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1 ℓ2 Results1

Table 3: Comparing the obtained AA and AAA of some “gradient computation” and “substitute
model training” methods. Smaller values indicate more powerful attacks. The adversarial examples
were generated under an ℓ2 constraint with ϵ = 5.

ResNet
-50

VGG
-19

Inception
v3

EffNetV2
-M

ConvNeXt
-B

ViT
-B

DeiT
-B

BEiT
-B

Swin
-B

Mixer
-B AAA

I-FGSM Back-end
- Baseline
I-FGSM 87.93% 91.82% 94.76% 97.24% 88.96% 91.01% 90.64% 90.18% 95.46% 95.10% 92.31%
- Gradient Computation
TAP (2018) [18] 88.91% 94.44% 95.29% 98.30% 94.47% 94.94% 95.56% 94.91% 96.89% 96.49% 95.02%
NRDM (2018) [8] 91.41% 92.36% 96.00% 98.94% 95.28% 97.00% 97.14% 97.63% 97.26% 95.43% 95.85%
FDA (2019) [1] 92.24% 96.48% 96.02% 99.17% 96.74% 97.58% 96.78% 96.73% 98.01% 98.38% 96.81%
ILA (2019) [4] 83.49% 84.09% 92.43% 96.31% 91.08% 89.07% 88.32% 88.28% 94.16% 93.30% 90.05%
SGM (2020) [15] 78.82% - - 94.68% 82.52% 89.46% 89.79% 89.51% 93.80% 94.84% -
ILA++ (2020) [5] 80.73% 81.72% 91.46% 95.66% 90.61% 87.87% 88.74% 87.12% 93.63% 92.10% 88.96%
LinBP (2020) [3] 84.18% 90.46% 97.60% 98.74% 90.91% 92.53% 92.40% 93.10% 96.26% 97.94% 93.41%
ConBP (2021) [16] 82.06% 89.37% 96.79% - - - - - - - -
SE (2021) [9] - - - - - 93.50% 90.74% 92.69% - 95.70% -
FIA (2021) [13] 74.03% 76.36% 89.87% 95.01% 85.26% 82.46% 85.44% 86.59% 92.26% 84.99% 85.23%
PNA (2022) [14] - - - - - 90.04% 89.41% 89.39% 94.86% - -
NAA (2022) [17] 78.82% 85.62% 87.47% 94.54% 71.63% 74.86% 76.91% 74.44% 85.79% 83.81% 81.39%
- Substitute Model Training
RFA (2021) [10] 67.07% - - - - - - - - - -
LGV (2022) [2] 74.50% - - - - - - - - - -
DRA (2022) [19] 64.08% - - - - - - - - - -
MoreBayesian (2023) [6] 70.27% - - - - - - - - - -

New Optimization Back-end
- Baseline
UN-DP-DI2-TI-PI-FGSM 43.01% 55.46% 72.46% 74.63% 45.17% 44.74% 51.34% 44.53% 64.21% 60.51% 55.61%
- Gradient Computation
TAP (2018) [18] 77.46% 65.52% 81.72% 92.11% 52.28% 70.49% 77.01% 54.50% 82.71% 74.16% 72.80%
NRDM (2018) [8] 71.29% 78.71% 86.06% 82.66% 65.64% 82.00% 85.22% 67.49% 93.12% 80.89% 79.31%
FDA (2019) [1] 58.47% 65.81% 77.84% 96.22% 79.57% 97.96% 95.63% 83.42% 95.38% 96.48% 84.68%
ILA (2019) [4] 47.83% 57.26% 72.79% 73.97% 49.47% 49.48% 64.42% 41.71% 75.91% 65.47% 59.83%
SGM (2020) [15] 38.66% - - 74.44% 32.59% 39.81% 36.00% 34.64% 33.82% 55.08% -
ILA++ (2020) [5] 47.60% 55.86% 72.30% 74.29% 49.28% 49.54% 65.07% 41.73% 84.91% 65.50% 60.61%
LinBP (2020) [3] 48.76% 56.29% 89.04% 97.71% 31.03% 54.87% 50.77% 55.33% 81.93% 88.73% 65.45%
ConBP (2021) [16] 46.70% 56.23% 82.96% - - - - - - - -
SE (2021) [9] - - - - - 54.36% 32.67% 38.32% - 53.08% -
FIA (2021) [13] 44.81% 59.26% 71.82% 88.47% 60.23% 52.48% 55.20% 64.83% 75.44% 69.44% 64.20%
PNA (2022) [14] - - - - - 43.22% 29.81% 38.91% 51.68% - -
NAA (2022) [17] 47.03% 60.04% 72.02% 75.26% 41.44% 42.30% 46.82% 47.64% 65.23% 55.23% 55.30%
- Substitute Model Training
RFA (2021) [10] 57.58% - - - - - - - - - -
LGV (2022) [2] 41.31% - - - - - - - - - -
DRA (2022) [19] 64.18% - - - - - - - - - -
MoreBayesian (2023) [6] 39.01% - - - - - - - - - -

Some ℓ2 results are provided in this section. When I-FGSM is applied as the optimization back-end,2

same as the ℓ∞ results in Table 1 in our main paper, NAA achieves the lowest AAA (i.e., 81.39%)3

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



compared with the other “gradient computation” methods, while FIA beats it when ResNet-50 or4

VGG-19 is chosen as the substitute model. See Table 3. However, unlike in the ℓ∞ setting, SE shows5

consistently inferior performance when compared with the I-FGSM baseline in the ℓ2 setting, and6

DRA instead of RFA achieves the best performance among “substitute model training” methods.7

When UN-DP-DI2-TI-PI-FGSM is applied as the new optimization back-end, same as in the ℓ∞ set-8

ting, SGM, PNA, and SE provide favorable attack performance, while PNA on the DeiT-B substitute9

model turns out to be the best (in the sense of achieving lower BAA) and the generated adversarial10

examples fools victim models to show an accuracy of only 29.81%. The lowest WAA (which is11

43.22%) is obtained by PNA. For the “substitute model training” methods, the MoreBayesian method12

still outperforms the other methods by a large margin.13

2 Transfer between Convolution Networks and Vision Transformers14

Table 4: The accuracy of victim models in predicting adversarial examples crafted via SGM using
ResNet-50 and ViT-B as the substitute model, respectively. Smaller values indicate more powerful
attacks. The optimization back-end is UN-DP-DI2-TI-PI-FGSM, and the adversarial examples were
generated under an ℓ∞ constraint with ϵ = 8/255.

Substitute
model

ResNet
-50

VGG
-19

Inception
v3

EffNetV2
-M

ConvNeXt
-B

ViT
-B

DeiT
-B

BEiT
-B

Swin
-B

Mixer
-B AA

ResNet-50 - 2.72% 7.92% 29.42% 28.52% 48.32% 47.64% 36.82% 47.66% 38.70% 31.97%
ViT-B 30.00% 28.32% 36.40% 37.24% 33.66% - 28.76% 15.60% 23.26% 25.92% 28.80%

To compare the transfer performance from vision transformers to convolutional networks and from the15

opposite direction, we report the accuracy of victim models in predicting SGM adversarial examples16

generated on ResNet-50/ViT-B as the substitute model. The results are shown in Table 4. It can be seen17

that transferring from vision transformers to convolutional networks is easier. When utilizing ViT-B18

as the substitute model, the accuracy of convolutional networks shows a range in [28.32%, 37.24%],19

while, with ResNet-50, the accuracy of vision transformers lies in [36.82%, 48.32%]. Overall, using20

ViT-B as the substitute model leads to lower average accuracy (28.80% vs 31.97%) and the worst21

accuracy (37.24% vs 48.32%) on victim models, which means better average and worst-case attack22

performance, respectively.23

3 Detailed Results of Augmentations and Optimizers24

Table 5: Detailed results of different combinations of augmentations and optimizers. Smaller values
indicate more powerful attacks. The adversarial examples were generated under an ℓ∞ constraint
with ϵ = 8/255.

ResNet
-50

VGG
-19

Inception
v3

EffNetV2
-M

ConvNeXt
-B

ViT
-B
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-B

BEiT
-B

Swin
-B

Mixer
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PGD 88.36% 91.63% 93.72% 95.74% 88.50% 90.83% 90.71% 89.89% 94.57% 94.46% 91.84%
I-FGSM 87.79% 91.21% 93.71% 95.46% 88.32% 90.28% 90.28% 89.56% 94.81% 94.37% 91.58%
UN-PGD 86.07% 88.03% 93.02% 94.12% 83.11% 89.74% 89.19% 88.56% 92.37% 94.12% 89.83%
UN-I-FGSM 85.01% 86.88% 93.03% 94.04% 82.78% 89.12% 89.20% 87.76% 91.78% 93.62% 89.32%
SI-PGD 86.51% 86.22% 91.97% 89.31% 83.90% 88.96% 85.54% 87.67% 92.52% 92.96% 88.56%
SI-FGSM 86.21% 85.79% 91.74% 89.63% 83.87% 88.79% 84.78% 87.18% 91.87% 92.79% 88.26%
NI-FGSM 82.91% 87.23% 90.63% 92.09% 82.99% 87.14% 85.22% 86.10% 91.66% 91.97% 87.79%
PI-FGSM 82.46% 87.04% 90.24% 91.97% 82.79% 87.06% 85.36% 85.98% 91.32% 92.16% 87.64%
MI-FGSM 82.42% 86.94% 90.44% 91.91% 82.99% 87.14% 85.27% 85.86% 91.36% 92.04% 87.64%
MI-PGD 83.20% 87.59% 90.97% 91.47% 80.93% 87.07% 84.40% 85.62% 90.87% 91.71% 87.38%

...... ......
UN-DP-SI-DI2-TI-PI-PGD 42.88% 50.34% 60.68% 44.19% 32.34% 37.28% 39.33% 35.56% 46.66% 44.47% 43.37%
UN-DP-SI-DI2-TI-NI-FGSM 42.78% 50.40% 60.59% 44.10% 32.33% 36.93% 39.42% 35.83% 46.37% 44.22% 43.30%
UN-DP-SI-DI2-TI-MI-FGSM 42.85% 50.34% 60.42% 44.03% 32.49% 36.73% 39.30% 35.91% 46.52% 44.31% 43.29%
UN-DP-SI-DI2-TI-PI-FGSM 42.92% 50.12% 60.55% 44.00% 32.47% 36.74% 39.57% 35.94% 46.16% 44.30% 43.28%
UN-DP-DI2-TI-PI-PGD 35.68% 49.07% 59.48% 52.40% 33.56% 33.53% 35.58% 34.85% 45.92% 46.30% 42.64%
UN-DP-DI2-TI-MI-PGD 35.57% 48.70% 59.34% 52.34% 33.66% 33.69% 35.75% 34.84% 45.78% 46.45% 42.61%
UN-DP-DI2-TI-NI-PGD 35.34% 48.55% 59.19% 52.20% 33.39% 33.39% 35.72% 34.83% 45.71% 46.42% 42.47%
UN-DP-DI2-TI-MI-FGSM 35.80% 48.86% 59.15% 52.67% 33.22% 33.19% 35.90% 34.14% 45.28% 46.34% 42.46%
UN-DP-DI2-TI-NI-FGSM 35.74% 48.77% 59.06% 52.70% 33.16% 33.26% 35.68% 34.24% 45.46% 46.40% 42.45%
UN-DP-DI2-TI-PI-FGSM 35.70% 48.33% 58.62% 52.98% 33.64% 32.74% 36.58% 33.72% 45.24% 46.60% 42.42%

2



We show the detailed results of different combinations of augmentations and optimizers in Table 5.25

It can be seen that UN-DP-DI2-TI-PI-FGSM achieves the best performance on average, despite the26

optimal solution on different substitute models are different.27

4 Implementation Details28

Augmentations and Optimizer. For PGD, DI2-FGSM, MI-FGSM, NI-FGSM, and PI-FGSM, we29

use the default hyperparameters. For TI-FGSM, we randomly translate the input with a range of [-3,30

+3] since its performance is better than the approximation using a 7 × 7 Gaussian kernel in many31

implementations [7, 11, 12, 6]. For SI-FGSM and Admix, both of them average the gradients obtained32

by feeding different augmented inputs into the substitute model, which may lead to unfair comparisons.33

Therefore, we randomly select one input from the augmented copies, and the hyperparameters remain34

the same as in their original papers. For UN, the noise added to the input follows U(−ϵ, ϵ) and35

U(− ϵ√
HW

, ϵ√
HW

) (the dimension of inputs is 3×H ×W ) for attacks under ℓ∞ and ℓ2 constraints,36

respectively. For DP, we divide the perturbation into 16× 16 patches and randomly drop 50% of the37

patches at each iteration.38

Gradient Computation. For TAIG, VT, IR, TAP, FDA, SE, and PNA, we set the same hyper-39

parameters as in their original papers. For NRDM, ILA, ILA++, LinBP, ConBP, FIA, and NAA, the40

main hyper-parameter which significantly impacts the performance is the choice of the middle layer.41

The scaling factor of SGM is also related to the selection of the substitute model. We tune these42

hyper-parameters by evaluating on a validation set consisting of 500 samples that do not overlap with43

the samples in the test set.44

Substitute Model Training. In this category of methods, ResNet-50 is commonly chosen as the45

substitute model, and we collect the models from the GitHub repositories of these methods. For LGV46

and MoreBayesian, we only sample once at each iteration.47

Generative Modeling. In this category of methods, all the generators are collected from the GitHub48

repositories of these methods.49
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