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“When one is painting one does not think.”

— Raffaello Sanzio da Urbino

Abstract

Text-to-image generation has recently witnessed remarkable achievements. We
introduce a text-conditional image diffusion model, termed RAPHAEL, to generate
highly artistic images, which accurately portray the text prompts, encompassing
multiple nouns, adjectives, and verbs. This is achieved by stacking tens of mixture-
of-experts (MoEs) layers, i.e., space-MoE and time-MoE layers, enabling billions of
diffusion paths (routes) from the network input to the output. Each path intuitively
functions as a “painter” for depicting a particular textual concept onto a specified
image region at a diffusion timestep. Comprehensive experiments reveal that
RAPHAEL outperforms recent cutting-edge models, such as Stable Diffusion,
ERNIE-ViLG 2.0, DeepFloyd, and DALL-E 2, in terms of both image quality and
aesthetic appeal. Firstly, RAPHAEL exhibits superior performance in switching
images across diverse styles, such as Japanese comics, realism, cyberpunk, and
ink illustration. Secondly, a single model with three billion parameters, trained on
1, 000 A100 GPUs for two months, achieves a state-of-the-art zero-shot FID score
of 6.61 on the COCO dataset. Furthermore, RAPHAEL significantly surpasses
its counterparts in human evaluation on the ViLG-300 benchmark. We believe
that RAPHAEL holds the potential to propel the frontiers of image generation
research in both academia and industry, paving the way for future breakthroughs
in this rapidly evolving field. More details can be found on a webpage: https:
//raphael-painter.github.io/§.
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§More creations can be found in https://miaohua.sensetime.com/zh-CN/picture-selection.
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RAPHAEL StableDiffusion XL DeepFloyd DALL-E 2 ERNIE-ViLG 2.0

A parrot with a 
pearl earring, 
Vermeer style.

A car playing 
soccer, digital art.

A Pikachu with an 
angry expression 
and red eyes, with 
lightning around 
it, hyper realistic 
style.

There are five cars 
in the street.

Street shot of a 
fashionable 
Chinese lady in 
Shanghai, wearing 
black highwaisted 
trousers.

Moonlight Maiden, 
cute girl in school 
uniform, long white 
hair, standing under 
the moon, celluloid 
style, Japanese 
manga style.

Half human, half 
robot, repaired 
human, human 
flesh warrior, mech 
display, man in 
mech, cyberpunk.

A sign that says 
RAPHAEL.

Figure 1: Comparisons of RAPHAEL with recent representative generators, Stable Diffusion XL [2], Deep-
Floyd, DALL-E 2 [3], and ERNIE-ViLG 2.0 [5]. They are given the same prompts, where the words that
the human artists yearn to preserve within the generated images are highlighted in red. These images are not
cherry-picked. We see that previous models often fail to preserve the desired concepts. For example, only the
RAPHAEL-generated images precisely reflect the prompts such as “pearl earring, Vermeer”, “playing soccer”,
“five cars”, “black high-waisted trouser”, “white hair, manga, moon”, and “sign, RAPHAEL”, while other models
generate compromised results. Better zoom in 200%.

1 Introduction

Recent advancements in text-to-image generators, such as Imagen [1], Stable Diffusion [2], DALL-
E 2 [3], eDiff-I [4], and ERNIE-ViLG 2.0 [5], have yielded remarkable success and found wide
applications in computer graphics, culture and art, and the generation of medical and biological data.

Despite the substantial progress made in text-to-image diffusion models [1, 2, 3, 4, 5], there remains
a pressing need for research to further achieve more precise alignment between text and image. As
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illustrated in Fig.1, existing models often fail to adequately preserve textual concepts within the
generated images. This is primarily due to the reliance on a classic cross-attention mechanism for
integrating text descriptions into visual representations, resulting in relatively coarse control of the
diffusion process, and leading to compromised results.

To address this issue, we introduce RAPHAEL, a text-to-image generator, which yields images with
superior artistry and fidelity compared to prior work, as demonstrated in Fig.2. RAPHAEL, an
acronym that stands for “distinct image regions align with different text phases in attention learning”,
offers an appealing benefit not found in existing approaches.

Specifically, we observe that different text concepts influence distinct image regions during the
generation process [6], and the conventional cross-attention layer often struggles to preserve these
varying concepts adequately in an image. To mitigate this issue, we employ a diffusion model
stacking tens of mixture-of-experts (MoE) layers [7, 8], including both space-MoE and time-MoE
layers. Concretely, the space-MoE layers are responsible for depicting different concepts in specific
image regions, while the time-MoE layers focus on painting these concepts at different diffusion
timesteps.

This configuration leads to billions of diffusion paths from the network input to the output. Naturally,
each path can act as a “painter” responsible for rendering a particular concept to an image region at
a specific timestep. The result is a more precise alignment between text tokens and image regions,
enabling the generated images that accurately represent the associated text prompt. This approach
sets RAPHAEL apart from existing models and even sheds light on future studies of the explainability
of the generation process. Additionally, we propose an edge-supervised learning module to further
enhance the image quality and aesthetic appeal of the generated images.

Extensive experiments demonstrate that RAPHAEL outperforms preceding approaches, such as
Stable Diffusion, ERNIE-ViLG 2.0, DeepFloyd, and DALL-E 2. (1) RAPHAEL exhibits superior
performance in switching images across diverse styles, such as Japanese comics, realism, cyberpunk,
and ink illustration. (2) RAPHAEL establishes a new state-of-the-art with a zero-shot FID-30k score
of 6.61 on the COCO dataset. (3) RAPHAEL, a single model with three billion parameters trained
on 1, 000 A100 GPUs, significantly surpasses its counterparts in human evaluation on the ViLG-300
benchmark.

The contributions of this work are three-fold: (i) We propose a novel text-to-image generator,
RAPHAEL, which, through the implementation of several carefully-designed techniques, generates
images that more accurately reflect textual prompts than previous works. (ii) We thoroughly explore
RAPHAEL’s potential for switching images in diverse styles, such as Japanese comics, realism,
cyberpunk, and ink illustration, and for extension using LoRA [9], ControlNet [10], and SR-GAN
[11]. (iii) We will release a programming API for RAPHAEL to the public. We believe that
RAPHAEL holds the potential to advance the frontiers of image generation in both academia and
industry, paving the way for future breakthroughs in this rapidly evolving field.

2 Notation and Preliminary

We present the necessary notations and the Denoising Diffusion Probabilistic Model (DDPM) [12]
for text-to-image generation. Given a collection of N images, denoted as {xi}Ni=1, the aim is to learn
a generative model, p(x), that is capable of accurately representing the underlying distribution.

In forward diffusion, Gaussian noise is progressively introduced into the source images. At an
arbitrary timestep t, it is possible to directly sample from the Gaussian distribution following the
T -step noise schedule {αt}Tt=1, without iterative forward sampling. Consequently, the noisy image at
timestep t, denoted as xt, can be expressed as xt =

√
1− ᾱtx0 +

√
ᾱtϵt, where ᾱt =

∏t
i=1 αi. In

this expression, x0 represents the source image, while ϵt ∼ N (0, I) indicates the Gaussian noise at
step t. In the reverse process, a denoising neural network, denoted as Dθ(·), is employed to estimate
the additive Gaussian noise. The optimization of this network is achieved by minimizing the loss
function, Ldenoise = Et,x0,ϵ∼N (0,I)

[
∥ϵ−Dθ (xt, t)∥22

]
.

By employing the Bayes’ theorem, it is feasible to iteratively estimate the image at timestep
t − 1 through sampling from the posterior distribution, pθ(xt−1|xt). We have xt−1 =
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A wizard by Q Hayashida in the style of 
Dorohedoro for Elden Ring, with biggest 
most intricate sword, on sunlit battlefield, 
breath of the wild, striking illustration.

A beautiful woman dressed in a dress 
made of autumn leaves in the forest, 
photography, natural lighting, high 
detail.

Harvest of vegetables in a wooden box 
near the beds vegetables grow naturally, 
summer light background, backlight 
and sun rays, clean sharp focus.

Chinese illustration, oriental landscape 
painting, above super wide angle, magical, 
romantic, detailed, colorful, multi
dimensional paper kirigami craft.

Photography closeup portrait of an 
adorable rusty brokendown steampunk 
robot covered in budding vegetation, 
surrounded by tall grass, misty futuristic 
scifi forest environment.

The Caped Crusader, Gotham skyline, rooftop, 
mysterious, powerful, nighttime, mixed media, 
expressionism, dark tones, high contrast, in 
the style of comic book artist Frank Miller, 
modern, gritty and textured, collage technique.

The Goddess of high fashion, 
impressionistic line art, contrasting earth 
tones, vibrant, pen and ink illustration, 
ink splatter, abstract expressionism 
superimposed onto majestic space queen.

A cute little matte low poly isometric 
Zelda Breath of the wild forest island, 
waterfalls, soft shadows, trending on 
Artstation, 3d render, monument valley, 
fez video game.

Milkyway in a glass bottle, 4k, unreal 
engine, octane render.

Figure 2: These examples show that RAPHAEL can generate artistic images with varying text prompts across
various styles. The synthesized images have rich details and semantics. The prompts were written by human
artists without cherry-picking.

1√
αt

(
xt − 1−αt√

1−ᾱt
Dθ (xt, t)

)
+ σtz, where σt signifies the standard deviation of the newly injected

noise into the image at each step, and z represents the Gaussian noise.

In essence, the denoising neural network estimates the score function at varying time steps, thereby
progressively recovering the structure of the image distribution. The fundamental insight provided by
the DDPM lies in the fact that the perturbation of data points with noise serves to populate regions
of low data density, ultimately enhancing the accuracy of estimated scores. This results in stable
training and sampling.

U-Net with Text Prompts. The denoising network is commonly implemented using a U-Net [13]
architecture, as depicted in Fig.8 in Appendix 7.3. To incorporate textual prompts (denoted by y) into
the U-Net, a text encoder neural network, Eθ(y), is employed to extract the textual representation.
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Figure 3: Framework of RAPHAEL. (a) Each block contains four primary components including a self-
attention layer, a cross-attention layer, a space-MoE layer, and a time-MoE layer. The space-MoE is responsible
for depicting different text concepts in specific image regions, while the time-MoE handles different diffusion
timesteps. Each block uses edge-supervised cross-attention learning to further improve image quality. (b)
shows details of space-MoE. For example, given a prompt “a furry bear under sky”, each text token and its
corresponding image region (given by a binary mask) are directed through distinct space experts, i.e., each
expert learns particular visual features at a region. By stacking several space-MoEs, we can easily learn to depict
thousands of text concepts.

The extracted text tokens are input into the U-Net through a cross-attention layer. The text tokens
possess a size of ny × dy, where ny represents the number of text tokens, and dy signifies the
dimension of a text token (e.g., dy = 768 in [14]).

The cross-attention layer can be formulated as attention(Q,K,V) = softmax
(

QK⊤
√
d

)
V, where

Q, K, and V correspond to the query, key, and value matrices, respectively. These matrices are
computed as Q = h (xt)W

qry
x , K = Eθ(y)W

key
y , and V = Eθ(y)W

val
y , where Wqry

x ∈ Rd×d and
Wkey

y ,Wval
y ∈Rdy×d represent the parametric projection matrices for the image and text, respectively.

Additionally, d denotes the dimension of an image token, h(xt) ∈ Rnx×d indicates the flattened
intermediate representation within the U-Net, with nx being the number of tokens in an image. A
cross-attention map between the text and image, M = softmax

(
QK⊤
√
d

)
∈ Rnx×ny , is defined,

which plays a crucial role in the proposed approach, as described in the following sections.

3 Our Approach

The overall framework of RAPHAEL is illustrated in Fig.3, with the network configuration details
provided in the Appendix 7.1. Employing a U-Net architecture, the framework consists of 16
transformer blocks, each containing four components: a self-attention layer, a cross-attention layer, a
space-MoE layer, and a time-MoE layer. The space-MoE is responsible for depicting different text
concepts in specific image regions at a given scale, while the time-MoE handles different diffusion
timesteps.

3.1 Space-MoE and Time-MoE

Space-MoE. Regarding the space-MoE layer, distinct text tokens correspond to various regions
within an image, as previously mentioned. For instance, when provided with the prompt “a furry
bear under the sky”, each text token and its corresponding image region (represented by a binary
mask) are fed into separate experts, as illustrated in Fig.3b. The space-MoE layer’s output is the
mean of all experts, calculated using the following formula: 1

ny

∑ny

i=1 eroute(yi)

(
h′(xt) ◦ M̂i

)
. In

this equation, M̂i is a binary two-dimensional matrix, indicating the image region the i-th text token
should correspond to, as shown in Fig.3b. Here, ◦ represents hadamard product, and h′(xt) is the
features from time-MoE. The gating (routing) function route(yi) returns the index of an expert in
the space-MoE, with {e1, e2, . . . , ek} being a set of k experts.

Text Gate Network. The Text Gate Network is employed to distribute an image region to a specific
expert, as shown in Fig.3b. The function route(yi) = argmax (softmax (G (Eθ(yi)) + ϵ)) is used,
where G : Rdy 7→ Rk is a feed forward network, which uses a text token representation Eθ(yi) as
input and assigns a space expert. To prevent mode collapse, random noise ϵ is incorporated. The
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Figure 4: Left: We visualize the diffusion paths (routes) from the network input to the output, utilizing 16
space-MoE layers, each containing 6 spatial experts. These paths are closely associated with 100 adjectives,
such as “scenic”, “peaceful”, and “majestic”, which represent the most frequently occurring adjectives for
describing artworks as suggested by GPT-3.5 [15, 16]. Given that GPT-3.5 has been trained on trillions of
tokens, we believe that these adjectives reflect a diverse, real-world distribution. Our findings indicate that
different paths distinctively represent various adjectives. Right: We depict the diffusion paths for ten categories
(i.e., nouns) within the COCO dataset. Our observations reveal that different categories activate distinct paths in
a heterogeneous manner. The display colors blend together where the routes overlap.

argmax function ensures that one expert exclusively handles the corresponding image region for
each text token, without increasing computational complexity.

From Text to Image Region. Recall that M is the cross-attention map between text and image, where
each element, Mj,i, represents a correspondence value between the j-th image token and the i-th
text token. In the space-MoE, each entry in the binary mask M̂i equals “1” if Mj,i ≥ ηi, otherwise
“0” if Mj,i < ηi, as illustrated in Fig.3b. A thresholding mechanism is introduced to determine the
values in the mask. The threshold value ηi = αmax(M∗,i) is defined, where max(M∗,i) represents
the maximum correspondence between text token i and all image regions. The hyper-parameter α
will be evaluated through an ablation study.

Discussions. The insight behind the space-MoE is to effectively model the intricate relationships
between text tokens and their corresponding regions in the image, accurately reflecting concepts in the
generated images. As illustrated in Fig.4, the employment of 16 space-MoE layers, each containing 6
experts, results in billions of spatial diffusion paths (i.e., 616 possible routes). It is evident that each
diffusion path is closely associated with a specific textual concept.

To investigate this further, we generate 100 prevalent adjectives that are the most frequently occurring
adjectives for describing artworks as suggested by GPT-3.5 [15, 16]. Given that GPT-3.5 has been
trained on trillions of tokens, we posit that these adjectives reflect a diverse, real-world distribution.
We input each adjective into the RAPHAEL model to generate 100 distinct images and collect their
corresponding diffusion paths. Consequently, we obtain ten thousand paths for the 100 words. By
treating these pathways as features (i.e., each path is a vector of 16 entries), we train a straightforward
classifier (e.g., XGBoost [17]) to categorize the words. The classifier after 5-fold cross-validation
achieves over 93% accuracy for open-world adjectives, demonstrating that different diffusion paths
distinctively represent various textual concepts. We observe analogous phenomena within the 80
object categories of the COCO dataset. Further details on verbs and visualization are provided in the
Appendix 7.5.

Time-MoE. We can further enhance the image quality by employing a time-mixture-of-experts
(time-MoE) approach, which is inspired by previous works such as [4, 5]. Given that the diffusion
process iteratively corrupts an image with Gaussian noise over a series of timesteps t = 1, . . . , T ,
the image generator is trained to denoise the images in reverse order from t = T to t = 1. All
timesteps aim to denoise a noisy image, progressively transforming random noise into an artistic
image. Intuitively, the difficulty of these denoising steps varies depending on the noise ratio presented
in the image. For example, when t = T , the denoising network’s input image xt is highly noisy.
When t = 1, the image xt is closer to the original image.

To address this issue, we employ a time-MoE before each space-MoE in each transformer block.
In contrast to [4, 5] , which necessitate hand-crafted time expert assignments, we implement an
additional gate network to automatically learn to assign different timesteps to various time experts.
Further details can be found in the Appendix 7.3.
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3.2 Edge-supervised Learning

In order to further enhance the image quality, we propose incorporating an edge-supervised learning
strategy to train the transformer block. By implementing an edge detection module, we aim to extract
rich boundary information from an image. These intricate boundaries can serve as supervision to
guide the model in preserving detailed image features across various styles.

Consider a neural network module, Pθ(M), with parameters of N convolutional layers (e.g., N = 5).
This module is designed to predict an edge map given an attention map M (refer to Fig.7a in the
Appendix 7.2). We utilize the edge map of the input image, denoted as Iedge, to supervise the network
Pθ. Iedge can be obtained by the holistically-nested edge detection algorithm [18] (Fig.7b). Intuitively,
the network Pθ can be trained by minimizing the loss function, Ledge = Focal(Pθ(M), Iedge), where
Focal(·, ·) denotes the focal loss [19] employed to measure the discrepancy between the predicted
and the “ground-truth” edge maps. Moreover, as discussed in [5, 6], the attention map M is prone
to becoming vague when the timestep t is large. Consequently, it is essential to adopt a timestep
threshold value to inactivate (pause) edge-supervised learning when t is large. This timestep threshold
value (Tc) is a hyper-parameter that will be evaluated through an ablation study.

Overall, the RAPHAEL model is trained by combining two loss functions, L = Ldenoise + Ledge.
As demonstrated in Fig.7d in the Appendix 7.2, edge-supervised learning substantially improves the
image quality and aesthetic appeal of the generated images.

4 Experiments

This section presents the experimental setups, the quantitative results compared to recent state-of-
the-art models, and the ablation study to demonstrate the effectiveness of RAPHAEL. More artistic
images generated by RAPHAEL and comparisons between RAPHAEL and other diffusion models
can be found in Appendix 7.6 and 7.7.

Dataset. The training dataset consists of a subset of LAION-5B [20] and some internal datasets,
including 730M text-images pairs in total. To collect training data from LAION-5B, we filter the
images using the aesthetic scorer same as Stable Diffusion [2] and remove the image-text pairs
that have scores smaller than 4.7. We remove the images with watermarks either. Since the text
descriptions in LAION-5B are noisy, we clean them by removing useless information such as URLs,
HTML tags, and email addresses, inspired by [2, 4, 21].

Multi-scale Training. To improve text-image alignment, instead of cropping images to a fixed scale
[2], we resize an image to its nearest size into different buckets, which has 9 different image scales.
Additionally, the GPU resources will be automatically allocated to each bucket depending on the
number of images it contains, enabling effective use of computational resources*.

Implementations. To reduce training and sampling complexity, we use a Variational Autoencoder
(VAE) [22, 23] to compress images using Latent Diffusion Model [2]. We first pre-train an image
encoder to transform an image from pixel space to a latent space, and an image decoder to convert it
back. Unlike previous works, the cross-attention layers in RAPHAEL are augmented with space-MoE
and time-MoE layers. The entire model is implemented in PyTorch [24], and is trained by AdamW
[25] optimizer with a learning rate of 1e− 4, a weight decay of 0, a batch size of 2, 000, on 1, 000
NVIDIA A100s for two months. More details on the hyper-parameter settings can be found in the
Appendix 7.1.

4.1 Comparisons

Results on COCO. Following previous works [1, 2, 4], we evaluate RAPHAEL on the COCO
256 × 256 dataset using zero-shot Frechet Inception Distance (FID), which measures the quality
and diversity of images. Similar to [1, 2, 4, 5, 32], 30, 000 images are randomly selected from
the validation set for evaluation. Table 1 shows that RAPHAEL achieves a new state-of-the-art

*The dimensions of each bucket are as follows: [448, 832], [512, 768], [512, 704], [640, 640], [576, 640],
[640, 576], [704, 512], [768, 512], and [832, 448]. For instance, when images are resized, those with an aspect
ratio of 1.0 will be assigned to the bucket of size [640, 640]. GPUs will be allocated to each bucket, based on the
images it contains. All GPUs will have the same batch size and will select images from its associated bucket.
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Table 1: Comparisons of RAPHAEL with the recent representative text-to-image generation models on the
MS-COCO 256 × 256 using zero-shot FID-30k. We see that RAPHAEL outperforms all previous works in
image quality, even a commercial product released recently.

Approach Venue/Date Model Type FID-30K Zero-shot FID-30K

DF-GAN [26] CVPR’22 GAN 21.42 -
DM-GAN + CL [27] CVPR’19 GAN 20.79 -

LAFITE [28] CVPR’22 GAN 8.12 -
Make-A-Scene [29] ECCV’22 Autoregressive 7.55 -

LDM [2] CVPR’22 Diffusion - 12.63
GLIDE [30] ICML’22 Diffusion - 12.24

DALL-E 2 [3] arXiv, April 2022 Diffusion - 10.39
GigaGAN [31] CVPR’23 GAN - 9.09

Stable Diffusion [2] CVPR’22 Diffusion - 8.32
Muse-3B [32] arXiv, Jan. 2023 Non-Autoregressive - 7.88

Imagen [1] NeurIPS’22 Diffusion - 7.27
eDiff-I [4] arXiv, Nov. 2022 Diffusion Experts - 6.95

ERNIE-ViLG 2.0 [5] CVPR’23 Diffusion Experts - 6.75
DeepFloyd Product, May 2023 Diffusion - 6.66
RAPHAEL - Diffusion Experts - 6.61

Figure 5: Comparisons of RAPHAEL with DALL-E 2, Stable Diffusion XL (SD XL), ERNIE-ViLG 2.0, and
DeepFloyd in a user study using the ViLG-300 benchmark. We report the user’s preference rates with 95%
confidence intervals. We see that RAPHAEL can generate images with higher quality and better conform to the
prompts.

performance of text-to-image generation, with 6.61 zero-shot FID-30k on MS-COCO, surpassing
prominent image generators such as Stable Diffusion, Imagen, ERNIE-ViLG 2.0, and DALL-E 2.

Human Evaluations. We employ the ViLG-300 benchmark [5], a bilingual prompt set, which
enables to systematically evaluate text-to-image models given various text prompts in Chinese and
English. ViLG-300 allows us to convincingly compare RAPHAEL with recent-advanced models
including DALL-E 2, Stable Diffusion, ERNIE-ViLG 2.0, and DeepFloyd, in terms of both image
quality and text-image alignment. For example, human artists are presented with two sets of images
generated by RAPHAEL and a competitor, respectively. They are asked to compare these images
from two aspects respectively, including image-text alignment, and image quality and aesthetics.
Throughout the entire process, human artists are unaware of which model the image is generated
from. Fig.5 shows that RAPHAEL surpasses all other models in both image-text alignment and
image quality in the user study, indicating that RAPHAEL can generate high-artistry images that
conform to the text.

Extensions to LoRA, ControlNet, and SR-GAN. RAPHAEL can be further extended by incorporat-
ing LoRA, ControlNet, and SR-GAN. In Appendix 7.8, we present a comparison between RAPHAEL
and Stable Diffusion utilizing LoRA. RAPHAEL demonstrates superior robustness against overfitting
compared to Stable Diffusion. We also demonstrate RAPHAEL with a canny-based ControlNet.
Furthermore, by employing a tailormade SR-GAN model, we enhance the image resolution to
4096× 6144.

4.2 Ablation Study

Evaluate every module in RAPHAEL. We conduct a comprehensive assessment of each module
within the RAPHAEL model, utilizing the CLIP [14] score to measure image-text alignment. Given
the significance of classifier-free guidance weight in controlling image quality and text alignment,
we present ablation results as trade-off curves between CLIP and FID scores across a range of
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(a) Impact of ! and "!. (c) Impact of experts.(b) FID-CLIP score curves.

Figure 6: Ablation Study. (a) examines the selection of α and Tc. (b) presents the trade-off between FID
and CLIP scores for the complete RAPHAEL model and its variants without space-MoE, time-MoE, and
edge-supervised learning. (c) visualizes the correlation between FID-5k and runtime complexity (measured
in terms of the number of DDIM [34] steps for an image per second) as a function of the number of experts
employed. Notably, the computational complexity is predominantly influenced by the number of spatial experts.

guidance weights [33], specifically 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0. Fig.6b compares these curves for
the complete RAPHAEL model and its variants without space-MoE, edge-supervised learning, and
time-MoE, respectively. Our findings indicate that all modules contribute effectively. For example,
space-MoE substantially enhances the CLIP score and the optimal guidance weight for the sampler
shifts from 3.0 to 4.5. Moreover, at the same guidance weight, space-MoE considerably reduces the
FID, resulting in a significant improvement in image quality.

Choice of α and Tc. As depicted in Fig.6a, we observe that α = 0.2 delivers the best performance,
implying a balance between preserving adequate features and avoiding the use of the entire latent
features. An appropriate threshold value for Tc terminates edge-supervised learning when the
diffusion timestep is large. Our experiments reveal that a suitable choice for Tc is 500, ensuring the
effective learning of texture information.

Performance and Runtime Analysis on Number of Experts. We offer an examination of the
number of experts, ranging from 0 to 8, in Fig.6c. For each setting, we employ 100 million training
samples. Our results demonstrate that increasing the number of experts improves FID (lower
values are preferable). However, adding spatial experts introduces additional computations, with
the computational complexity bounded by the total number of experts. Once all available experts
have been deployed, the computational complexity ceases to grow. In the right-hand side of Fig.6c,
we provide a runtime analysis for 40 input tokens, ensuring the utilization of all space experts. For
instance, when the number of experts is 6, the inference speed decreases by 24% but yields superior
fidelity. This remains faster than previous diffusion models such as Imagen [1] and eDiff-I [4].

5 Related Work

We review related works from two perspectives, mixture-of-experts and text-to-image generation.
More related works can be found in Appendix 7.4. Firstly, the Mixture-of-Experts (MoE) method
[7, 8] partitions model parameters into distinct subsets, each termed an “expert”. The MoE paradigm
finds applicability beyond language processing tasks, extending to visual models [35] and Mixture-
of-Modality-Experts within multi-modal transformers [36]. Additionally, efforts are being made to
accelerate the training or inference processes for MoE [37, 38]. Secondly, text-to-image generation
is to synthesize images from natural language descriptions. Early approaches relied on generative
adversarial networks (GANs) [39, 40, 41, 42] to generate images. More recently, with the transfor-
mative success of transformers in generative tasks, models such as DALL-E [43], Cogview [44],
and Make-A-Scene [29] have treated text-to-image generation as a sequence-to-sequence problem,
utilizing auto-regressive transformers as generators and employing text/image tokens as input/output
sequences. Recently, another research direction has focused on diffusion models by integrating
textual conditioning within denoising steps, like Stable Diffusion [2], DALL-E 2 [3], eDiff-I [4],
ERNIE-ViLG 2.0 [5], and Imagen [1].
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6 Conclusion

This paper introduces RAPHAEL, a novel text-conditional image diffusion model capable of gen-
erating highly-artistic images using a large-scale mixture of diffusion paths. We carefully design
space-MoE and time-MoE within an edge-supervised learning framework, enabling RAPHAEL to
accurately portray text prompts, enhance the alignment between textual concepts and image regions,
and produce images with superior aesthetic appeal. Comprehensive experiments demonstrate that
RAPHAEL surpasses previous approaches, such as Stable Diffusion, ERNIE-ViLG 2.0, DeepFloyd,
and DALL-E 2, in both FID-30k and the human evaluation benchmark ViLG-300. Additionally,
RAPHAEL can be extended using LoRA, ControlNet, and SR-GAN. We believe that RAPHAEL has
the potential to advance image generation research in both academia and industry.

Limitation and Potential Negative Societal Impact. We acknowledge some limitations in our
paper that require attention. One limitation is the direct binarization of the attention map, which
may result in the loss of some information. An adaptive module should be proposed to address
this issue effectively. Additionally, the performance may be affected by failure cases of the edge
detector, leading to potential degradation. We plan to explore solutions for these limitations in our
future work. The potential negative social impact is to use the RAPHAEL API to create images
containing misleading or false information. This issue potentially presents in all powerful text-to-
image generators. We will solve this issue (e.g., by prompt filtering) before releasing the API to the
public.
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