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Abstract

The question of what makes a data distribution suitable for deep learning is a funda-1

mental open problem. Focusing on locally connected neural networks (a prevalent2

family of architectures that includes convolutional and recurrent neural networks as3

well as local self-attention models), we address this problem by adopting theoretical4

tools from quantum physics. Our main theoretical result states that a certain locally5

connected neural network is capable of accurate prediction over a data distribution6

if and only if the data distribution admits low quantum entanglement under certain7

canonical partitions of features. As a practical application of this result, we derive a8

preprocessing method for enhancing the suitability of a data distribution to locally9

connected neural networks. Experiments with widespread models over various10

datasets demonstrate our findings. We hope that our use of quantum entanglement11

will encourage further adoption of tools from physics for formally reasoning about12

the relation between deep learning and real-world data.13

1 Introduction14

Deep learning is delivering unprecedented performance when applied to data modalities involving15

images, text and audio. On the other hand, it is known both theoretically and empirically [52, 1] that16

there exist data distributions over which deep learning utterly fails. The question of what makes a17

data distribution suitable for deep learning is a fundamental open problem in the field.18

A prevalent family of deep learning architectures is that of locally connected neural networks. It19

includes, among others: (i) convolutional neural networks, which dominate the area of computer20

vision; (ii) recurrent neural networks, which were the most common architecture for sequence21

(e.g. text and audio) processing, and are experiencing a resurgence by virtue of S4 models [26]; and22

(iii) local variants of self-attention neural networks [46]. Conventional wisdom postulates that data23

distributions suitable for locally connected neural networks are those exhibiting a “local nature,”24

and there have been attempts to formalize this intuition [64, 28, 14]. However, to the best of our25

knowledge, there are no characterizations providing necessary and sufficient conditions for a data26

distribution to be suitable to a locally connected neural network.27

A seemingly distinct scientific discipline tying distributions and computational models is quantum28

physics. There, distributions of interest are described by tensors, and the associated computational29

models are tensor networks. While there is shortage in formal tools for assessing the suitability of30

data distributions to deep learning architectures, there exists a widely accepted theory that allows for31

assessing the suitability of tensors to tensor networks. The theory is based on the notion of quantum32

entanglement, which quantifies dependencies that a tensor admits under partitions of its axes (for33

a given tensor A and a partition of its axes to sets K and Kc, the entanglement is a non-negative34

number quantifying the dependence that A induces between K and Kc).35
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In this paper, we apply the foregoing theory to a tensor network equivalent to a certain locally36

connected neural network, and derive theorems by which fitting a tensor is possible if and only37

if the tensor admits low entanglement under certain canonical partitions of its axes. We then38

consider the tensor network in a machine learning context, and find that its ability to attain low39

approximation error, i.e. to express a solution with low population loss, is determined by its ability to40

fit a particular tensor defined by the data distribution, whose axes correspond to features. Combining41

the latter finding with the former theorems, we conclude that a locally connected neural network is42

capable of accurate prediction over a data distribution if and only if the data distribution admits low43

entanglement under canonical partitions of features. Experiments with different datasets corroborate44

this conclusion, showing that the accuracy of common locally connected neural networks (including45

modern convolutional, recurrent, and local self-attention neural networks) is inversely correlated to46

the entanglement under canonical partitions of features in the data (the lower the entanglement, the47

higher the accuracy, and vice versa).48

The above results bring forth a recipe for enhancing the suitability of a data distribution to locally49

connected neural networks: given a dataset, search for an arrangement of features which leads to low50

entanglement under canonical partitions, and then arrange the features accordingly. Unfortunately,51

the above search is computationally prohibitive. However, if we employ a certain correlation-52

based measure as a surrogate for entanglement, i.e. as a gauge for dependence between sides of a53

partition of features, then the search converts into a succession of minimum balanced cut problems,54

thereby admitting use of well-established graph theoretical tools, including ones designed for large55

scale [29, 56]. We empirically evaluate this approach on various datasets, demonstrating that it56

substantially improves prediction accuracy of common locally connected neural networks (including57

modern convolutional, recurrent, and local self-attention neural networks).58

The data modalities to which deep learning is most commonly applied — namely ones involving59

images, text and audio — are often regarded as natural (as opposed to, for example, tabular data60

fusing heterogeneous information). We believe the difficulty in explaining the suitability of such61

modalities to deep learning may be due to a shortage in tools for formally reasoning about natural62

data. Concepts and tools from physics — a branch of science concerned with formally reasoning63

about natural phenomena — may be key to overcoming said difficulty. We hope that our use of64

quantum entanglement will encourage further research along this line.65

2 Preliminaries66

For simplicity, the main text treats locally connected neural networks whose input data is one67

dimensional (e.g. text and audio). We defer to Appendix I an extension of the analysis and experiments68

to models intaking data of arbitrary dimension (e.g. two-dimensional images). Due to lack of space,69

we also defer our review of related work to Appendix A.70

We use ‖·‖ and 〈·, ·〉 to denote the Euclidean (Frobenius) norm and inner product, respectively.71

We shorthand [N ] := {1, . . . , N}, where N ∈ N. The complement of K ⊆ [N ] is denoted by72

Kc := [N ] \ K.73

2.1 Tensors and Tensor Networks74

For our purposes, a tensor is a multi-dimensional array A ∈ RD1×···×DN , where N ∈ N is its75

dimension and D1, . . . , DN ∈ N are its axes lengths. The (d1, . . . , dN )’th entry of A is denoted76

Ad1,...,dN .77

Contraction between tensors is a generalization of multiplication between matrices. Two matrices78

A ∈ RD1×D2 and B ∈ RD′1×D′2 can be multiplied if D2 = D′1, in which case we get a matrix in79

RD1×D′2 holding
∑D2

d=1 Ad1,d ·Bd,d′2 in entry (d1, d
′
2) ∈ [D1]× [D′2]. More generally, two tensors80

A ∈ RD1×···×DN and B ∈ RD′1×···×D′N′ can be contracted along axis n ∈ [N ] of A and n′ ∈ [N ′]81

of B if Dn = D′n′ , in which case we get a tensor of size D1×· · ·Dn−1×Dn+1×· · ·×DN ×D′1×82

· · · ×D′n′−1 ×D′n′+1 · · · ×D′N ′ holding
∑Dn
d=1Ad1,...,dn−1,d,dn+1,...,dN · Bd′1,...,d′n′−1

,d,d′
n′+1

,...,d′
N′

83

in the entry indexed by {dk ∈ [Dk]}k∈[N ]\{n} and {d′k ∈ [D′k]}k∈[N ′]\{n′}.84

Tensor networks are prominent computational models for fitting (i.e. representing) tensors. More85

specifically, a tensor network is a weighted graph that describes formation of a (typically high-86

dimensional) tensor via contractions between (typically low-dimensional) tensors. As customary87
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Figure 1: Tensor networks form a graphical language for fitting (i.e. representing) tensors through tensor
contractions. Tensor network definition: Every node in a tensor network is associated with a tensor, whose
dimension is equal to the number of edges emanating from the node. An edge connecting two nodes specifies
contraction between the tensors associated with the nodes (Section 2.1), where the weight of the edge signifies
the respective axes lengths. Tensor networks may also contain open edges, i.e. edges that are connected to a node
on one side and are open on the other. The number of such open edges is equal to the dimension of the tensor
produced by contracting the tensor network. Illustrations: Presented are exemplar tensor network diagrams of:
(a) an N -dimensional tensor A ∈ RD1×···×DN ; (b) a vector-matrix multiplication between M ∈ RD1×D2 and
v ∈ RD2 , which results in the vector Mv ∈ RD1 ; and (c) a tensor network generatingW ∈ RD1×D2×D3 .

(cf. [42]), we will present tensor networks via graphical diagrams to avoid cumbersome notation —88

see Figure 1 for details.89

2.2 Quantum Entanglement90

In quantum physics, the distribution of possible states for a multi-particle (“many body") system is91

described by a tensor, whose axes are associated with individual particles. A key property of the92

distribution is the dependence it admits under a given partition of the particles (i.e. between a given93

set of particles and its complement). This dependence is formalized through the notion of quantum94

entanglement, defined using the distribution’s description as a tensor — see Definition 1 below.95

Quantum entanglement lies at the heart of a widely accepted theory which allows assessing the ability96

of a tensor network to fit a given tensor (cf. [15, 35]). In Section 3 we specialize this theory to a97

tensor network equivalent to a certain locally connected neural network.98

Definition 1. For a tensor A ∈ RD1×···×DN and subset of its axes K ⊆ [N ], let JA;KK ∈99

R
∏
n∈KDn×

∏
n∈Kc Dn be the arrangement of A as a matrix where rows correspond to axes K and100

columns correspond to the remaining axesKc := [N ]\K. Denote by σ1 ≥ · · · ≥ σDK ∈ R≥0 the sin-101

gular values of JA;KK, where DK := min{∏n∈KDn,
∏
n∈Kc Dn}. The quantum entanglement1 of102

A with respect to the partition (K,Kc) is the entropy of the distribution {ρd := σ2
d/
∑DK
d′=1 σ

2
d′}

DK
d=1,103

i.e. QE(A;K) := −∑DK
d=1 ρd ln(ρd). By convention, if A = 0 then QE(A;K) = 0.104

3 Low Entanglement Under Canonical Partitions Is Necessary and105

Sufficient for Fitting Tensor106

In this section, we prove that a tensor network equivalent to a certain locally connected neural network107

can fit a tensor if and only if the tensor admits low entanglement under certain canonical partitions of108

its axes. We begin by introducing the tensor network (Section 3.1). Subsequently, we establish the109

necessary and sufficient condition required for it to fit a given tensor (Section 3.2). For conciseness,110

the treatment in this section is limited to one-dimensional (sequential) models; see Appendix I.1 for111

an extension to arbitrary dimensions.112

3.1 Tensor Network Equivalent to a Locally Connected Neural Network113

Let N ∈ N, and for simplicity suppose that N = 2L for some L ∈ N. We consider a tensor network114

with an underlying perfect binary tree graph of height L, which generates WTN ∈ RD1×···×DN .115

Figure 2(a) provides its diagrammatic definition. For simplicity, the lengths of axes corresponding to116

inner (non-open) edges are taken to be R ∈ N, referred to as the width of the tensor network.117

As identified by previous works, the tensor network depicted in Figure 2(a) is equivalent to a certain118

locally connected neural network (with polynomial non-linearity — see, e.g., [11, 9, 35, 49]). In119

particular, contracting the tensor network with vectors x(1) ∈ RD1 , . . . ,x(N) ∈ RDN , as illustrated120

in Figure 2(b), can be viewed as a forward pass of the data instance (x(1), . . . ,x(N)) through a locally121

1There exist multiple notions of entanglement in quantum physics (see, e.g., [35]). The one we consider is
the most common, known as entanglement entropy.
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Figure 2: The analyzed tensor network equivalent to a locally connected neural network. (a) We consider a
tensor network adhering to a perfect binary tree connectivity with N = 2L leaf nodes, for L ∈ N, generating
WTN ∈ RD1×···×DN . Axes corresponding to open edges are indexed such that open edges descendant to
any node of the tree have contiguous indices. The lengths of axes corresponding to inner (non-open) edges
are equal to R ∈ N, referred to as the width of the tensor network. (b) Contracting WTN with vectors
x(1) ∈ RD1 , . . . ,x(N) ∈ RDN produces 〈⊗Nn=1x

(n),WTN〉. Performing these contractions from leaves to root
can be viewed as a forward pass of a data instance (x(1), . . . ,x(N)) through a certain locally connected neural
network (with polynomial non-linearity; see, e.g., [11, 9, 35, 49]). Accordingly, we call the tensor network
generatingWTN a locally connected tensor network.

connected neural network. This computation results in a scalar equal to
〈
⊗Nn=1x

(n),WTN

〉
, where ⊗122

stands for the outer product.2 In light of its equivalence to a locally connected neural network, we123

will refer to the tensor network as a locally connected tensor network. We note that for the equivalent124

neural network to be practical (in terms of memory and runtime), the width of the tensor network R125

needs to be of moderate size. Specifically, R cannot be exponential in the dimension N , meaning126

ln(R) needs to be much smaller than N .127

By virtue of the locally connected tensor network’s equivalence to a deep neural network, it has been128

paramount for the study of expressiveness and generalization in deep learning [11, 8, 9, 12, 13, 53, 34,129

35, 2, 30, 31, 36, 47, 48, 49, 50]. Although the equivalent deep neural network (which has polynomial130

non-linearity) is less common than other neural networks (e.g., ones with ReLU non-linearity), it131

has demonstrated competitive performance in practice [7, 10, 54, 57, 22]. More importantly, its132

analyses (through its equivalence to the locally connected tensor network) brought forth numerous133

insights that were demonstrated empirically and led to development of practical tools for common134

locally connected architectures. Continuing this line, we will demonstrate our theoretical insights135

through experiments with widespread convolutional, recurrent and local self-attention architectures136

(Section 4.3), and employ our theory for deriving an algorithm that enhances the suitability of a data137

distribution to said architectures (Section 5).138

3.2 Necessary and Sufficient Condition for Fitting Tensor139

Herein we show that the ability of the locally connected tensor network (defined in Section 3.1) to fit140

(i.e. represent) a given tensor is determined by the entanglements that the tensor admits under the141

following canonical partitions of [N ].142

Definition 2. The canonical partitions of [N ] (illustrated in Figure 4 of Appendix B) are:143

CN :=
{

(K,Kc) : K =
{

2L−l · (n− 1) + 1, . . . , 2L−l · n
}
, l ∈

{
0, . . . , L

}
, n ∈

[
2l
]}

.

By appealing to known upper bounds on the entanglements that a given tensor network supports [15,144

35], we establish that if the locally connected tensor network can fit a given tensor, that tensor must145

admit low entanglement under the canonical partitions of its axes. Namely, suppose thatWTN — the146

tensor generated by the locally connected tensor network — well-approximates an N -dimensional147

tensor A. Then, Theorem 1 below shows that the entanglement of A with respect to a canonical148

partition cannot be much larger than ln(R) (recall that R is the width of the locally connected tensor149

network), whereas the entanglement attainable by an arbitrary tensor with respect to a canonical150

partition can be linear in the dimension N .151

In the other direction, Theorem 2 below implies that low entanglement under the canonical partitions152

is not only necessary for a tensor to be fit by the locally connected tensor network, but also sufficient.153

2For any {x(n) ∈ RDn}Nn=1, the outer product ⊗Nn=1x
(n) ∈ RD1×···×DN is defined element-wise by

[⊗Nn=1x
(n)]d1,...,dN =

∏N
n=1 x

(n)
dn

, where d1 ∈ [D1], . . . , dN ∈ [DN ].

4



Theorem 1. LetWTN ∈ RD1×···×DN be a tensor generated by the locally connected tensor network154

defined in Section 3.1, and let A ∈ RD1×···×DN . For any ε ∈ [0, ‖A‖/4], if ‖WTN −A‖ ≤ ε,155

then for all canonical partitions (K,Kc) ∈ CN (Definition 2 it holds that QE(A;K) ≤ ln(R) +156

2ε
‖A‖ · ln(DK) + 2

√
2ε
‖A‖ , where DK := min{∏n∈KDn,

∏
n∈Kc Dn}.3 In contrast, there exists157

A′ ∈ RD1×···×DN such that for all canonical partitions (K,Kc) ∈ CN it holds that QE(A′;K) ≥158

min{|K|, |Kc|} · ln(minn∈[N ]Dn).159

Proof sketch (proof in Appendix K.2). In general, the entanglements that a tensor network supports160

can be upper bounded through cuts in its graph [15, 35]. For the locally connected tensor network,161

these bounds imply that QE(WTN;K) ≤ ln(R) for any canonical partition (K,Kc). The first part of162

the theorem then follows by showing that ifWTN and A are close, then so are their entanglements.163

The second part is established using a construction from [17], providing a tensor with maximal164

entanglements under all partitions of its axes.165

Theorem 2. Let A ∈ RD1×···×DN and ε > 0. Suppose that for all canonical partitions (K,Kc) ∈166

CN (Definition 2) it holds that QE(A;K) ≤ ε2

(2N−3)‖A‖2 · ln(R). Then, there exists an assignment167

for the tensors constituting the locally connected tensor network (defined in Section 3.1) such that it168

generatesWTN ∈ RD1×···×DN satisfying ‖WTN −A‖ ≤ ε.169

Proof sketch (proof in Appendix K.3). We show that if A has low entanglement under a canonical170

partition (K,Kc) ∈ CN , then the singular values of JA;KK must decay rapidly (recall that JA;KK is171

the arrangement of A as a matrix where rows correspond to axes K and columns correspond to the172

remaining axes). The approximation guarantee is then obtained through a construction from [25],173

which is based on truncated singular value decompositions of every JA;KK for (K,Kc) ∈ CN .174

4 Low Entanglement Under Canonical Partitions Is Necessary and175

Sufficient for Accurate Prediction176

This section considers the locally connected tensor network from Section 3.1 in a machine learning177

setting. We show that attaining low population loss amounts to fitting a tensor defined by the data178

distribution, whose axes correspond to features (Section 4.1). Applying the theorems of Section 3.2,179

we then conclude that the locally connected tensor network is capable of accurate prediction if and only180

if the data distribution admits low entanglement under canonical partitions of features (Section 4.2).181

This conclusion is corroborated through experiments, demonstrating that the performance of common182

locally connected neural networks (including convolutional, recurrent, and local self-attention neural183

networks) is inversely correlated with the entanglement under canonical partitions of features in184

the data (Section 4.3). For conciseness, the treatment in this section is limited to one-dimensional185

(sequential) models and data; see Appendix I.2 for an extension to arbitrary dimensions.186

4.1 Accurate Prediction Is Equivalent to Fitting Data Tensor187

As discussed in Section 3.1, the locally connected tensor network generatingWTN ∈ RD1×···×DN188

is equivalent to a locally connected neural network, whose forward pass over a data instance189

(x(1), . . . ,x(N)) yields
〈
⊗Nn=1x

(n),WTN

〉
, where x(1) ∈ RD1 , . . . ,x(N) ∈ RDN . Motivated by this190

fact, we consider a binary classification setting, in which the label y of the instance (x(1), . . . ,x(N))191

is either 1 or −1, and the prediction ŷ is taken to be the sign of the output of the neural network,192

i.e. ŷ = sign
(〈
⊗Nn=1x

(n),WTN

〉)
.193

Suppose we are given a training set of labeled instances
{(

(x(1,m), . . . ,x(N,m)), y(m)
)}M
m=1

drawn194

i.i.d. from some distribution, and we would like to learn the parameters of the neural network through195

the soft-margin support vector machine (SVM) objective, i.e. by optimizing:196

min‖WTN‖≤B
1

M

∑M

m=1
max

{
0, 1− y(m)

〈
⊗Nn=1x

(n,m),WTN

〉}
, (1)

for a predetermined constant B > 0.We assume instances are normalized, i.e. the distribution is197

such that all vectors constituting an instance have norm no greater than one. We also assume that198

3If A = 0, then ε = 0. In this case, the expression ε/‖A‖ is by convention equal to zero.
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B ≤ 1. In this case
∣∣y(m)

〈
⊗Nn=1x

(n,m),WTN

〉∣∣ ≤ 1, so our optimization problem can be expressed199

as min‖WTN‖≤B 1− 〈Demp,WTN〉, where200

Demp :=
1

M

∑M

m=1
y(m) · ⊗Nn=1x

(n,m) (2)

is referred to as the empirical data tensor. This means that the accuracy over the training data is201

determined by how large the inner product 〈Demp,WTN〉 is.202

Disregarding the degenerate case of Demp = 0 (i.e. that in which the optimized ob-203

jective is constant), the inner products
〈
Demp,WTN

〉
and

〈
Demp/‖Demp‖,WTN

〉
differ by204

only a multiplicative (positive) constant, so fitting the training data amounts to optimizing205

max‖WTN‖≤B 〈Demp/‖Demp‖,WTN〉. IfWTN can represent someW , then it can also represent c ·206

W for every c ∈ R. Thus, we may equivalently optimize maxWTN 〈Demp/‖Demp‖,WTN/‖WTN‖〉207

and multiplying the result by B. Fitting the training data therefore boils down to minimizing208 ∥∥ WTN

‖WTN‖ −
Demp

‖Demp‖
∥∥. In other words, the accuracy achievable over the training data is determined by209

the extent to which WTN

‖WTN‖ can fit the normalized empirical data tensor Demp

‖Demp‖ .210

The arguments above are independent of the training set size, and in fact apply to the population loss211

as well, in which case Demp is replaced by the population data tensor:212

Dpop := E(x(1),...,x(N)),y

[
y · ⊗Nn=1x

(n)
]

. (3)

Disregarding the degenerate case of Dpop = 0 (i.e. that in which the population loss is constant), it213

follows that the achievable accuracy over the population is determined by the extent to which WTN

‖WTN‖214

can fit the normalized population data tensor Dpop

‖Dpop‖ . We refer to the minimal distance from it as the215

suboptimality in achievable accuracy.216

Definition 3. In the context of the classification setting above, the suboptimality in achievable217

accuracy is SubOpt := minWTN

∥∥∥ WTN

‖WTN‖ −
Dpop

‖Dpop‖

∥∥∥.218

4.2 Necessary and Sufficient Condition for Accurate Prediction219

In the classification setting of Section 4.1, by invoking Theorems 1 and 2 from Section 3.2, we220

conclude that the suboptimality in achievable accuracy is small if and only if the population data221

tensor Dpop admits low entanglement under the canonical partitions of its axes (Definition 2).222

Corollary 1. Consider the classification setting of Section 4.1, and let ε ∈ [0, 1/4]. If there exists223

a canonical partition (K,Kc) ∈ CN (Definition 2) under which QE(Dpop;K) > ln(R) + 2ε ·224

ln(DK) + 2
√

2ε, where DK := min{∏n∈KDn,
∏
n∈Kc Dn}, then SubOpt > ε. Conversely, if for225

all (K,Kc) ∈ CN it holds that QE(Dpop;K) ≤ ε2

8N−12 · ln(R), then SubOpt ≤ ε.226

Proof sketch (proof in Appendix K.5). Follows from Theorems 1 and 2 after accounting for the nor-227

malization ofWTN in the suboptimality in achievable accuracy.228

Directly evaluating the conditions required by Corollary 1 — low entanglement under canonical229

partitions for Dpop — is impractical, since: (i) Dpop is defined via an unknown data distribution230

(Equation (3)); and (ii) computing the entanglements involves taking singular value decompositions231

of matrices with size exponential in the number of input variables N . Fortunately, as Proposition 1232

(in Appendix C) shows, the entanglements of Dpop under all partitions are with high probability well-233

approximated by the entanglements of the empirical data tensor Demp. Moreover, the entanglement234

of Demp under any partition can be computed efficiently, without explicitly storing or manipulating235

an exponentially large matrix — see Appendix E for an algorithm (originally proposed in [40]).236

Overall, we obtain an efficiently computable criterion (low entanglement under canonical partitions237

for Demp), that with high probability is both necessary and sufficient for low suboptimality in238

achievable accuracy — see Corollary 2 (in Appendix C).239

4.3 Empirical Demonstration240

Corollary 2 establishes that, with high probability, the locally connected tensor network (from Sec-241

tion 3.1) can achieve high prediction accuracy if and only if the empirical data tensor (Equation (2))242

admits low entanglement under canonical partitions of its axes. We corroborate our formal analysis243
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Figure 3: The prediction accuracies of common locally connected neural networks are inversely correlated with
the entanglements of the data under canonical partitions of features, in compliance with our theory (Sections 4.1
and 4.2). Left: Average entanglement under canonical partitions (Definition 2) of the empirical data tensor
(Equation (2)), for binary classification variants of the Speech Commands audio dataset [62] obtained by
performing random position swaps between features. Right: Test accuracies achieved by a convolutional neural
network (CNN) [16], S4 (a popular class of recurrent neural networks; see [26]), and a local self-attention
model [46], against the number of random feature swaps performed to create the dataset. All: Reported are the
means and standard deviations of the quantities specified above, taken over ten different random seeds. See
Appendix I.2.3 for experiments over (two-dimensional) image data and Appendix J.2 for implementation details.

through experiments, demonstrating that its conclusions carry over to common locally connected244

architectures. Namely, applying convolutional neural networks, S4 (a popular recurrent neural245

network; see [26]), and a local self-attention model [46] to different datasets, we show that the246

achieved test accuracy is inversely correlated with the entanglements of the empirical data tensor un-247

der canonical partitions. Below is a description of experiments with one-dimensional (i.e. sequential)248

models and data. Additional experiments with two-dimensional (imagery) models and data are given249

in Appendix I.2.3.250

Discerning the relation between entanglements of the empirical data tensor and performance (pre-251

diction accuracy) of locally connected neural networks requires datasets admitting different entan-252

glements. A potential way to acquire such datasets is as follows. First, select one a dataset which253

locally connected neural networks perform well, in the hopes that it admits low entanglement under254

canonical partitions; natural candidates are datasets comprising images, text or audio. Subsequently,255

create “shuffled” variants of the dataset by repeatedly swapping the position of two features chosen at256

random. This erodes the original arrangement of features in the data, and is expected to yield higher257

entanglement under canonical partitions.258

We followed the blueprint above for a binary classification version of the Speech Commands audio259

dataset [62]. Figure 3 presents test accuracies achieved by a convolutional neural network, S4,260

and a local self-attention model, as well as average entanglement under canonical partitions of the261

empirical data tensor, against the number of random feature swaps performed to create the dataset. As262

expected, when the number of swaps increases, the average entanglement under canonical partitions263

becomes higher. At the same time, in accordance with our theory, the prediction accuracies of the264

locally connected neural networks substantially deteriorate, showing an inverse correlation with the265

entanglement under canonical partitions.266

5 Enhancing Suitability of Data to Locally Connected Neural Networks267

Our analysis (Sections 3 and 4) suggests that a data distribution is suitable for locally connected neural268

networks if and only if it admits low entanglement under canonical partitions of features. Motivated269

by this observation, we derive a preprocessing algorithm aimed to enhance the suitability of a data270

distribution to locally connected neural networks (Section 5.1 and Appendix F). Empirical evaluations271

demonstrate that it significantly improves prediction accuracies of common locally connected neural272

networks on various datasets (Section 5.2). For conciseness, the treatment in this section is limited273

to one-dimensional (sequential) models and data; see Appendix I.3 for an extension to arbitrary274

dimensions.275

5.1 Search for Feature Arrangement With Low Entanglement Under Canonical Partitions276

Our analysis naturally leads to a recipe for enhancing the suitability of a data distribution to locally277

connected neural networks: given a dataset, search for an arrangement of features which leads to low278

entanglement under canonical partitions, and then arrange the features accordingly. Formally, suppose279

we have M ∈ N training instances
{(

(x(1,m), . . . ,x(N,m)), y(m)
)}M
m=1

, where y(m) ∈ {1,−1} and280

x(n,m) ∈ RD for n ∈ [N ],m ∈ [M ], with D ∈ N. Assume without loss of generality that N is a281

power of two (if this is not the case we may add constant features as needed). The aforementioned282
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recipe boils down to a search for a permutation π : [N ]→ [N ], which when applied to feature indices283

leads the empirical data tensor Demp (Equation (2)) to admit low entanglement under the canonical284

partitions of its axes (Definition 2).285

A greedy realization of the foregoing search is as follows. Initially, partition the features into two286

equally sized sets K1,1 ⊂ [N ] and K1,2 := [N ] \ K1,1 such that the entanglement of Demp with287

respect to (K1,1,K1,2) is minimal. That is, find K1,1 ∈ argminK⊂[N ],|K|=N/2QE(Demp;K). The288

permutation π will mapK1,1 to coordinates {1, . . . , N2 } andK1,2 to {N2 +1, . . . , N}. Then, partition289

K1,1 into two equally sized sets K2,1 ⊂ K1,1 and K2,2 := K1,1 \ K2,1 such that the average of entan-290

glements induced by these sets is minimal, i.e.K2,1 ∈ argminK⊂K1,1,|K|=|K1,1|/2
1
2

[
QE(Demp;K)+291

QE(Demp;K1,1 \ K)
]
. The permutation π will map K2,1 to coordinates {1, . . . , N4 } and K2,2 to292

{N4 + 1, . . . , N2 }. A partition of K1,2 into two equally sized sets K2,3 and K2,4 is obtained similarly,293

where π will map K2,3 to coordinates {N2 + 1, . . . , 3N4 } and K2,4 to { 3N4 + 1, . . . , N}. Continuing294

in the same fashion, until we reach subsets KL,1, . . . ,KL,N consisting of a single feature index each,295

fully specifies the permutation π.296

Unfortunately, the step lying at the heart of the above scheme — finding a balanced partition that297

minimizes average entanglement — is computationally prohibitive, and we are not aware of any tools298

that alleviate the computational difficulty. However, as discussed in Appendix F, if one replaces299

entanglement with an appropriate surrogate measure, then each search for a balanced partition300

minimizing average entanglement converts into a minimum balanced cut problem, which enjoys a301

wide array of established approximation tools [29]. We thus obtain a practical algorithm for enhancing302

the suitability of a data distribution to locally connected neural networks.303

5.2 Experiments304

We empirically evaluate our feature rearrangement method (detailed in Appendix F) using common305

locally connected neural networks — a convolutional neural network, an S4 (popular recurrent neural306

network; see [26], and a local self-attention model [46] — over randomly permuted audio datasets307

(Section 5.2.1) and several tabular datasets (Section 5.2.2). For brevity, we defer some implementation308

details and experiments to Appendix J. Additional experiments with two-dimensional data are given309

in Appendix I.3.3.310

5.2.1 Randomly Permuted Audio Datasets311

Section 4.3 demonstrated that audio data admits low entanglement under canonical partitions of312

features, and that randomly permuting the position of features leads this entanglement to increase,313

while substantially degrading the prediction accuracy of locally connected neural networks. A314

sensible test for our method is to evaluate its ability to recover performance lost due to the random315

permutation of features.316

For the Speech Commands dataset [62], Table 1 compares prediction accuracies of locally connected317

neural networks on the data: (i) subject to a random permutation of features; (ii) attained after318

rearranging the randomly permuted features via our method; and (iii) attained after rearranging the319

randomly permuted features via IGTD [65] — a heuristic scheme designed for convolutional neural320

networks (see Appendix A). As can be seen, our method leads to significant improvements, surpassing321

those brought forth by IGTD. Note that the performance lost due to the random permutation of features322

is not entirely recovered.4 We believe this relates to phenomena outside the scope of the theory323

underlying our method (Sections 3 and 4), for example translation invariance in data being beneficial324

in terms of generalization. Investigation of such phenomena and suitable modification of our method325

are regarded as promising directions for future work.326

5.2.2 Tabular Datasets327

The prediction accuracies of locally connected neural networks on tabular data, i.e. on data in328

which features are arranged arbitrarily, is known to be subpar [55]. Tables 2 and 5 report results329

of experiments with locally connected neural networks over standard tabular benchmarks (namely330

“semeion”, “isolet” and “dna” [59]), demonstrating that arranging features via our method leads to331

significant improvements in prediction accuracies, surpassing improvements brought forth by IGTD332

(a heuristic scheme designed for convolutional neural networks [65]). Note that our method does333

not lead to state of the art prediction accuracies on the evaluated benchmarks.5 However, the results334

4Accuracies on the original data are 59.8, 69.6 and 48.1 for CNN, S4 and Local-Attention, respectively.
5XGBoost, e.g., achieves prediction accuracies 91, 95.2 and 96 over semeion, isolet and dna, respectively.
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Table 1: Arranging features of randomly permuted audio data via our method (detailed in Appendix F) signifi-
cantly improves the prediction accuracies of locally connected neural networks. Reported are test accuracies
(mean and standard deviation over ten random seeds) of a convolutional neural network (CNN), S4 (a pop-
ular recurrent neural network; see [26]), and a local self-attention model [46], over the Speech Commands
dataset [62] subject to different arrangements of features: (i) a random arrangement; (ii) an arrangement provided
by applying our method to the random arrangement; and (iii) an arrangement provided by applying an adaptation
of IGTD [65] — a heuristic scheme designed for convolutional neural networks — to the random arrangement.
For each model, we highlight (in boldface) the highest mean accuracy if the difference between that and the
second-highest mean accuracy is statistically significant (namely, is larger than the standard deviation corre-
sponding to the former). Our method leads to significant improvements in prediction accuracies, surpassing
the improvements brought forth by IGTD. See Appendix J for experiments demonstrating its scalability and
implementation details.

Randomly Permuted Our Method IGTD

CNN 5.2 ± 0.7 17.4 ± 1.7 6.1 ± 0.4

S4 9.5 ± 0.6 30.3 ± 1.6 13 ± 2.4

Local-Attention 7.8 ± 0.3 12.9 ± 0.7 6.4 ± 0.5

Table 2: Arranging features of tabular datasets via our method (detailed in Appendix F) significantly improves
the prediction accuracies of locally connected neural networks. Reported are results of experiments analogous
to those of Table 1, but with the “semeion” and “isolet” tabular classification datasets [59]. Since to the
arrangement of features in a tabular dataset is intended to be arbitrary, we regard as a baseline the prediction
accuracies attained with a random permutation of features. As in the experiment of Table 1, rearranging the
features according to our method leads to significant improvements in prediction accuracies, surpassing the
improvements brought forth by IGTD. See Appendix J for experiments with an additional tabular dataset (“dna”)
and implementation details.

Dataset: semeion Dataset: isolet

Baseline Our Method IGTD Baseline Our Method IGTD

CNN 77.7 ± 1.4 80.0 ± 1.8 78.9 ± 1.9 91.0 ± 0.6 92.5 ± 0.4 92.0 ± 0.6

S4 82.5 ± 1.1 89.7 ± 0.5 86.0 ± 0.7 92.3 ± 0.4 93.4 ± 0.3 92.7 ± 0.5

Local-Attention 60.9 ± 4.9 78.0 ± 1.7 67.8 ± 2.6 82.0 ± 1.6 89.0 ± 0.6 85.7 ± 1.9

suggest that it renders locally connected neural networks a viable option for tabular data. This option335

is particularly appealing in when the number of features is large settings, where many alternative336

approaches (e.g. ones involving fully connected neural networks) are impractical.337

6 Conclusion338

The question of what makes a data distribution suitable for deep learning is a fundamental open339

problem. Focusing on locally connected neural networks — a prevalent family of deep learning340

architectures that includes as special cases convolutional neural networks, recurrent neural networks341

(in particular the recent S4 models) and local self-attention models — we address this problem by342

adopting theoretical tools from quantum physics. Our main theoretical result states that a certain343

locally connected neural network is capable of accurate prediction (i.e. can express a solution with344

low population loss) over a data distribution if and only if the data distribution admits low quantum345

entanglement under certain canonical partitions of features. Experiments with widespread locally346

connected neural networks corroborate this finding.347

Our theory suggests that the suitability of a data distribution to locally connected neural networks348

may be enhanced by arranging features such that low entanglement under canonical partitions is349

attained. Employing a certain surrogate for entanglement, we show that this arrangement can be350

implemented efficiently, and that it leads to substantial improvements in the prediction accuracies of351

common locally connected neural networks on various datasets.352

The data modalities to which deep learning is most commonly applied — namely ones involving353

images, text and audio — are often regarded as natural (as opposed to, for example, tabular data354

fusing heterogeneous information). We believe the difficulty in explaining the suitability of such355

modalities to deep learning may be due to a shortage in tools for formally reasoning about natural356

data. Concepts and tools from physics — a branch of science concerned with formally reasoning357

about natural phenomena — may be key to overcoming said difficulty. We hope that our use of358

quantum entanglement will encourage further research along this line.359
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A Related Work503

Characterizing formal properties of data distributions that make them suitable for deep learning504

is a major open problem in the field. A number of papers provide sufficient conditions on a data505

distribution which imply that it is learnable by certain neural networks [4, 63, 39, 19, 20, 43, 60, 5].506

However, these sufficient conditions are restrictive, and are not argued to be necessary for any aspect507

of learning (i.e. for expressiveness, optimization or generalization). To the best of our knowledge,508

this paper is the first to derive a verifiable condition on a data distribution that is both necessary and509

sufficient for aspects of learning to be achievable by a neural network. We note that the condition we510

derive resembles past attempts to quantify the structure of data via quantum entanglement and mutual511

information [40, 14, 38, 6, 64, 28, 21]. However, such quantifications have not been formally related512

to learnability by neural networks.513

The current paper follows a long line of research employing tensor networks as theoretical models514

for studying deep learning. This line includes works analyzing the expressiveness of different neural515

network architectures [11, 54, 8, 9, 53, 13, 34, 2, 35, 30, 36, 31, 50], their generalization [37], and516

the implicit regularization induced by their optimization [47, 48, 49, 61, 24]. Similarly to prior works517

we focus on expressiveness, yet our approach differs in that we incorporate the data distribution into518

the analysis and tackle the question of what makes data suitable for deep learning.519

The algorithm we propose for enhancing the suitability of data to locally connected neural networks520

can be considered a form of representation learning. Representation learning is a vast field, far too521

broad to survey here (for an overview see [41]). Our algorithm, which learns a representation via522

rearrangement of features in the data, is complementary to most representation learning methods523

in the literature. A notable method that is also based on feature rearrangement is IGTD [65] — a524

heuristic scheme designed for convolutional neural networks. In contrast to IGTD, our algorithm is525

theoretically grounded. Moreover, we demonstrate empirically in Section 5 that it leads to higher526

prediction accuracies.527

B Illustration of Canonical Partitions528

𝑙 = 1

𝑙 = 2

𝑙 = 𝐿

𝑙 = 0 K∈ ∈ Kc

Figure 4: The canonical partitions of [N ], for N = 2L with L ∈ N. Every l ∈ {0, . . . , L} contributes 2l

canonical partitions, the n’th one induced by K = {2L−l · (n− 1) + 1, . . . , 2L−l · n}.

C Efficiently Computable Criterion for Low Suboptimality in Achievable529

Accuracy530

In this appendix, we provide the formal claims deferred from Section 4.2. Specifically, Proposition 1531

shows that the entanglements ofDpop under all partitions are with high probability well-approximated532

by the entanglements of the empirical data tensor Demp. Corollary 2 establishes the efficiently com-533

putable criterion (low entanglement under canonical partitions for Demp), that with high probability534

is both necessary and sufficient for low suboptimality in achievable accuracy.535

Proposition 1. Consider the classification setting of Section 4.1, and let δ ∈ (0, 1) and536

γ > 0. If the training set size M satisfies M ≥ 128 ln( 2
δ )(ln(maxK′⊆[N]DK′ ))

4

‖Dpop‖2γ4 , where DK′ :=537

min{∏n∈K′ Dn,
∏
n∈K′c Dn} for K′ ⊆ [N ], then with probability at least 1− δ:538

|QE(Demp;K)−QE(Dpop;K)| ≤ γ for all K ⊆ [N ] .
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Proof sketch (proof in Appendix K.4). A standard generalization of the Hoeffding inequality to ran-539

dom vectors in a Hilbert space allows bounding ‖Demp −Dpop‖ with high probability. Bounding540

differences between entanglements via Euclidean distance concludes the proof.541

Corollary 2. Consider the setting and notation of Corollary 1, with ε 6= 0. For δ ∈ (0, 1), suppose542

that the training set size M satisfies M ≥ 128 ln( 2
δ )((16N−24) ln(maxK′⊆[N]DK′ ))

4

‖Dpop‖2(ln(R)·ε2)4 . Then, with prob-543

ability at least 1 − δ the following hold. First, if there exists a canonical partition (K,Kc) ∈ CN544

(Definition 2) under which QE(Demp;K) > (1 + ε2

16N−24 ) · ln(R) + 2ε · ln(DK) + 2
√

2ε, then:545

SubOpt > ε .

Second, if for all (K,Kc) ∈ CN it holds that QE(Demp;K) ≤ ε2

16N−24 · ln(R), then:546

SubOpt ≤ ε .

Moreover, the conditions above on the entanglements of Demp can be evaluated efficiently (in547

O(DN2M2 +NM3) time O(DNM +M2) and memory, where D := maxn∈[N ]Dn).548

Proof. Implied by Corollary 1, Proposition 1 with γ = ε2

16N−24 ·ln(R) and Algorithm 1 in Appendix E.549

550

D Impossibility Result for Improving the Sufficient Condition in Theorem 2551

The sufficient condition in Theorem 2 (from Section 3.2) for approximating A ∈ RD1×···×DN552

requires entanglements to approach zero as the desired approximation error ε does, in contrast to553

the necessary condition in Theorem 1 where they approach ln(R). As Proposition 2 shows, this is554

unavoidable in the absence of further knowledge regarding A. However, if for all canonical partitions555

(K,Kc) ∈ CN the singular values of JA;KK trailing after the R’th one are small, then we can also556

guarantee an assignment for the locally connected tensor network satisfying ‖WTN −A‖ ≤ ε, while557

QE(A;K) can be on the order of ln(R) for all (K,Kc) ∈ CN . Indeed, this follows directly from a558

result in [25], which we restate as Lemma 6 for convenience.559

Proposition 2. Let f : R2 → R≥0 be monotonically increasing in its second variable. Suppose560

that the following statement holds: if a tensor A ∈ RD1×···×DN satisfies QE(A;K) ≤ f(‖A‖, ε)561

for all canonical partitions (K,Kc) ∈ CN (Definition 2), then there exists an assignment for the562

tensors constituting the locally connected tensor network (defined in Section 3.1) for whichWTN ∈563

RD1×···×DN upholds:564

‖WTN −A‖ ≤ ε .

Then, for any A ∈ RD1×···×DN , as the desired approximation error ε goes to zero, so does the565

sufficient condition on entanglements, i.e.:566

limε→0 f(‖A‖, ε) = 0 .

Proof. Suppose otherwise, i.e. that there exists some a > 0 such that limε→0 f(a, ε) =567

infε>0 f(a, ε) = c > 0. Let A be a tensor with ‖A‖ = a such that QE(A;K) < c for all568

canonical partitions (K,Kc) ∈ CN . Then by assumption, for all ε > 0 there exist a tensor generated569

by the locally connected tensor network, which we denote byWTN(ε) ∈ RD1×···×DN , that satisfies:570

‖WTN(ε)−A‖ ≤ ε .

By Lemma 4, for all ε > 0 we have that571

rank(JWTN(ε);KK) ≤ R ,

so by the lower semicontinuity of the matrix rank, we have that rank(JA;KK)) ≤ R as well. But, there572

are tensors for which this leads to a contradiction, namely tensors with arbitrary low entanglement573

across all partitions but nearly maximal rank. Indeed, consider tensors of the form574

Q(δ) = a · ⊗
N
n=1v

(n) + δ · B
‖⊗Nn=1v

(n) + δ · B‖ ∈ RD1×···×DN ,
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where {v(n) ∈ RDn}Nn=1 are (non-zero) vectors, δ > 0 and B ∈ RD1×···×DN is some tensor with575

matricizations of maximal rank across all canonical partitions (for a proof of the existence of such a576

tensor see Claim 3 in [35]). Note that ‖Q(δ)‖ = a for all δ > 0. By the triangle inequality have577
∥∥∥∥
Q(δ)

a
− ⊗Nn=1v

(n)

‖⊗Nn=1v
(n)‖

∥∥∥∥ ≤
δ · ‖B‖

‖⊗Nn=1v
(n) + δ · B‖ +

∥∥∥∥
⊗Nn=1v

(n)

‖⊗Nn=1v
(n) + δ · B‖ −

⊗Nn=1v
(n)

‖⊗Nn=1v
(n)‖

∥∥∥∥ ,

and so578

lim
δ→0

∥∥∥∥
Q(δ)

a
− ⊗Nn=1v

(n)

‖⊗Nn=1v
(n)‖

∥∥∥∥ = 0 .

Thus, from Lemma 8 we know that579

lim
δ→0

∣∣∣∣QE
(Q(δ)

a
;K
)
−QE

( ⊗Nn=1v
(n)

‖⊗Nn=1v
(n)‖ ;K

)∣∣∣∣ = 0

for all (K,Kc) ∈ CN . Furthermore, for any (K,Kc) ∈ CN :580

QE

( ⊗Nn=1v
(n)

‖⊗Nn=1v
(n)‖ ;K

)
= 0 ,

and therefore by Theorem 1 for sufficiently small δ > 0 we have581

QE(Q(δ);K) < c ,
for all (K,Kc) ∈ CN . However, rank(JQ(δ);KK) is (nearly) maximal for all canonical partitions.582

Indeed, by the triangle inequality for matrix rank we get583

rank(JQ(δ);KK) ≥ rank (JB;KK)− rank
(r
⊗Nn=1v

(n);K
z)

= DK − 1 ,

where DK := min{∏n∈KDn,
∏
n∈Kc Dn}.584

E Efficiently Computing Entanglements of the Empirical Data Tensor585

For a given tensor, its entanglement with respect to a partition of axes (Definition 1) is determined by586

the singular values of its arrangement as a matrix according to the partition. Since the empirical data587

tensorDemp (Equation (2)) has size exponential in the number of featuresN , it is infeasible to naively588

compute its entanglement (or even explicitly store it in memory). Fortunately, as shown in [40], the589

specific form of the empirical data tensor admits an efficient algorithm for computing entanglements,590

without explicitly manipulating an exponentially large matrix. Specifically, the algorithm runs in591

O(DNM2 + M3) time and requires O(DNM + M2) memory, where D := maxn∈[N ]Dn is592

the maximal feature dimension (i.e. axis length of Demp), N is the number of features in the data593

(i.e. number of axes that Demp has), and M is the number of training instances. For completeness,594

we outline the method in Algorithm 1 while referring the interested reader to Appendix A in [40] for595

further details.596

F Practical Algorithm via Surrogate for Entanglement597

To efficiently implement the scheme from Section 5.1, we replace entanglement with a surrogate598

measure of dependence. The surrogate is based on the Pearson correlation coefficient for multivariate599

features [45],6 and its agreement with entanglement is demonstrated empirically in Appendix H.600

Theoretically supporting this agreement is left for future work.601

Definition 4. Given a set of M ∈ N instances X := {(x(1,m), . . . ,x(N,m)) ∈ (RD)N}Mm=1, denote602

by pn,n′ the multivariate Pearson correlation between features n, n′ ∈ [N ]. For K ⊆ [N ], the603

surrogate entanglement of X with respect to the partition (K,Kc), denoted SE(X ;K), is the sum of604

absolute values of Pearson correlation coefficients between pairs of features, the first belonging to K605

and the second to Kc := [N ] \ K. That is, SE
(
X ;K

)
:=
∑
n∈K,n′∈Kc |pn,n′ |.606

As shown by Proposition 3 below, replacing entanglement with surrogate entanglement in the scheme607

from Section 5.1 converts each search for a balanced partition minimizing average entanglement into608

a minimum balanced cut problem. Although the minimum balanced cut problem is NP-hard (see,609

e.g., [23]), it enjoys a wide array of well-established approximation tools, particularly ones designed610

for large scale [29, 56]. We therefore obtain a practical algorithm for enhancing the suitability of a611

data distribution to locally connected neural networks — see Algorithm 2.612

6For completeness, Appendix G provides a formal definition of the multivariate Pearson correlation.
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Algorithm 1 Entanglement Computation for the Empirical Data Tensor

1: Input: X := {(x(1,m), . . . ,x(N,m))}Mm=1 — M ∈ N data instances comprising N ∈ N features
each, K ⊆ [N ] — subset of feature indices

2: Output: QE(Demp;K)

3: Compute G(K),G(Kc) ∈ RM×M given element-wise by:

∀i, j ∈ [M ] : G
(K)
i,j = y(i)y(j) ·

〈
⊗n∈Kx(n,i),⊗n∈Kx(n,j)

〉
= y(i)y(j) ·

∏
n∈K

〈
x(n,i),x(n,j)

〉

∀i, j ∈ [M ] : G
(Kc)
i,j =

〈
⊗n∈Kcx(n,i),⊗n∈Kcx(n,j)

〉
=
∏

n∈Kc

〈
x(n,i),x(n,j)

〉

4: Compute eigenvalue decompositions of G(K) and G(Kc), i.e.:

G(K) = U(K)S(K)(U(K))>

G(Kc) = U(Kc)S(Kc)(U(Kc))>

where U(K),U(Kc) ∈ RM×M are orthogonal matrices and S(K),S(Kc) ∈ RM×M are diagonal
holding the eigenvalues of G(K) and G(Kc), respectively

5: Compute Q =
(
S(K)) 1

2
(
U(K))>U(Kc)(S(Kc)) 1

2 ∈ RM×M

6: Compute a singular value decomposition of Q to obtain its singular values σ1(Q), . . . , σM (Q)

7: Let ρm := σ2
m(Q)/

∑M
m′=1 σ

2
m′(Q) for m ∈ [M ]

8: return QE(Demp;K) = −∑M
m=1 ρm ln(ρm) (if Q = 0, then return 0)

Proposition 3. For any sK ⊆ [N ] of even size, the following optimization problem can be framed as613

a minimum balanced cut problem over a complete graph with |sK| vertices:614

min
K⊂ sK,|K|=| sK|/2

1

2

[
SE
(
X ;K

)
+ SE

(
X ; sK \ K

)]
. (4)

Specifically, there exists a complete undirected weighted graph with vertices sK and edge weights615

w : sK × sK → R such that for any K ⊂ sK, the weight of the cut in the graph induced by K —616 ∑
n∈K,n′∈ sK\K w({n, n′}) — is equal, up to an additive constant, to the term minimized in Equa-617

tion (4), i.e. to 1
2

[
SE
(
X ;K

)
+ SE

(
X ; sK \ K

)]
.618

Proof. Consider the complete undirected graph whose vertices are sK and where the weight of an619

edge {n, n′} ∈ sK × sK is w({n, n′}) = |pn,n′ | (recall that pn,n′ stands for the multivariate Pearson620

correlation between features n and n′ in X ). For any K ⊂ sK it holds that:621

∑
n∈K,n′∈ sK\K

w({n, n′}) =
1

2

[
SE
(
X ;K

)
+ SE

(
X ; sK \ K

)]
− 1

2
SE
(
X ; sK

)
,

where 1
2SE

(
X ; sK

)
does not depend on K. This concludes the proof.622

G Definition of the Multivariate Pearson Correlation from [45]623

Appendix F introduces a surrogate measure for entanglement based on the multivariate Pearson624

correlation from [45]. For completeness, this appendix provides its formal definition.625

Given a set of M ∈ N instances X := {(x(1,m), . . . ,x(N,m)) ∈ (RD)N}Mm=1, let Σ(n) be the626

empirical covariance matrix of feature n ∈ [N ] and Σ(n,n′) be the empirical cross-covariance matrix627

16



Algorithm 2 Enhancing Suitability of Data to Locally Connected Neural Networks

1: Input: X := {(x(1,m), . . . ,x(N,m))}Mm=1 — M ∈ N data instances comprising N ∈ N features
2: Output: Permutation π : [N ]→ [N ] to apply to feature indices

3: Let K0,1 := [N ] and denote L := log2(N)

4: # We assume for simplicity that N is a power of two, otherwise one may add constant features
5: for l = 0, . . . , L− 1 , n = 1, . . . , 2l do
6: Using a reduction to a minimum balanced cut problem (Proposition 3), find an approximate

solution Kl+1,2n−1 ⊂ Kl,n for:

minK⊂Kl,n,|K|=|Kl,n|/2
1

2
[SE(X ;K) + SE(X ;Kl,n \ K)]

7: Let Kl+1,2n := Kl,n \ Kl+1,2n−1

8: end for
9: # At this point, KL,1, . . . ,KL,N each contain a single feature index

10: return π that maps k ∈ KL,n to n, for every n ∈ [N ]

of features n, n′ ∈ [N ], i.e.:628

Σ(n) :=
1

M

∑M

m−1

(
x(n,m) − µ(n)

)
⊗
(
x(n,m) − µ(n)

)
,

Σ(n,n′) :=
1

M

∑M

m−1

(
x(n,m) − µ(n)

)
⊗
(
x(n′,m) − µ(n′)

)
,

where µ(n) := 1
M

∑M
m=1 x

(n,m) for n ∈ [N ]. With this notation, the multivariate Pearson correlation629

of n, n′ ∈ [N ] from [45] is defined by pn,n′ := trace
(
Σ(n,n′)

)
/ trace

(
(Σ(n)Σ(n′))

1/2).630

H Entanglement and Surrogate Entanglement Are Strongly Correlated631

In Appendix F, we introduced a surrogate entanglement measure (Definition 4) to facilitate efficient632

implementation of the feature arrangement search scheme from Section 5.1. Figure 5 supports633

the viability of the chosen surrogate, demonstrating empirically that it is strongly correlated with634

entanglement of the empirical data tensor (Definition 1 and Equation (2)).635
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Figure 5: Surrogate entanglement (Definition 4) is strongly correlated with the entanglement (Definition 1)
of the empirical data tensor. Presented are average entanglement and average surrogate entanglement under
canonical partitions, admitted by the Speech Commands audio datasets [62] considered in Figure 3. Remarkably,
the Pearson correlation between the quantities is 0.977. For further details see caption of Figure 3 as well
as Appendix J.2.

I Extension to Arbitrary Dimensional Models and Data636

In this appendix, we extend our theoretical analysis and experiments, including the algorithm for637

enhancing the suitability of data to locally connected neural networks, from one-dimensional (se-638

quential) models and data to P -dimensional models and data (such as two-dimensional image data or639
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Figure 6: The analyzed tensor network equivalent to a locally connected neural network operating over P -
dimensional data, for P = 2. (a) The tensor network adheres to a perfect 2P -ary tree connectivity with NP

leaf nodes, where N = 2L for some L ∈ N, and generates WP
TN ∈ RD1×···×DNP . Axes corresponding

to open edges are indexed such that open edges descendant to any node of the tree have contiguous indices.
The lengths of axes corresponding to inner (non-open) edges are equal to R ∈ N, referred to as the width of
the tensor network. (b) Exemplar µ : [N ]P → [NP ] compatible with the locally connected tensor network
(Definition 5), mapping P -dimensional coordinates to axes indices ofWP

TN. (c) ContractingWP
TN with vectors

{x(n1,...,nP )}n1,...,nP∈[N ] according to a compatible µ produces 〈⊗N
P

n=1x
µ−1(n),WP

TN〉. Performing these
contractions can be viewed as a forward pass of a certain locally connected neural network (with polynomial
non-linearity) over the data instance {x(n1,...,nP )}n1,...,nP∈[N ] (see, e.g., [11, 9, 35, 49]).

three-dimensional video data), for P ∈ N. Specifically, Appendix I.1 extends Section 3, Appendix I.2640

extends Section 4 and Appendix I.3 extends Section 5.641

To ease presentation, we consider P -dimensional data instances whose feature vectors are associated642

with coordinates (n1, . . . , nP ) ∈ [N ]P , where N = 2L for some L ∈ N (if this is not the case we643

may add constant features as needed).644

I.1 Low Entanglement Under Canonical Partitions Is Necessary and Sufficient for Fitting645

Tensor646

We introduce the locally connected tensor network equivalent to a locally connected neural network647

that operates over P -dimensional data (Appendix I.1.1). Subsequently, we establish a necessary648

and sufficient condition required for it to fit a given tensor (Appendix I.1.2), generalizing the results649

of Section 3.2.650

I.1.1 Tensor Network Equivalent to a Locally Connected Neural Network651

For P -dimensional data, the locally connected tensor network we consider (defined in Section 3.1652

for one-dimensional data) has an underlying perfect 2P -ary tree graph of height L. We denote the653

tensor it generates byWP
TN ∈ RD1×···×DNP . Figure 6(a) provides its diagrammatic definition. As in654

the one-dimensional case, the lengths of axes corresponding to inner edges are taken to be R ∈ N,655

referred to as the width of the tensor network.656

The axes of WP
TN are associated with P -dimensional coordinates through a bijective function µ :657

[N ]P → [NP ].658

Definition 5. We say that a bijective function µ : [N ]P → [NP ] is compatible with the locally659

connected tensor network if, for any node in the tensor network, the coordinates mapped to indices660

ofWP
TN’s axes descendant to that node form a contiguous P -dimensional cubic block in [N ]P (e.g.,661
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Figure 7: The canonical partitions of [N ]P , for P = 2 and N = 2L with L ∈ N. Every l ∈ {0, . . . , L}
contributes 2l·P canonical partitions, each induced by K = ×Pp=1{2L−l · (np − 1) + 1, . . . , 2L−l · np} for
n1, . . . , nP ∈ [2l].

square block when P = 2) — see Figure 6(b) for an illustration. With slight abuse of notation, for662

K ⊆ [N ]P we denote µ(K) := {µ(n1, . . . , nP ) : (n1, . . . , nP ) ∈ K} ⊆ [NP ].663

Contracting the locally connected tensor network with {x(n1,...,nP ) ∈ RDµ(n1,...,nP )}n1,...,nP∈[N ]664

according to a compatible µ, as depicted in Figure 6(c), can be viewed as a forward pass of the data665

instance {x(n1,...,nP )}n1,...,nP∈[N ] through a locally connected neural network (with polynomial666

non-linearity), which produces the scalar 〈⊗NPn=1x
µ−1(n),WP

TN〉 (see, e.g., [11, 9, 35, 49]).667

I.1.2 Necessary and Sufficient Condition for Fitting Tensor668

The ability of the locally connected tensor network, defined in Appendix I.1.1, to fit (i.e. represent) a669

tensor is determined by the entanglements that the tensor admits under partitions of its axes, induced670

by the following canonical partitions of [N ]P .671

Definition 6. The canonical partitions of [N ]P , illustrated in Figure 7 for P = 2, are:7672

CPN :=
{

(K,Kc) :K = ×Pp=1

{
2L−l · (np − 1) + 1, . . . , 2L−l · np

}
,

l ∈
{

0, . . . , L
}
, n1, . . . , nP ∈

[
2l
]}

.

With the definition of canonical partitions for P -dimensional data in place, Theorem 3 generalizes The-673

orem 1. In particular, suppose that WP
TN — the tensor generated by the locally connected tensor674

network — well-approximates A ∈ RD1×···×DNP . Then, given a compatible µ : [N ]P → [NP ]675

(Definition 5), Theorem 3 establishes that the entanglement of A with respect to µ(K), where K is a676

canonical partition, cannot be much larger than ln(R), whereas the entanglement attainable by an677

arbitrary tensor can be linear in NP .678

In the other direction, Theorem 4 implies that low entanglement under partitions of axes induced679

by canonical partitions of [N ]P is not only necessary for a tensor to be fit by the locally connected680

tensor network, but also sufficient.681

7For sets S1, . . . ,SP , we denote their Cartesian product by ×Pp=1Sp.
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Theorem 3. Let WP
TN ∈ RD1×···×DNP be a tensor generated by the locally connected tensor682

network defined in Appendix I.1.1, and µ : [N ]P → [NP ] be a compatible map from P -dimensional683

coordinates to axes indices ofWP
TN (Definition 5). For any A ∈ RD1×···×DNP and ε ∈ [0, ‖A‖/4], if684

‖WP
TN −A‖ ≤ ε, then for all canonical partitions (K,Kc) ∈ CPN (Definition 6):685

QE(A;µ(K)) ≤ ln(R) +
2ε

‖A‖ · ln(Dµ(K)) + 2

√
2ε

‖A‖ , (5)

where Dµ(K) := min{∏n∈µ(K)Dn,
∏
n∈µ(K)c Dn}. In contrast, there exists A′ ∈ RD1×···×DNP686

such that for all canonical partitions (K,Kc) ∈ CPN :687

QE(A′;µ(K)) ≥ min{|K|, |Kc|} · ln(minn∈[NP ]Dn) . (6)

Proof sketch (proof in Appendix K.6). The proof is analogous to that of Theorem 1.688

Theorem 4. Let A ∈ RD1×···×DNP and ε > 0. Suppose that for all canonical partitions (K,Kc) ∈689

CPN (Definition 6) it holds that QE(A;µ(K)) ≤ ε2

(2NP−3)‖A‖2 · ln(R), where µ : [N ]P → [NP ] is690

compatible with the locally connected tensor network (Definition 5). Then, there exists an assignment691

for the tensors constituting the locally connected tensor network (defined in Appendix I.1.1) such that692

it generatesWP
TN ∈ RD1×···×DNP satisfying:693

‖WP
TN −A‖ ≤ ε .

Proof sketch (proof in Appendix K.7). The claim follows through a reduction from the locally con-694

nected tensor network for P -dimensional data to that for one-dimensional data (defined in Section 3.1),695

i.e. from perfect 2P -ary to perfect binary tree tensor networks. Specifically, we consider a modified696

locally connected tensor network for one-dimensional data, where axes corresponding to different697

inner edges can vary in length (as opposed to all having length R). We then show, by arguments anal-698

ogous to those in the proof of Theorem 2, that it can approximate A while having certain inner axes,699

related to the canonical partitions of [N ]P , of lengths at most R. The proof concludes by establishing700

that, any tensor represented by such a locally connected tensor network for one-dimensional data can701

be represented via the locally connected tensor network for P -dimensional data (where the length of702

each axis corresponding to an inner edge is R).703

I.2 Low Entanglement Under Canonical Partitions Is Necessary and Sufficient for Accurate704

Prediction705

In this appendix, we consider the locally connected tensor network from Appendix I.1.1 in a machine706

learning setting, and extend the results and experiments of Section 4 from one-dimensional to707

P -dimensional models and data.708

I.2.1 Accurate Prediction Is Equivalent to Fitting Data Tensor709

The locally connected tensor network generating WP
TN ∈ RD1×···×DNP is equivalent to a locally710

connected neural network operating over P -dimensional data (see Appendix I.1.1). Specifically, a for-711

ward pass of the latter over {x(n1,...,nP ) ∈ RDµ(n1,...,nP )}n1,...,nP∈[N ] yields 〈⊗NPn=1x
µ−1(n),WP

TN〉,712

for a compatible µ : [N ]P → [NP ] (Definition 5). Suppose we are given a training set of labeled713

instances
{
{x((n1,...,nP ),m)}n1,...,nP∈[N ], y

(m)
}M
m=1

drawn i.i.d. from some distribution, where714

y(m) ∈ {1,−1} for m ∈ [M ]. Learning the parameters of the neural network through the soft-margin715

support vector machine (SVM) objective amounts to optimizing:716

min‖WP
TN‖≤B

1

M

∑M

m=1
max

{
0, 1− y(m)

〈
⊗NPn=1x

(µ−1(n),m),WP
TN

〉}
,

for a predetermined constant B > 0. This objective generalizes Equation (1) from one-dimensional to717

P -dimensional model and data. Assume that instances are normalized, i.e. ‖x((n1,...,nP ),m)‖ ≤ 1 for718

all n1, . . . , nP ∈ [N ],m ∈ [M ], and that B ≤ 1. By a derivation analogous to that succeeding Equa-719

tion (1) in Section 4.1, if follows that minimizing the SVM objective is equivalent to minimizing720 ∥∥ WP
TN

‖WP
TN‖
− DPemp

‖DPemp‖

∥∥, where:721

DPemp :=
1

M

∑M

m=1
y(m) · ⊗NPn=1x

(µ−1(n),m) (7)
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extends the notion of empirical data tensor to P -dimensional data. In other words, the accuracy722

achievable over the training data is determined by the extent to which WP
TN

‖WP
TN‖

can fit the normalized723

empirical data tensor
DPemp

‖DPemp‖
.724

The same arguments apply to the population loss, in which case DPemp is replaced by the population725

data tensor:726

DPpop := E{x(n1,...,nP )}n1,...,nP∈[N],y

[
y · ⊗NPn=1x

µ−1(n)
]

. (8)

The achievable accuracy over the population is therefore determined by the extent to which WP
TN

‖WP
TN‖

727

can fit the normalized population data tensor
DPpop

‖DPpop‖
. Accordingly, we refer to the minimal distance728

from it as the supobtimality in achievable accuracy, generalizing Definition 3 from Section 4.1.729

Definition 7. In the context of the classification setting above, the suboptimality in achievable730

accuracy is:731

SubOptP := minWP
TN

∥∥∥∥∥
WP

TN

‖WP
TN‖
−
DPpop

‖DPpop‖

∥∥∥∥∥ .

I.2.2 Necessary and Sufficient Condition for Accurate Prediction732

In the classification setting of Appendix I.2.1, by invoking Theorems 3 and 4 from Appendix I.1.2,733

we conclude that the suboptimality in achievable accuracy is small if and only if the population734

(empirical) data tensor DPpop (DPemp) admits low entanglement under the canonical partitions of735

features (Definition 6). Specifically, we establish Corollary 3, Proposition 4 and Corollary 4, which736

generalize Corollary 1, Proposition 4 and Corollary 2 from Section 4.2, respectively, to P -dimensional737

model and data.738

Corollary 3. Consider the classification setting of Appendix I.2.1, and let ε ∈ [0, 1/4]. If there exists739

a canonical partition (K,Kc) ∈ CPN (Definition 6) under which QE
(
DPpop;µ(K)

)
> ln(R) + 2ε ·740

ln(Dµ(K)) + 2
√

2ε, where Dµ(K) := min{∏n∈µ(K)Dn,
∏
n∈µ(K)c Dn}, then:741

SubOptP > ε .

Conversely, if for all (K,Kc) ∈ CPN it holds that QE
(
DPpop;µ(K)

)
≤ ε2

8NP−12 · ln(R), then:742

SubOptP ≤ ε .

Proof. Implied by Theorems 3 and 4 after accounting forWP
TN being normalized in the suboptimality743

in achievable accuracy, as done in the proof of Corollary 1.744

Proposition 4. Consider the classification setting of Appendix I.2.1, and let δ ∈ (0, 1) and745

γ > 0. If the training set size M satisfies M ≥ 128 ln( 2
δ )(ln(maxJ⊆[NP ]DJ ))4

‖DPpop‖2γ4 , where DJ :=746

min{∏n∈J Dn,
∏
n∈J c Dn} for J ⊆ [NP ], then with probability at least 1− δ:747

∣∣QE
(
DPemp;J

)
−QE

(
DPpop;J

)∣∣ ≤ γ for all J ⊆ [NP ] .

Proof. The claim is established by following steps identical to those in the proof of Proposition 1.748

Corollary 4. Consider the setting and notation of Corollary 3, with ε 6= 0. For δ ∈ (0, 1), suppose749

that the training set size M satisfies M ≥ 128 ln( 2
δ )((16N

P−24) ln(maxJ⊆[NP ]DJ ))4

‖Dpop‖2(ln(R)·ε2)4 . Then, with750

probability at least 1− δ the following hold. First, if there exists a canonical partition (K,Kc) ∈ CPN751

(Definition 6) under which QE
(
DPemp;µ(K)

)
> (1 + ε2

16NP−24 ) · ln(R) + 2ε · ln(Dµ(K)) + 2
√

2ε,752

then:753

SubOptP > ε .

Second, if for all (K,Kc) ∈ CPN it holds that QE
(
DPemp;µ(K)

)
≤ ε2

16NP−24 · ln(R), then:754

SubOptP ≤ ε .

Moreover, the conditions above on the entanglements of DPemp can be evaluated efficiently (in755

O(DN2PM2 +NPM3) time O(DNPM +M2) and memory, where D := maxn∈[NP ]Dn).756
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Figure 8: The prediction accuracies of convolutional neural networks are inversely correlated with the entan-
glements of image data under canonical partitions of features, in compliance with our theory (Appendices I.1
and I.2). This figure is identical to Figure 3, except that the measurements were carried over a binary classifica-
tion version of the CIFAR10 image dataset, as opposed to a one-dimensional (sequential) audio dataset. For
further details see caption of Figure 3 as well as Appendix J.2.

Proof. Implied by Corollary 3, Proposition 4 with γ = ε2

16NP−24 · ln(R) and Algorithm 1 in Ap-757

pendix E.758

I.2.3 Empirical Demonstration759

Figure 8 extends the experiments reported by Figure 3 in Section 4.3 from one-dimensional (se-760

quential) audio data to two-dimensional image data. Specifically, it demonstrates that the prediction761

accuracies of convolutional neural networks over a variant of CIFAR10 [33] is inversely correlated762

with the entanglements that the data admits under canonical partitions of features (Definition 6),763

i.e. with the entanglements of the empirical data tensor under partitions of its axes induced by764

canonical partitions.765

I.3 Enhancing Suitability of Data to Locally Connected Neural Networks766

We extend the preprocessing algorithm from Section 5, aimed to enhance the suitability of a data767

distribution to locally connected neural networks, from one-dimensional to P -dimensional models768

and data (Appendices I.3.1 and I.3.2). Empirical evaluations demonstrate that it significantly improves769

prediction accuracy of common architectures (Appendix I.3.3).770

I.3.1 Search for Feature Arrangement With Low Entanglement Under Canonical Partitions771

Suppose we have M ∈ N training instances
{
{x((n1,...,nP ),m)}n1,...,nP∈[N ], y

(m)
}M
m=1

, where772

x((n1,...,nP ),m) ∈ RD and y(m) ∈ {1,−1} for n1, . . . , nP ∈ [N ],m ∈ [M ], with D ∈ N. For773

models intaking P -dimensional data, the recipe for enhancing the suitability of a data distribution to774

locally connected neural networks from Section 5.1 boils down to finding a permutation π : [N ]P →775

[N ]P , which when applied to feature coordinates leads the empirical data tensor DPemp (Equation (7))776

to admit low entanglement under canonical partitions (Definition 6).8777

A greedy realization, analogous to that outlined in Section 5.1, is as follows. Initially, partition the778

features into 2P equally sized disjoint sets {K1,(k1,...,kP ) ⊂ [N ]P }k1,...,kP∈[2] such that the average779

of DPemp’s entanglements induced by these sets is minimal. That is, find an element of:780

argmin
{K′k1,...,kP⊂[N ]P}

k1,...,kP∈[2]
s.t. ·∪k1,...,kP∈[2]K

′
k1,...,kP

=[N ]P ,

∀k1,...,kP ,k′1,...,k
′
P∈[2] |K

′
k1,...,kP

|=|K′
k′1,...,k

′
P
|

1

2P

∑
k1,...,kP∈[2]

QE
(
DPemp;µ(K′k1,...,kP )

)
,

where µ : [N ]P → [NP ] is a compatible map from coordinates in [N ]P to axes indices (Definition 5).781

The permutation π will map each K1,(k1,...,kP ) to coordinates ×Pp=1{N2 · (kp − 1) + 1, . . . , N2 · kp},782

for k1, . . . , kP ∈ [2]. Then, partition similarly each of {K1,(k1,...,kP )}k1,...,kP∈[2] into 2P equally783

8Enhancing the suitability of a data distribution with instances of dimension different than P to P -
dimensional models is possible by first arbitrarily mapping features to coordinates in [N ]P , and then following
the scheme for rearranging P -dimensional data.
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Algorithm 3 Enhancing Suitability of P -Dimensional Data to Locally Connected Neural Networks

1: Input: X :=
{
{x((n1,...,nP ),m)}n1,...,nP∈[N ]

}M
m=1

— M ∈ N data instances comprising NP

features each
2: Output: Permutation π : [N ]P → [N ]P to apply to feature coordinates

3: Let K0,(1,...,1) := [N ]P and denote L := log2(N)

4: # We assume for simplicity that N is a power of two, otherwise one may add constant features
5: for l = 0, . . . , L− 1 , k1, . . . , kP = 1, . . . , 2l do
6: Using a reduction to a minimum balanced 2P -cut problem (Proposition 5), find an approximate

solution {Kl+1,(2k1−i1,...,2kP−iP ) ⊂ Kl,(k1,...,kP )}i1,...,iP∈{0,1} for:

min
{Kk′1,...,k′P⊂Kl,(k1,...,kP )}k′1,...,k′P∈[2]

s.t. ·∪k′1,...,k′P∈[2]Kk′1,...,k′P =Kl,(k1,...,kP ),

∀k′1,...,k
′
P ,k̂1,...,k̂P∈[2] |Kk′1,...,k′P |=|Kk̂1,...,k̂P |

1

2P

∑
k′1,...,k

′
P∈[2]

SE
(
X ;Kk′1,...,k′P

)

7: end for
8: # At this point, {KL,(k1,...,kP )}k1,...,kP∈[N ] each contain a single feature coordinate
9: return π that maps (n1, . . . , nP ) ∈ KL,(k1,...,kP ) to (k1, . . . , kP ), for every k1, . . . , kP ∈ [N ]

sized disjoint sets. Continuing in the same fashion, until we reach subsets {KL,(k1,...,kP )}k1,...,kP∈[N ]784

consisting of a single feature coordinate each, fully specifies the permutation π.785

As in the case of one-dimensional models and data (Section 5.1), the step lying at the heart of the786

above scheme — finding a balanced partition into 2P sets that minimizes average entanglement — is787

computationally prohibitive. In the next supappendix we will see that replacing entanglement with788

surrogate entanglement brings forth a practical implementation.789

I.3.2 Practical Algorithm via Surrogate for Entanglement790

To efficiently implement the scheme from Appendix I.3.1, we replace entanglement with surrogate791

entanglement (Definition 4), which for P -dimensional data is straightforwardly defined as follows.792

Definition 8. Given a set of M ∈ N instances X :=
{
{x((n1,...,nP ),m) ∈ RD}n1,...,nP∈[N ]

}M
m=1

,793

denote by p(n1,...,nP ),(n′1,...,n
′
P ) the multivariate Pearson correlation between features (n1, . . . , nP ) ∈794

[N ]P and (n′1, . . . , n
′
P ) ∈ [N ]P . For K ⊆ [N ]P , the surrogate entanglement of X with respect to795

the partition (K,Kc), denoted SE(X ;K), is the sum of Pearson correlation coefficients between796

pairs of features, the first belonging to K and the second to Kc := [N ]P \ K. That is:797

SE
(
X ;K

)
=
∑

(n1,...,nP )∈K,(n′1,...,n′P )∈Kc
p(n1,...,nP ),(n′1,...,n

′
P ) .

Analogously to the case of one-dimensional data (Appendix F), Proposition 5 shows that replacing798

the entanglement with surrogate entanglement in the scheme from Appendix I.3.1 converts each799

search for a balanced partition minimizing average entanglement into a minimum balanced 2P -cut800

problem. Although the minimum balanced 2P -cut problem is NP-hard (see, e.g., [23]), similarly to801

the minimum balanced (2-) cut problem, it enjoys a wide array of well-established approximation802

implementations, particularly ones designed for large scale [29, 56]. We therefore obtain a practical803

algorithm for enhancing the suitability of a data distribution with P -dimensional instances to locally804

connected neural networks — see Algorithm 3.805

Proposition 5. For any sK ⊆ [N ]P of size divisible by 2P , the following optimization problem can806

be framed as a minimum balanced 2P -cut problem over a complete graph with |sK| vertices:807

min
{Kk1,...,kP⊂ sK}

k1,...,kP∈[2]
s.t. ·∪k1,...,kP∈[2]Kk1,...,kP = sK,

∀k1,...,kP ,k′1,...,k
′
P∈[2] |Kk1,...,kP |=|Kk′1,...,k′P |

1

2P

∑
k1,...,kP∈[2]

SE(X ;Kk1,...,kP ) . (9)
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Table 3: Arranging features of randomly permuted image data via Algorithm 3 significantly improves the
prediction accuracies of convolutional neural networks. Reported are the results of experiments analogous to
those of Table 1, carried out over the CIFAR10 image dataset (as opposed to an audio dataset) using Algorithm 3.
For further details see caption of Table 1 as well as Appendix J.2.

Randomly Permuted Algorithm 3 IGTD

CNN 35.1 ± 0.5 38.2 ± 0.4 36.2 ± 0.7

Table 4: Our feature rearrangement method (Algorithm 2 in Appendix F) can be efficiently applied to data with a
large number of features. Reported are the results of an experiment identical to that of Table 1, but over a version
of the Speech Commands [62] dataset in which every instance has 50,000 features. Instances of the minimum
balanced cut problem solved as part of Algorithm 2 entail graphs with up to 25 ·108 edges. They are solved using
the well-known edge sparsification algorithm of [56] that preserves weights of cuts, allowing for configurable
compute and memory consumption (the more resources are consumed, the more accurate the solution will be).
As can be seen, Algorithm 2 leads to significant improvements in prediction accuracies. See Appendix J.2 for
further implementation details.

Randomly Permuted Our Method

CNN 15.0 ± 1.6 65.6 ± 1.1

S4 18.2 ± 0.5 82.2 ± 0.4

Specifically, there exists a complete undirected weighted graph with vertices sK and edge808

weights w : sK × sK → R such that, for any partition of sK into equally sized dis-809

joint sets {Kk1,...,kP }k1,...,kP∈[2], the weight of the 2P -cut in the graph induced by them —810
1
2

∑
k1,...,kP∈[2]

∑
(n1,...,nP )∈Kk1,...,kP ,(n

′
1,...,n

′
P )∈ sK\Kk1,...,kP

w({(n1, . . . , nP ), (n′1, . . . , n
′
P )}) —811

is equal, up to multiplicative and additive constants, to the term minimized in Equation (4).812

Proof. Consider the complete undirected graph whose vertices are sK and where the weight of an813

edge {(n1, . . . , nP ), (n′1, . . . , n
′
P )} ∈ sK × sK is:814

w({(n1, . . . , nP ), (n′1, . . . , n
′
P )}) = p(n1,...,nP ),(n′1,...,n

′
P )

(recall that p(n1,...,nP ),(n′1,...,n
′
P ) stands for the multivariate Pearson correlation between features815

(n1, . . . , nP ) and (n′1, . . . , n
′
P ) in X ). For any partition of sK into equally sized disjoint sets816

{Kk1,...,kP }k1,...,kP∈[2], it holds that:817

1

2

∑
k1,...,kP∈[2]

∑
(n1,...,nP )∈Kk1,...,kP ,(n

′
1,...,n

′
P )∈ sK\Kk1,...,kP

w({(n1, . . . , nP ), (n′1, . . . , n
′
P )})

=
1

2

∑
k1,...,kP∈[2]

SE(X ;Kk1,...,kP )− 1

2
SE
(
X ; sK

)
,

where 1
2SE

(
X ; sK

)
does not depend on {Kk1,...,kP }k1,...,kP∈[2]. This concludes the proof.818

I.3.3 Experiments819

We supplement the experiments from Section 5.2 for one-dimensional models and data, by empiri-820

cally evaluating Algorithm 3 using two-dimensional convolutional neural networks over randomly821

permuted image data. Specifically, Table 3 presents experiments analogous to those of Table 1822

from Section 5.2.1 over the CIFAR10 [33] image dataset. For brevity, we defer some implementation823

details to Appendix J.2.824

J Further Experiments and Implementation Details825

J.1 Further Experiments826

The number of features in the audio dataset used in the experiment of Section 5.2.1 is 2048. We827

demonstrate the scalability of our feature rearrangement method (Algorithm 2 in Appendix F) by828

including in Table 4 an experiment over audio data with 50,000 features. In this experiment, instances829
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Table 5: Arranging features of tabular datasets via our method (detailed in Appendix F) significantly improves
the prediction accuracies of locally connected neural networks. Reported are results of experiments identical to
those of Table 2, but over the “dna” tabular classification dataset [59]. For further details, see caption of Table 2
and Appendix J.2.

Dataset: dna

Baseline Our Method IGTD

CNN 82.5 ± 1.7 91.2 ± 1.1 87.4 ± 1.1

S4 86.4 ± 1.7 89.1 ± 3.7 89.9 ± 1.1

Local-Attention 79.2 ± 4.0 85.7 ± 4.5 82.7 ± 3.2

of the minimum balanced cut problem encountered in Algorithm 2 entail graphs with up to 25 · 108830

edges. They are solved using the well-known edge sparsification algorithm of [56] that preserves831

weights of cuts, allowing for configurable compute and memory consumption (the more resources are832

consumed, the more accurate the solution will be). In contrast, this approach is not directly applicable833

for improving the efficiency of IGTD.834

Table 5 supplements Table 2 from Section 5.2.2 by reporting results of experiments with an additional835

tabular benchmark — “dna”.836

J.2 Further Implementation Details837

We provide implementation details omitted from our experimental reports (Section 4.3, Section 5, Ap-838

pendix I.2.3, Appendix I.3.3 and Appendix J.1). We provide implementation details omitted from our839

experimental reports (Section 4.3, Section 5 and Appendix I.2.3). Source code for reproducing our840

results and figures, based on the PyTorch [44] framework, is attached as supplementary material and841

will be made publicly available. All experiments were run on a single Nvidia RTX A6000 GPU.842

J.3 Empirical Demonstration of Theoretical Analysis (Figures 3 and 8)843

J.3.1 Figure 3844

Dataset: The SpeechCommands dataset [62] contains raw audio segments of length up to 16000,845

split into 84843 train and 11005 test segments. We zero-padded all audio segments to have a length of846

16000 and resampled them using sinc interpolation (default PyTorch implementation). We allocated847

11005 audio segments from the train set for validation, i.e. the dataset was split into 73838 train,848

11005 validation and 11005 test audio segments, and created a binary one-vs-all classification version849

of SpeechCommands by taking all audio segments labeled by the class “33” (corresponding to the850

word “yes”), and sampling an equal amount of segments from the remaining classes (this process was851

done separately for the train, validation and test sets). The resulting balanced classification dataset852

had 5610 train, 846 validation and 838 test segments. Lastly, we resampled all audio segments in the853

dataset from 16000 to 4096 features using sinc interpolation.854

Random feature swaps: Starting with the original order of features, we created increasingly “shuf-855

fled” versions of the dataset by randomly swapping the position of features. For each number of856

random position swaps k ∈ {0, 250, . . . , 2500}, we created ten datasets, whose features were subject857

to k random position swaps between features, using different random seeds.858

Quantum entanglement measurement: Each reported value in the plot is the average of entangle-859

ments with respect to canonical partitions (Definition 2) corresponding to levels l = 1, 2, 3, 4, 5, 6.860

We used Algorithm 1 described in Appendix E on two mini-batches of size 500, randomly sampled861

from the train set. As customary (cf. [58]), every input feature x was embedded using the following862

sine-cosine scheme:863

φ(x) := (sin(πθx), cos(πθx)) ∈ R2 ,

with θ = 0.085.864

Neural network architectures:865

• CNN: An adaptation of the M5 architecture from [16], which is designed for audio data. Our866

implementation is based on https://github.com/danielajisafe/Audio_WaveForm_867

Paper_Implementation.868

• S4: Official implementation of [26] with a hidden dimension of 128 and 4 layers.869
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• Local-Attention: Adaptation of the local-attention model from [46], as implemented in870

https://github.com/lucidrains/local-attention. We use a multi-layer percep-871

tron (MLP) for mapping continuous (raw) inputs to embeddings, which are fed as input872

the the local-attention model. For classification, we collapse the spatial dimension of the873

network’s output using mean-pooling and pass the result into an MLP classification head.874

The network had attention dimension 128 (with 2 heads of dimension 64), depth 8, hidden875

dimension of MLP blocks 341 (computed automatically by the library based on the attention876

dimension) and local-attention window size 10.877

Training and evaluation: The binary cross-entropy loss was minimized via the Adam optimizer [32]878

with default β1, β2 coefficients. Batch sizes were chosen to be the largest powers of two that fit in879

the GPU memory. The duration of optimization was 150, 40 and 50 epochs for the CNN, S4 and880

Local-Attention models, respectively (number of epochs was taken large enough such that the train881

loss plateaued). After the last training epoch, the model which performed best on the validation set882

was chosen, and its average test accuracy is reported. Additional optimization hyperparameters are883

provided in Table 6. We note that for S4 [26], in accordance with its official implementation, we use884

a cosine annealing learning rate scheduler.885

Table 6: Optimization hyperparameters for the experiments of Figure 3.

Model Optimizer Learning Rate Weight Decay Batch Size

CNN Adam 0.01 0.0001 128
S4 AdamW 0.001 0.01 64
Local-Attention Adam 0.0005 0 32

J.3.2 Figure 8886

Dataset: We created one-vs-all binary classification datasets based on CIFAR10 [33] as follows. All887

images were converted to grayscale using the PyTorch default implementation. Then, we allocated888

7469 images from the train set for validation, i.e. the dataset was split into 42531 train, 7469 validation889

and 1000 test images. We took all images labeled by the class “0” (corresponding to images of890

airplanes), and uniformly sampled an equal amount of images from the remaining classes (this process891

was done separately for the train, validation and test sets). The resulting balanced classification892

dataset had 8506 train, 1493 validation and 2001 test images.893

Random feature swaps: We created increasingly “shuffled” versions of the dataset according to the894

protocal described in Appendix J.3.1.895

Quantum entanglement measurement: Each reported value in the plot is the average entanglements896

with respect to canonical partitions (Definition 6) corresponding to levels l = 1, 2.897

Neural network architectures:898

• CNN: Same architecture used for the experiments of Table 2, but with one-dimensional899

convolutional layers replaced with two-dimensional convolutional layers. See Table 7 for900

the exact architectural hyperparameters.901

Table 7: Architectural hyperparameters for the convolutional neural network used in the experiments of Figure 8
and Table 3.

Hyperparameter Value

Stride (3, 3)
Kernel size (3, 3)
Pooling window size (3, 3)
Number of blocks 8
Hidden dimension 32

Training and evaluation: The binary cross-entropy loss was minimized for 150 epochs via the902

Adam optimizer [32] with default β1, β2 coefficients (number of epochs was taken large enough such903

that the train loss plateaued). Batch size was chosen to be the largest power of two that fit in the904
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GPU memory. After the last training epoch, the model which performed best on the validation set905

was chosen, and its average test accuracy is reported. Additional optimization hyperparameters are906

provided in Table 8.907

Table 8: Optimization hyperparameters for the experiments of Figure 8.

Model Optimizer Learning Rate Weight Decay Batch Size

CNN Adam 0.001 0.0001 128

J.4 Enhancing Suitability of Data to Locally Connected Neural Networks (Tables 1, 2, 3,908

and 4)909

J.4.1 Features Rearrangement Algorithms910

Algorithm 2, 3 and IGTD [65] were applied to the training set. Subsequently, the learned feature911

rearrangement was used for both the validation and test data. In instances where three-way cross-912

validation was used, distinct rearrangements were learned for each separately.913

Algorithm 2 and Algorithm 3: Approximate solutions to the minimum balanced cut problems were914

obtained using the METIS graph partitioning algorithm [29], as implemented in https://github.915

com/networkx/networkx-metis.916

IGTD [65]: The original IGTD implementation supports rearranging data only into two-dimensional917

images. We adapted its implementation to support one-dimensional (sequential) data for the experi-918

ments of Tables 1 and 2.919

J.4.2 Randomly Permuted Audio Datasets (Table 1)920

Dataset: To facilitate efficient experimentation, we downsampled all audio segments in SpeechCom-921

mands to have 2048 features. Furthermore, for the train, validation and test sets separately, we used922

20% of the audio segments available for each class.923

Neural network architectures:924

• CNN: Same architecture used for the experiments of Figure 3 (see Appendix J.3.1).925

• S4: Same architecture used for the experiments of Figure 3 (see Appendix J.3.1).926

• Local-Attention: Same architecture used in the experiments of Figure 3, but with a depth 4927

network (we reduced the depth to allow for more efficient experimentation).928

Training and evaluation: The cross-entropy loss was minimized via the Adam optimizer [32] with929

default β1, β2 coefficients. Batch sizes were chosen to be the largest powers of two that fit in the930

GPU memory. The duration of optimization was 200, 200 and 450 epochs for the CNN, S4 and931

Local-Attention models, respectively (number of epochs was taken large enough such that the train932

loss plateaued). After the last training epoch, the model which performed best on the validation set933

was chosen, and its average test accuracy is reported. Additional optimization hyperparameters are934

provided in Table 9. We note that for S4 [26], in accordance with its official implementation, we use935

a cosine annealing learning rate scheduler.936

Table 9: Optimization hyperparameters for the experiments of Table 1.

Model Optimizer Learning Rate Weight Decay Batch Size

CNN Adam 0.001 0.0001 128
S4 AdamW 0.001 0.01 64
Local-Attention Adam 0.0001 0 32

J.4.3 Tabular Datasets (Tables 2 and 5)937

Datasets: The datasets "dna", "semeion" and "isolet" are all from the OpenML repository [59]. For938

each dataset we split the samples intro three folds, which were used for evaluation according to a939

standard three-way cross-validation protocol. That is, for each of the three folds, we used one third940
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of the data as a test set and the remaining for train and validation. One third of the samples in the941

remaining folds (not used for testing) were allocated for the validation set.942

Neural network architectures:943

• CNN: We used a ResNet adapted for tabular data. It consisted of residual blocks of the944

following form:945

Block(x) = dropout(x + BN(maxpool(ReLU(conv(x))))) .

After applying a predetermined amount of residual blocks, a global average pooling and946

fully connected layers were used to output the prediction. The architectural hyperparameters947

are specified in Table 10.948

• S4: Same architecture used for the experiments of Figure 3 (see Appendix J.3.1), but with a949

hidden dimension of 64.950

• Local-Attention: Same architecture used for the experiments of Figure 3 (see Ap-951

pendix J.3.1), but with 4 attention heads of dimension 32 and a local-attention window size952

of 25.953

Table 10: Architectural hyperparameters for the convolutional neural network used in the experiments of Tables 2
and 4.

Hyperparameter Value

Stride 3
Kernel size 3
Pooling window size 3
Number of blocks 8
Hidden dimension 32

Training and evaluation: The cross-entropy loss was minimized for 300 epochs via the Adam954

optimizer [32] with default β1, β2 coefficients (number of epochs was taken large enough such that955

the train loss plateaued). Batch sizes were chosen to be the largest powers of two that fit in the GPU956

memory. After the last training epoch, the model which performed best according to the validation957

sets was chosen, and test accuracy was measured on the test set. The reported accuracy is the average958

over the three folds. Additional optimization hyperparameters are specified in Table 11. We note that959

for S4 [26], in accordance with its official implementation, we use a cosine annealing learning rate960

scheduler.961

Table 11: Optimization hyperparameters for the experiments of Table 2.

Model Optimizer Learning Rate Weight Decay Batch Size

CNN Adam 0.001 0.0001 64
S4 AdamW 0.001 0.01 64
Local-Attention Adam 0.00005 0 64

J.4.4 Randomly Permuted Image Datasets (Table 3)962

Dataset: The data acquisition process followed the protocol described in Appendix J.3.2, except that963

the data was not converted into a binary one-vs-all classification dataset.964

Neural network architectures:965

• CNN: Same architecture used for the experiments of Figure 8.966

Training and evaluation: The cross-entropy loss was minimized for 500 epochs via the Adam967

optimizer [32] with default β1, β2 coefficients (number of epochs was taken large enough such968

that the train loss plateaued). Batch size was chosen to be the largest power of two that fit in the969

GPU memory. After the last training epoch, the model which performed best on the validation set970

was chosen, and its average test accuracy is reported. Additional optimization hyperparameters are971

provided in Table 12.972
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Table 12: Optimization hyperparameters for the experiments of Table 3.

Model Optimizer Learning Rate Weight Decay Batch Size

CNN Adam 0.001
(multiplied by 0.1 after 300 epochs) 0.0001 128

J.4.5 Randomly Permuted Audio Datasets With a Large Number of Features (Table 4)973

Dataset: The data acquisition process followed the protocol described in Appendix J.3.1, except that974

the data was not transformed into a binary one-vs-all classification dataset and the audio segments975

were upsampled from 16,000 to 50,000.976

Edge Sparsification: To facilitate running the METIS graph partitioning algorithm over the minimum977

balanced cut problems encountered as part of Algorithm 2, we first removed edges from the graph us-978

ing the spectral sparsification algorithm of [56]. Specifically, we used the official Julia implementation979

(https://github.com/danspielman/Laplacians.jl) with hyperparameter ε = 0.15.980

Neural network architectures:981

• CNN: Same architecture used for the experiments of Table 2 (see Appendix J.4.3).982

• S4: Same architecture used for the experiments of Table 1 (see Appendix J.3.1), but983

with a hidden dimension of 32 (we reduced the hidden dimension due to GPU memory984

considerations).985

Training and evaluation: The cross-entropy loss was minimized for 200 epochs via the Adam986

optimizer [32] with default β1, β2 coefficients (number of epochs was taken large enough such that987

the train loss plateaued). Batch sizes were chosen to be the largest powers of two that fit in the988

GPU memory. After the last training epoch, the model which performed best on the validation set989

was chosen, and its average test accuracy is reported. Additional optimization hyperparameters are990

provided in Table 13. We note that for S4 [26], in accordance with its official implementation, we use991

a cosine annealing learning rate scheduler.992

Table 13: Optimization hyperparameters for the experiments of Table 4.

Model Optimizer Learning Rate Weight Decay Batch Size

CNN Adam 0.001 0.0001 64
S4 AdamW 0.001 0.01 64

K Deferred Proofs993

K.1 Useful Lemmas994

Below we collect a few useful results, which we will use in our proofs.995

Lemma 1. We denote the vector of singular values of a matrix X (arranged in decreasing order) by996

S(X). For any A,B ∈ RD1×D2 it holds that:997

‖S(A)− S(B)‖ ≤ ‖S(A−B)‖

Proof. See Theorem III.4.4 of [3].998

Lemma 2. Let P = {p1, ..., pN},Q = {q1, ..., qN} be two probability distributions supported on999

[N ], and denote by TV (P,Q) := 1
2

∑N
n=1|pn − qn| their total variation distance. If for ε ∈ (0, 1/2)1000

it holds that TV (P,Q) ≤ ε, then:1001

|H(P)−H(Q)| ≤ Hb(ε) + ε · ln(N) ,

where H(P) := −∑N
n=1 pn ln(pn) is the entropy of P , and Hb(c) := −c · ln(c)− (1− c) · ln(1− c)1002

is the binary entropy of a Bernoulli distribution parameterized by c ∈ [0, 1].1003

Proof. See, e.g., Theorem 11 of [27].1004
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Lemma 3 (Hoeffding inequality in Hilbert space). Let X1, .., XN be an i.i.d sequence of random1005

variables whose range is some separable Hilbert spaceH. Suppose that E[Xn] = 0 and ‖Xn‖ ≤ c1006

for all n ∈ [N ]. Then, for all t ≥ 0:1007

Pr

(∥∥∥∥
1

n

∑N

n=1
Xn

∥∥∥∥ ≥ t
)
≤ 2 exp

(
Nt2

2c2

)
,

where ‖·‖ refers to the Hilbert space norm.1008

Proof. See Section 2.4 of [51].1009

Lemma 4 (adapted from [35]). Let G = (V,E) be the perfect binary tree graph, with vertices V1010

and edges E, underlying the locally connected tensor network that generatesWTN ∈ RD1×···×DN1011

(defined in Section 3.1). For K ⊆ [N ], let VK ⊆ V and VKc ⊆ V be the leaves in G corresponding to1012

axes indices K and Kc ofWTN, respectively. Lastly, given a cut (A,B) of V , i.e. A ⊆ V and B ⊆ V1013

are disjoint and A ∪B = V , denote by C(A,B) := {{u, v} ∈ E : u ∈ A, v ∈ B} the edge-cut set.1014

Then:1015

rank(JWTN;KK) ≤ min cut (A,B) of V s.t. VK⊆A,VKc⊆B R
|C(A,B)| .

In particular, if (K,Kc) ∈ CN , then:1016

rank(JWTN;KK) ≤ R .

Proof. See Claim 1 in [35] for the upper bound on the rank of JWTN;KK for any K ⊆ [N ]. If1017

(K,Kc) ∈ CN , since there exists a cut (A,B) of V such that VK ⊆ A and VKc ⊆ B whose edge-cut1018

set is of a singleton, we get that rank(JWTN;KK) ≤ R.1019

Lemma 5 (adapted from [35]). Let G = (V,E) be the perfect 2P -ary tree graph, with vertices V1020

and edges E, underlying the locally connected tensor network that generatesWP
TN ∈ RD1×···×DNP1021

(defined in Appendix I.1.1). Furthermore, let µ : [N ]P → [NP ] be a compatible map from P -1022

dimensional coordinates to axes indices of WP
TN (Definition 5). For J ⊆ [NP ], let VJ ⊆ V1023

and VJ c ⊆ V be the leaves in G corresponding to axes indices J and J c of WP
TN, respectively.1024

Lastly, given a cut (A,B) of V , i.e. A ⊆ V and B ⊆ V are disjoint and A ∪ B = V , denote by1025

C(A,B) := {{u, v} ∈ E : u ∈ A, v ∈ B} the edge-cut set. Then:1026

rank(
q
WP

TN;J
y
) ≤ min cut (A,B) of V s.t. VJ⊆A,VJc⊆B R

|C(A,B)| .

In particular, if (K,Kc) ∈ CPN , then:1027

rank(JWTN;µ(K)K) ≤ R .

Proof. See Claim 1 in [35] for the upper bound on the rank of
q
WP

TN;J
y

for any J ⊆ [NP ]. If1028

(K,Kc) ∈ CPN , since there exists a cut (A,B) of V such that Vµ(K) ⊆ A and Vµ(K)c ⊆ B whose1029

edge-cut set is of a singleton, we get that rank(
q
WP

TN;µ(K)
y
) ≤ R.1030

Lemma 6 (adapted from Theorem 3.18 in [25]). Let A ∈ RD1×...×DN and ε > 0. For each1031

canonical partition (K,Kc) ∈ CN , let σK,1 ≥ ...σK,DK be the singular values of JA;KK, where1032

DK := min{∏n∈KDn,
∏
n∈Kc Dn}. Let (nK)K∈CN ∈ NCN be an assignment of an integer to each1033

K ∈ CN . For any such assignment, consider the set of tensors with Hierarchical Tucker (HT) rank at1034

most (nK)K∈CN as follows:1035

HT ((nK)K∈CN ) :=
{
V ∈ RD1×···×DN : ∀K ∈ CN , rank(JV;KK) ≤ nK

}
.

Suppose that for all (K,Kc) ∈ CN it holds that
√∑DK

d=nK+1 σ
2
K,d ≤ ε√

2N−3 . Then, there exists1036

W ∈ HT ((nK)K∈CN ) satisfying:1037

‖W −A‖ ≤ ε .

In particular, if for all (K,Kc) ∈ CN it holds that
√∑DK

d=R+1 σ
2
K,d ≤ ε√

2N−3 , then there exists1038

WTN ∈ RD1×···×DN generated by the locally connected tensor network (defined in Section 3.1)1039

satisfying:1040

‖WTN −A‖ ≤ ε .
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Lemma 7 (adapted from Theorem 3.18 in [25]). Let (nK)K∈CN ∈ NCN be an assignment of an1041

integer to each K ∈ CN . For any such assignment, consider the set of tensors with Hierarchical1042

Tucker (HT) rank at most (nK)K∈CN as follows:1043

HT ((nK)K∈CN ) :=
{
V ∈ RD1×···×DN : ∀K ∈ CN , rank(JV;KK) ≤ nK

}
.

Consider a locally connected tensor network with varying widths (nK)K∈CN , i.e. a tensor network1044

conforming to a perfect binary tree graph in which the lengths of inner axes are as follows (in contrast1045

to all being equal to R as in the locally connected tensor network defined in Section 3.1). An axis1046

corresponding to an edge that connects a node with descendant leaves indexed by K to its parent1047

is assigned the length nK. Then, every A ∈ HT ((nK)K∈CN ) can be represented by said locally1048

connected tensor network with varying widths, meaning there exists an assignment to the tensors of1049

the tensor network such that it generates A. In particular, if nK = R for all K ∈ CN , then A can be1050

generated by the locally connected tensor network with all inner axes being of length R.1051

Lemma 8. Let V,W ∈ RD1×···×DN be tensors such that ‖V‖ = ‖W‖ = 1 and ‖V −W‖ < 1
2 .1052

Then, for any (K,Kc) ∈ CN it holds that:1053

|QE(V;K)−QE(W;K)| ≤ Hb(‖V −W‖) + ‖V −W‖ · ln(DK) ,
where Hb(c) := −(c · ln(c) + (1− c) · ln(1− c)) is the binary entropy of a Bernoulli distribution1054

parameterized by c ∈ [0, 1], and DK := min{∏n∈KDn,
∏
n∈Kc Dn}.1055

Proof. For any matrix M ∈ RD1×D2 with D := min{D1, D2}, let S(M) = (σM,1, ..., σM,D) be1056

the vector consisting of its singular values. First note that1057

‖V −W‖ = ‖S(JV −W;KK)‖ ≤ ‖V −W‖ .
So by Lemma 1 we have1058

‖S(JV;KK− S(JW;KK)‖ ≤ ‖V −W‖ .
Let v1 ≥ · · · ≥ vDK and w1 ≥ · · · ≥ wDK be the singular values of JV;KK and JW;KK, respectively.1059

We have by the Cauchy-Schwarz inequality that1060

(
DK∑

d=1

|w2
d − v2d|

)2

=

(
DK∑

d=1

|wd − vd| · |wd + vd|
)2

≤
(
DK∑

d=1

(wd − vd)2
)(

DK∑

d=1

(wd + vd)
2

)
.

Now the first term is upper bounded by ‖V −W‖2, and for the second we have1061

DK∑

d=1

(wd + vd)
2 =

DK∑

d=1

w2
d +

DK∑

d=1

v2d + 2vdwd = 2 + 2

DK∑

d=1

vdwd ≤ 4 ,

where we use the fact that ‖V‖ = ‖W‖ = 1, and again Cuachy-Schwarz. Overall we have:1062

DK∑

d=1

|w2
d − v2d| ≤ 2‖V −W‖ .

Note that the left hand side of the inequality above equals twice the total variation distance between1063

the distributions defined by {w2
d}DKd=1 and {v2d}DKd=1. Therefore by Lemma 2 we have:1064

|QE(V;K)−QE(W;K)| = |H({w2
d})−H({v2d})| ≤ ‖V −W‖ · ln(DK) +Hb(‖V −W‖) .

1065

Lemma 9. Let P = {p(x)}x∈[S], where S ∈ N, be a probability distribution, and denote its entropy1066

by H(P) := Ex∼P [ln (1/p(x))]. Then, for any 0 < a < 1, there exists a subset T ⊆ [S] such that1067

Prx∼P(T c) ≤ a and |T | ≤ eH(P)
a .1068

Proof. By Markov’s inequality we have for any 0 < a < 1:1069

Prx∼P

({
x : e−

H(P )
a ≥ p(x)

})
= Prx∼P

({
x : ln

(
1

p(x)

)
≥ H(P )

a

})
≤ a .

Let T :=
{
x : e−

H(P )
a ≤ p(x)

}
⊆ [S]. Note that1070

e−
H(P)
a |T | ≤

∑
x∈T

p(x) ≤
∑

x∈[S]
p(x) = 1 ,

and so |T | ≤ eH(P )
a and Prx∼P(T c) ≤ a, as required.1071
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K.2 Proof of Theorem 11072

If A = 0 the theorem is trivial, since then QE(A;K) = 0 for all (K,Kc) ∈ CN , so we can assume1073

A 6= 0. We have:1074
∥∥∥∥
WTN

‖WTN‖
− A
‖A‖

∥∥∥∥ =
1

‖A‖

∥∥∥∥
‖A‖
‖WTN‖

· WTN −A
∥∥∥∥

≤ 1

‖A‖

(∣∣∣∣
‖A‖
‖WTN‖

− 1

∣∣∣∣ · ‖WTN‖+ ‖WTN −A‖
)

=
1

‖A‖ (|‖A‖ − ‖WTN‖|+ ‖WTN −A‖)

≤ 2ε

‖A‖ .

Now, let Â := A
‖A‖ and ŴTN = WTN

‖WTN‖ be normalized versions of A andWTN, respectively, and let1075

c = 2ε
‖A‖ . Note that c < 2‖A‖

4
1
‖A‖ = 1

2 , and therefore by Lemma 8 we have:1076

|QE(A;K)−QE(WTN;K)| =
∣∣∣QE

(
Â;K

)
−QE

(
ŴTN;K

)∣∣∣
≤ c · ln(DK) +Hb(c) .

By Lemma 4 we have that1077

QE
(
ŴTN;K

)
≤ ln(rank(JWTN;KK)) ≤ ln(R) ,

and therefore1078

QE
(
Â;K

)
≤ ln(R) + c ln(DK) +Hb(c) .

Substituting c = 2ε
‖A‖ and invoking the elementary inequality Hb(x) ≤ 2

√
x we obtain1079

QE(A;K) ≤ ln(R) +
2ε

‖A‖ · ln(DK) + 2

√
2ε

‖A‖ ,

as required. Lastly, the existence of a tensor A′ ∈ RD1×···×DN such that QE(A′;K) ≥1080

min{|K|, |Kc|} · ln(minn∈[N ]Dn) for all (K,Kc) ∈ CN follows from the construction given in1081

Theorem 2 of [17].1082

K.3 Proof of Theorem 21083

Consider, for each canonical partition (K,Kc) ∈ CN , the distribution1084

PK =

{
pK(i) :=

σ2
K,i

‖A‖2

}

i∈[DK]

,

where σK,1 ≥ σK,2 ≥ ... ≥ σK,DK are the singular values of JA;KK (note that 1
‖A‖2

∑
j σ

2
K,j =1085

‖A‖2
‖A‖2 = 1 so PK is indeed a probability distribution). Denoting by H(PK) := Ei∼PK [ln (1/pK(i))]1086

the entropy of PK, by assumption:1087

QE(A;K) = H(PK) ≤ ε2

‖A‖2(2N − 3)
ln(R) ,

for all (K,Kc) ∈ CN . Thus, taking a = ε2

‖A‖2(2N−3) we obtain by Lemma 9 that there exists a subset1088

TK ⊆ [DK] such that1089

PK(T cK) ≤ ε2

(2N − 3)‖A‖2 ,

and |TK| ≤ e
H(PK)

c = eln(R) = R. Note that1090

PK(TK) ≤
∑R

i=1

σ2
i

‖A‖2 .
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Since this holds for any subset of cardinality at most R. Taking complements we obtain1091

∑DK

i=R+1

σ2
i

‖A‖2 ≤ PK(T cK) ,

so1092 √∑DK

i=R+1
σ2
K,i ≤

ε√
(2N − 3)

.

We can now invoke Lemma 6, which implies that there exists someWTN ∈ RD1×···×DN generated1093

by the locally connected tensor network satisfying:1094

‖WTN −A‖ ≤ ε .

1095

K.4 Proof of Proposition 11096

Recall that by Lemma 8 for any pair of unit norm tensors V,W such that ‖V −W‖ < 0.51097

|QE(V;K)−QE(W;K)| ≤ ‖V −W‖ ln(DK) +Hb(‖V −W‖) ≤ 2 ln(DK)
√
‖V −W‖ ,

where we used the elemntary inequality Hb(x) ≤ 2
√
x. So it suffices to bound1098

∥∥∥∥
Demp

‖Dpop‖
− Demp

‖Demp‖

∥∥∥∥ .

We have the identity1099

∥∥∥∥
Dpop

‖Dpop‖
− Demp

‖Demp‖

∥∥∥∥ =

∥∥∥∥
Dpop‖Demp‖ − Demp‖Dpop‖

‖Dpop‖‖Demp‖

∥∥∥∥ =

1100 ∥∥∥∥
Dpop‖Demp‖ − ‖Demp‖Demp +Demp‖Demp‖ − Demp‖Dpop‖

‖Dpop‖‖Demp‖

∥∥∥∥

by the triangle inequality the above is bounded by1101

‖Dpop −Demp‖
‖Dpop‖

+
|‖Dpop‖ − ‖Demp‖|

‖Dpop‖

For m ∈ [M ], let X (m) = y(m) · ⊗n∈[N ]x
(n,m) − Dpop. These are i.i.d random variables with1102

E[X (m)] = 0 and ‖X (m)‖ ≤ 2 for all m ∈ [M ]. Note that1103

∥∥∥∥
1

M

∑M

m=1
X (m)

∥∥∥∥ = ‖Demp −Dpop‖ ,

so by Lemma 2 with c = 2, t =
‖Dpop‖γ
ln(DK) , assuming M ≥ 128 ln( 2

δ )(ln(DK))
4

‖Dpop‖2γ4 we have with probability1104

at least 1− δ1105

|‖Dpop‖ − ‖Demp‖| ≤ ‖Dpop −Demp‖ ≤
‖Dpop‖γ2
8 ln(DK)2

,

and therefore1106

‖Dpop −Demp‖
‖Dpop‖

+
|‖Dpop‖ − ‖Demp‖|

‖Dpop‖
≤ γ2

4 ln(DK)2
,

and so by Lemma 81107

|QE(Demp;K)−QE(Dpop;K)| ≤ γ .

1108

33



K.5 Proof of Corollary 11109

Notice that the entanglements of a tensor are invariant to multiplication by a constant. In particular,1110

QE(Dpop;K) = QE(Dpop/‖Dpop‖;K) for any (K,Kc) ∈ CN . Hence, if there exists a canonical1111

partition (K,Kc) ∈ CN under which QE(Dpop;K) > ln(R) + 2ε · ln(DK) + 2
√

2ε, then Theorem 11112

implies that minWTN
‖WTN −Dpop/‖Dpop‖‖ > ε. Now, for any non-zeroW ∈ RD1×···DN gener-1113

ated by the locally connected tensor network, one can also representW/‖W‖ by multiplying any of1114

the tensors constituting the tensor network by 1/‖W‖ (contraction is a multilinear operation). Thus:1115

SubOpt := minWTN

∥∥∥∥
WTN

‖WTN‖
− Dpop

‖Dpop‖

∥∥∥∥ ≥ minWTN

∥∥∥∥WTN −
Dpop

‖Dpop‖

∥∥∥∥ > ε ,

which concludes the first part of the claim, i.e. the necessary condition for low suboptimality in1116

achievable accuracy.1117

For the sufficient condition, if for all (K,Kc) ∈ CN it holds that QE(Dpop;K) ≤ ε2

8N−12 · ln(R),1118

then by Theorem 2 there exists an assignment for the locally connected tensor network such that1119

‖WTN −Dpop/‖Dpop‖‖ ≤ ε/2. From the triangle inequality we obtain:1120
∥∥∥∥
WTN

‖WTN‖
− Dpop

‖Dpop‖

∥∥∥∥ ≤
∥∥∥∥WTN −

Dpop

‖Dpop‖

∥∥∥∥+

∥∥∥∥WTN −
WTN

‖WTN‖

∥∥∥∥ ≤
ε

2
+

∥∥∥∥WTN −
WTN

‖WTN‖

∥∥∥∥ .

(10)
Since ‖WTN −Dpop/‖Dpop‖‖ ≤ ε/2 it holds that ‖WTN‖ ≤ 1 + ε/2. Combined with the fact that1121 ∥∥WTN − WTN

‖WTN‖
∥∥ = ‖WTN‖ − 1, we get that

∥∥WTN − WTN

‖WTN‖
∥∥ ≤ ε/2. Plugging this into Equa-1122

tion (10) yields:1123 ∥∥∥∥
WTN

‖WTN‖
− Dpop

‖Dpop‖

∥∥∥∥ ≤ ε ,

and so SubOpt := minWTN

∥∥ WTN

‖WTN‖ −
Dpop

‖Dpop‖
∥∥ ≤ ε.1124

K.6 Proof of Theorem 31125

If A = 0 the theorem is trivial, since then QE(A;µ(K)) = 0 for all (K,Kc) ∈ CPN , so we can1126

assume A 6= 0. We have:1127 ∥∥∥∥
WP

TN

‖WP
TN‖
− A
‖A‖

∥∥∥∥ =
1

‖A‖

∥∥∥∥
‖A‖
‖WP

TN‖
· WP

TN −A
∥∥∥∥

≤ 1

‖A‖

(∣∣∣∣
‖A‖
‖WP

TN‖
− 1

∣∣∣∣ · ‖WP
TN‖+ ‖WP

TN −A‖
)

=
1

‖A‖
(∣∣‖A‖ − ‖WP

TN‖
∣∣+ ‖WP

TN −A‖
)

≤ 2ε

‖A‖ .

Now, let Â := A
‖A‖ and ŴP

TN =
WP

TN
‖WP

TN‖
be normalized versions of A andWP

TN, respectively, and let1128

c = 2ε
‖A‖ . Note that c < 2‖A‖

4
1
‖A‖ = 1

2 , and therefore by Lemma 8 we have:1129

|QE(A;µ(K))−QE
(
WP

TN;µ(K)
)
| =

∣∣∣QE
(
Â;µ(K)

)
−QE

(
ŴP

TN;µ(K)
)∣∣∣

≤ c · ln(Dµ(K)) +Hb(c) .

By Lemma 5 we have that1130

QE
(
ŴP

TN;µ(K)
)
≤ ln(rank(

q
WPTN;µ(K)

y
)) ≤ ln(R) ,

and therefore1131

QE
(
Â;µ(K)

)
≤ ln(R) + c ln(Dµ(K)) +Hb(c) .

Substituting c = 2ε
‖A‖ and invoking the elementary inequality Hb(x) ≤ 2

√
x we obtain1132

QE(A;µ(K)) ≤ ln(R) +
2ε

‖A‖ · ln(Dµ(K)) + 2

√
2ε

‖A‖ ,

34



as required. Equation (6) follows from the construction given in Theorem 2 of [17].1133

1134

K.7 Proof of Theorem 41135

Let CNP be the one-dimensional canonical partitions of [NP ] (Definition 2). Note that µ(CPN ) :=1136

{µ(K) : K ∈ CPN} ⊆ CNP . For an assignment (nK)K∈CNP ∈ NCNP of integers to one-dimensional1137

canonical partitions K ∈ CNP , we consider the set of tensors whose matricization with respect to1138

each K ∈ CNP has rank at most nK. This set is also known in the literature as the set of tensors with1139

Hierarchical Tucker (HT) rank at most (nK)K∈CNP (cf. [25]). Accordingly, we denote it by:1140

HT
(
(nK)K∈CNP

)
:=
{
V ∈ RD1×···×DNP : ∀K ∈ CNP , rank(JV;KK) ≤ nK

}
.

Now, define (n∗K)K∈CNP ∈ NCNP by:1141

∀K ∈ CNP : n∗K =

{
R if µ−1(K) ∈ CPN
DK if µ−1(K) /∈ CPN

,

where DK := min{∏n∈KDn,
∏
n∈Kc Dn}. We show that for any tensor A that satisfies for all1142

K ∈ CPN :1143

QE(A;µ(K)) ≤ ε2

(2NP − 3)‖A‖2
· ln(R) ,

there exists a tensor V ∈ HT
(
(n∗K)K∈CNP

)
such that ‖A − V‖ ≤ ε. Consider, for each canonical1144

partition (K,Kc) ∈ CPN , the distribution1145

PK =

{
pK(i) :=

σ2
K,i

‖A‖2

}

i∈[DK]

,

where σK,1 ≥ σK,2 ≥ ... ≥ σK,DK are the singular values of JA;µ(K)K (note that 1
‖A‖2

∑
j σ

2
K,j =1146

‖A‖2
‖A‖2 = 1 so PK is indeed a probability distribution). Denoting by H(PK) := Ei∼PK [ln (1/pK(i))]1147

the entropy of PK, by assumption:1148

QE(A;µ(K)) = H(PK) ≤ ε2

‖A‖2(2NP − 3)
ln(R) ,

for all (K,Kc) ∈ CPN . Thus, taking a = ε2

‖A‖2(2NP−3) we get by Lemma 9 that there exists a subset1149

TK ⊆ [DK] such that1150

PK(T cK) ≤ ε2

(2NP − 3)‖A‖2 ,

and |TK| ≤ e
H(PK)

a = eln(R) = R. Note that1151

PK(TK) ≤
∑R

i=1

σ2
i

‖A‖2 .

Since this holds for any subset of cardinality at most R. Taking complements we obtain1152

∑DK

i=R+1

σ2
i

‖A‖2 ≤ PK(T cK) ,

so1153 √∑DK

i=R+1
σ2
K,i ≤

ε√
(2NP − 3)

.

We can now invoke Lemma 6 (note that if µ−1(K) /∈ CPN , then the requirements of Lemma 6 are1154

trivially fullfiled with respect to the partition (K,Kc) since n∗K = DK), which implies that there1155

exists someW ∈ HT
(
(n∗K)K∈CNP

)
satisfying:1156

‖W −A‖ ≤ ε ,
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as required.1157

The proof concludes by establishing that for any tensor W ∈ HT
(
(n∗K)K∈CNP

)
, there exists1158

assignment for the tensors constituting the P -dimensional locally connected tensor network (defined1159

in Figure 6) such that it generatesW .1160

To see why this is the case, note that by Lemma 7 any tensorW ∈ HT
(
(n∗K)K∈CNP

)
can be repre-1161

sented by a (one-dimensional) locally connected tensor network with varying widths (n∗K)K∈CNP ,1162

i.e. a tensor network conforming to a perfect binary tree graph in which the lengths of inner axes are1163

as follows: an axis corresponding to an edge that connects a node with descendant leaves indexed by1164

K to its parent is assigned the length n∗K. We can obtain an equivalent representation of any such1165

tensor as a P -dimensional locally connected tensor network (described in Appendix I.1.1) via the1166

following procedure. For each node at level l ∈ {0, P, 2P, . . . , (L− 1)P} of the tree (recall N = 2L1167

for L ∈ N), contract it with its descendant nodes at levels {l + 1, . . . , l + (P − 1)}.9 This results in1168

a new tensor network whose underlying graph is a perfect 2P -ary tree and the remaining edges all1169

correspond to inner axes of lengths equal to n∗K = R for K ∈ CPN , i.e. in a representation ofW as a1170

P -dimensional locally connected tensor network.1171

9For a concrete example, let N = 2L = 4 and P = 2 (i.e. L = 2). In this case, the perfect binary tree
underlying the one-dimensional locally connected tensor network of varying widths is of height L · P = 4 and
has NP = 16 leaves. It is converted into a perfect 4-ary tree tensor network of height L = 2 by contracting the
root with its two children and the nodes at level two with their children.
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