p.
Differentiating Eq. (17) again with respect to xi and applying Eq. (17) once more, one obtains that622

∂2p

∂x2
i

=
∂

∂xi

(
p
∂ log p

∂xi

)
=

∂p

∂xi

∂ log p

∂xi
+ p

∂2 log p

∂x2
i

= p

((
∂ log p

∂xi

)2

+
∂2 log p

∂x2
i

)
.

Summing over i, one obtains that623

△p = p

n∑
i=1

((
∂ log p

∂xi

)2

+
∂2 log p

∂x2
i

)
= p∥∇ log p∥2 + p△ log p. (18)

Substituting the partials derivatives of p inside the Fokker-Planck equation in Lemma A.3, one obtains624

that625

p
∂ log p

∂t
= −p∇ · µ− µ(p∇ · log p) + g(t)2

2

(
p∥∇ log p∥2 + p△ log p

)
.

Dividing by p, one gets that626

∂ log p

∂t
= −∇ · µ− µ∇ · log p+ g(t)2∥∇ log p∥2

2
+

g(t)2△ log p

2
.

as required.627

We are ready to prove Lemma A.8: Substituting µ = 0 in Lemma A.12, on obtains that628

∂ log p

∂t
=

g(t)2∥∇ log p∥2

2
+

g(t)2△ log p

2
.

Taking the gradient with respect to x, one obtains that629

∇∂ log p

∂t
=

g(t)2∇∥∇ log p∥2

2
+

g(t)2∇△ log p

2
. (19)

Since ∂/∂xi commutes with ∂/∂t, it holds that630

∇∂ log p

∂t
=

∂

∂t
∇ log p =

∂s

∂t
, (20)

recalling that by definition s = ∇ log p. Further,631

∂

∂xi
∥∇ log p∥2 =

n∑
j=1

∂

∂xi

(
∂ log p

∂xj

)2

= 2

n∑
j=1

∂2 log p

∂xi∂xj

∂ log p

∂xj
= 2(Hlog p∇ log p)i,

where for any function f : Rd → R, Hf is the Hessian function of f that is defined by632

(Hf )ij =
∂2f

∂xi∂xj

This implies that633

∇∥∇ log p∥2 = 2Hlog p∇ log p.

Further, notice that634

Hf = J∇f ,

which implies that635

∇∥∇ log p∥2 = 2J∇ log p∇ log p = 2Jss. (21)
Lastly, we get that by the commutative property of partial derivatives,636

∇△ log p = △∇ log p = △s. (22)

Substituting Eq. (20), Eq. (21) and Eq. (22) in Eq. (19), one obtains that637

∂s

∂t
= g(t)2Jss+

g(t)2△s

2
,

as required.638
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A.6 Proof of Lemma A.9639

We will prove that p and p′ satisfy the same PDE (which is the heat equation). Recall that s and s′640

satisfy641

∂s

∂t
= g(t)2

(
Jss+

1

2
△s

)
=

g(t)2

2

(
∇∥s∥2 +△s

)
By substituting s = ∇ log p,642

∂∇ log p

∂t
=

g(t)2

2

(
∇∥∇ log p∥2 +△∇ log p

)
.

By exchanging the order of derivatives, we obtain that643

∇∂ log p

∂t
= ∇g(t)2

2

(
∥∇ log p∥2 +△ log p

)
.

By integrating, this implies that644

∂ log p

∂t
=

g(t)2

2

(
∥∇ log p∥2 +△ log p

)
+ c(t),

where c(t) depends only on t. Eq. (18) shows that645

△ log p =
△p

p
− ∥∇ log p∥2.

By substituting this in the equation above, we obtain that646

∂ log p

∂t
=

g(t)2

2

△p

p
+ c(t).

By multiplying both sides with p, we get that647

∂p

∂t
= p

∂ log p

∂t
=

g(t)2

2
△p+ c(t). (23)

Since p is a probability distribution,648 ∫
Rd

p(x, t)dx = 1,

therefore,649 ∫
∂p(x, t)

∂t
dx =

∂

∂t

∫
Rd

p(x, t)dx =
∂1

∂t
= 0.

Integrating over Eq. (23) we obtain that650

0 =

∫
g(t)2

2
△p+ c(t)dx = 0 +

∫
c(t)dx,

where the last equation holds since the integral of a Laplacian of probability density integrates to 0. It651

follows that c(t) = 0 which implies that652

∂p

∂t
=

g(t)2

2
△p, (24)

and the same PDE holds where p′ replaces p, and this follows without loss of generality. Further,653

since log p and log p′ are differentiable, it holds that p(·, t) and p′(·, t) are continuous for all fixed654

t. This implies that p and p′ are continuous as functions of x and t since they both satisfy the655

heat equation Eq. (13). Consequently, Lemma A.6 implies that p = p′ on Rd × [t0, 1]. Finally,656

s = ∇ log p = ∇ log p′ = s′, as required.657
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A.7 Proof of Lemma A.10658

First, recall that since xt satisfies Eq. (4) with the initial condition x0 ∼ µ0, then xt ∼ µ0+N(0, σ2
t I),659

namely, xt is the addition of a random variable drawn from µ0 and an independent Gaussian660

N(0, σ2
t I). Therefore, the density of xt, which we denote by p(x, t), equals661

p(x, a) = Ea∼µ0

[
1√
2πσt

exp

(
−∥x− a∥2

2σ2
t

)]
.

Using the equation662

∇x log f(x) =
∇xf(x)

f(x)
,

we get that663

s(x, a) = ∇x log p(x, a) =
∇xp(x, a)

p(x, a)
=

Ea∼µ0

[
1√
2πσt

x−a
σ2
t

exp
(
−∥x−a∥2

2σ2
t

)]
Ea∼µ0

[
1√
2πσt

exp
(
−∥x−a∥2

2σ2
t

)] (25)

By using the fact that the Taylor formula for ex equals664

ex =

∞∑
i=0

ei

i!
,

we obtain that the right hand side of Eq. (25) equals665

Ea∼µ0

[
1√
2πσt

x−a
σ2
t

∑∞
i=0

(−1)i

i!

(
∥x−a∥2

2σ2
t

)i]
Ea∼µ0

[
1√
2πσt

∑∞
i=0

(−1)i

i!

(
∥x−a∥2

2σ2
t

)i] =

Ea∼µ0

[
x−a
σ2
t

∑∞
i=0

(−1)i

i!

(
∥x−a∥2

2σ2
t

)i]
Ea∼µ0

[∑∞
i=0

(−1)i

i!

(
∥x−a∥2

2σ2
t

)i] (26)

We will use the following property of analytic functions: if f and g are analytic functions over Rd666

and g(x) ̸= 0 for all x then f/g is analytic over Rd. Since the denominator at the right hand side of667

Eq. (26) is nonzero, it suffices to prove that the numerator and the denominator are analytic. We will668

prove for the denominator and the proof for the numerator is nearly identical. By assumption of this669

lemma, the support of µ0 is bounded, hence there is some M > 0 such that ∥x∥ ≤ M for any x in670

the support. Then,671 ∣∣∣∣∣ (−1)i

i!

(
∥x− a∥2

2σ2
t

)i
∣∣∣∣∣ ≤ 1

i!

(
x2 + a2

σ2
t

)i

=
M2i

σ2i
t i!

.

This bound is independent on a, and summing these abvolute values of coefficients for i ∈ N,672

one obtains a convergent series. Hence we can replace the summation and the expectation in the673

denominator at the right hand side of Eq. (26) to get that it equals674

∞∑
i=0

(−1)i

i!
Ea∼µ0

[(
∥x− a∥2

2σ2
t

)i
]
. (27)

This is the Taylor series around 0 of the above-described denominator it converges to the value of the675

denominator at any x. While this Taylor series is taken around 0, we note the Taylor series around676

any other point x0 ∈ Rn converges as well. This can be shown by shifting the coordinate system677

by a constant vector such that x0 shifts to 0 and applying the same proof. One deduces that the678

Taylor series for the denominator around any point x0 converges on all Rd, which implies that the679

denominator in the right hand side of Eq. (26) is analytic. The numerator is analytic as well by the680

same argument. Therefore the ratio, which equals s(x, t), is analytic as well as required.681

A.8 Proof of Lemma A.11682

Let t > 0, denote by µt and µ′
t the distributions of xt and x′

t, respectively, and by p(x, t) and p′(x, t)683

the densities of these variables. Then, µt = µ0 +N(0, σ2
t I), namely, µt is obtained by adding an684

independent sample from µ0 with an independent N(0, σ2
t I) variables, and similarly for µ′

t. Hence,685

the density p(x, t) is the convolution of the densities p(x, 0) with the density of a Gaussian N(0, σ2
t I).686
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Denote by p̂(y, t) the Fourier transform of the density p(x, t) with respect to x (while keeping t fixed)687

and similarly define p̂′ as the Fourier transform of p′. Denote by g and by ĝ the density of N(0, σ2
t I)688

and its Fourier transform, respectively. Denote the convolution of two functions by the operator ∗.689

Then,690

p(x, t) = p(x, 0) ∗ g(x), p′(x, t) = p′(x, 0) ∗ g(x).
Since the Fourier transform turns convolutions into multiplications, one obtains that691

p̂(y, t) = p̂(y, 0)ĝ(y), p̂′(y, t) = p̂′(y, 0)ĝ(y).

Since p(x, t) = p′(x, t) we obtain that p̂(y, t) = p̂′(y, t). Consequently,692

p̂(y, 0)ĝ(y) = p̂′(y, 0)ĝ(y)

Since the Fourier transform of a Gaussian is nonzero, we can divide by ĝ(y) to get that693

p̂(y, 0) = p̂′(y, 0).

This implies that the Fourier transform of p(x, 0) equals that of p′(x, 0) hence p(x, 0) = p′(x, 0) for694

all x, as required.695

B Other proofs696

B.1 Differentiating the loss function697

Denote our parameter space as Θ ⊆ Rm. In order to differentiate L1
t,t′,x(θ) with respect to θ ∈ Θ,698

we make the following calculations below, and we notice that Eθ is used to denote an expectation699

with respect to the distribution of x[t′,t] according to Eq. (7) with s = sθ and the initial condition700

xt = x. In other words, the expectation is over x[t′,t] that is taken with respect to the sampler that701

is parameterized by θ with the initial condition xt = x. We denote by pθ(x[t′,t] | xt = x) the702

corresponding density of x[t′,t]. For any function f = (f1, . . . , fn) : Θ → Rn, denote by ∇θf the703

Jacobian matrix of f , where704

(∇θf)i,j =
∂fi
∂θj

.

For notational consistency, if f is a single-valued function, namely, if n = 1, then ∇θf is a column705

vector. We begin with the following:706

∇θEθ [hθ(xt′ , t
′)] = ∇θ

∫
Rd

hθ(xt′ , t
′)pθ(x[t′,t] | xt = x)dxt′

=

∫
Rd

∇θhθ(xt′ , t
′)pθ(x[t′,t] | xt = x)dxt′ +

∫
Rd

hθ(xt′ , t
′)∇θpθ(x[t′,t]|xt = x)dxt′

= Eθ [∇θhθ(xt′ , t
′)] + Eθ

[
hθ(xt′ , t

′)
∇θpθ(x[t′,t]|xt = x)

pθ(x[t′,t]|xt = x)

]
= Eθ [∇θhθ(xt′ , t

′)] + Eθ

[
hθ(xt′ , t

′)∇θ log
(
pθ(x[t′,t] | xt = x)

)]
Differentiating the whole loss, we get the following:707

∇θL
1
t,t′,x(θ) =

1

2
∇θ (Eθ[hθ(xt′ , t

′)]− hθ(x, t))
2

= (Eθ[hθ(xt′ , t
′)]− hθ(x, t))

⊤
(∇θE[hθ(xt′ , t

′)]−∇θhθ(x, t))

= Eθ [hθ(xt′ , t
′)− hθ(x, t)]

⊤ Eθ [∇θhθ(xt′ , t
′)−∇θhθ(x, t)]

+ Eθ [hθ(xt′ , t
′)− hθ(x, t)]

⊤ Eθ

[
hθ(xt′ , t

′)∇θ log
(
pθ(x[t′,t] | xt = x)

)]
Let us compute the gradient of the log density. We use the discrete process, and let us assume that708

t = t0 > t1 > · · · > tk = t′ are the sampling times. Then,709

pθ(x[t′,t] | xt = x) =

k∏
i=1

pθ(xti | xti−1
).
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We assume that710

pθ(xti | ti−1) = N (µθ,i, giId).

Then,711

pθ(x[t′,t] | xt = x) ∝
k∏

i=1

exp

(
−
∥µθ,i − (xti − xti−1

)∥2

2g2i

)
Therefore712

log pθ(x[t′,t] | xt = x) = C +

k∑
i=1

∥µθ,i − (xti − xti−1
)∥2

2g2i

where C corresponds to the normalizing factor that is independent of θ. Differentiating, we get that713

∇θ log pθ(x[t′,t] | xt = x) =

k∑
i=1

(
µθ,i − (xti − xti−1

)
)⊤ ∇θµθ,i

g2i

B.2 Proof of Lemma 3.1714

In what appears below, the expectation E[· | xt = x] is taken with respect to the distribution obtained715

by Eq. (7), namely, the backward SDE that corresponds to the function s, with the initial condition716

xt = x. Similarly, E[· | xt′ ] is taken with the initial condition at xt′ . To prove the first direction717

in the equivalence, assume that Property 1 holds and our goal is to prove the two consequences as718

described in the lemma. To prove the first consequence, by the law of total expectation and by the719

fact that xt − xt′ − x0 is a Markov chain, namely, x0 and xt are independent conditioned on xt′ , we720

obtain that721

h(x, t) = E[x0 | xt = x] = E[E[x0 | xt′ ] | xt = x] = E[h(xt′ , t
′) | xt = x].

To prove the second consequence, by Property 1722

h(x, 0) = E[x0 | x0 = x] = x0.

This concludes the first direction in the equivalence.723

To prove the second direction, assume that h(x, t) = E[h(xt′ , t
′) | xt = x] and that h(x, 0) = x and724

notice that by substituting t′ = 0 we derive the following:725

h(x, t) = E[h(x0, 0) | xt = x] = E[x0 | xt = x],

as required.726

C Additional Results727

C.1 Property Testing728
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Figure 4: Martingale Property Testing on CIFAR10. The plot illustrates how the Martingale Loss,
L2
t,t′,xt

, behaves for t′ = 0, as t changes.
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Figure 5: Martingale Property Testing on CIFAR10. The plot illustrates how the Martingale Loss,
L2
t,t′,xt

, behaves for t = 0, as t′ changes.
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Figure 6: Martingale Property Testing on FFHQ. The plot illustrates how the Martingale Loss, L2
t,t′,xt

,
behaves for t′ = 0, as t changes.
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Figure 7: Martingale Property Testing on FFHQ. The plot illustrates how the Martingale Loss, L2
t,t′,xt

,
behaves for t = 0, as t′ changes.
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C.2 Uncurated Samples729

Figure 8: Uncurated generated images by our fine-tuned model on FFHQ. FID: 2.61, NFEs: 79.

D Limitations730

The capacity for generative models to exert consequential societal influence in myriad ways is731

undeniable, and it also brings along a multiplicity of inherent risks [35, 24, 25, 26]. These models, for732

instance, may be exploited to fabricate counterfeit images, and furthermore, they have the potential to733

intensify societal prejudices. This work does not seem to exert a direct influence on these particular734

biases. It is imperative to acknowledge that addressing such biases presents a substantial challenge.735

E We are working on open-sourcing the code for this project. We provide an736

anonymized version of the code in the supplementary material.737
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