Probabilistic Exponential Integrators - Appendix

A Proof of Proposition 1: Structure of the transition matrix

Proof of Proposition 1. The drift-matrix $A_{\operatorname{IOUP}(d, q)}$ as given in Eq. (21) has block structure

$$
A_{\mathrm{IOUP}(d, q)}=\left[\begin{array}{cc}
A_{\mathrm{IWP}(d, q-1)} & E_{q-1} \tag{31}\\
0 & L
\end{array}\right]
$$

where $E_{q-1}:=\left[\begin{array}{llll}0 & \ldots & 0 & I_{d}\end{array}\right]^{\top} \in \mathbb{R}^{d q \times d}$. From Van Loan [47, Theorem 1], it follows

$$
\Phi(h)=\left[\begin{array}{cc}
\exp \left(A_{\mathrm{IWP}(d, q-1)} h\right) & \Phi_{12}(h) \tag{32}\\
0 & \exp (L h)
\end{array}\right]
$$

which is precisely Eq. (23). The same theorem also gives $\Phi_{12}(h)$ as

$$
\begin{equation*}
\Phi_{12}(h)=\int_{0}^{h} \exp \left(A_{\mathrm{IWP}(d, q-1)}(h-\tau)\right) E_{q-1}^{(d-1)} \exp (L \tau) \mathrm{d} \tau \tag{33}
\end{equation*}
$$

Its i th $d \times d$ block is readily given by

$$
\begin{align*}
\left(\Phi_{12}(h)\right)_{i} & =\int_{0}^{h} E_{i}^{\top} \exp \left(A_{\operatorname{IWP}(d, q-1)}(h-\tau)\right) E_{q-1} \exp (L \tau) \mathrm{d} \tau \\
& =\int_{0}^{h} \frac{(h-\tau)^{q-1-i}}{(q-1-i)!} \exp (L \tau) \mathrm{d} \tau \tag{34}\\
& =h^{q-i} \int_{0}^{1} \frac{\tau^{q-1-i}}{(q-1-i)!} \exp (L h(1-\tau)) \mathrm{d} \tau \\
& =h^{q-i} \varphi_{q-i}(L h)
\end{align*}
$$

where the second last equality used the change of variables $\tau=h(1-u)$, and the last line follows by definition.

B Proof of Proposition 2: Equivalence to a classic exponential integrator

We first briefly recapitulate the probabilistic exponential integrator setup for the case of the once integrated Ornstein-Uhlenbeck process, and then provide some auxiliary results. Then, we prove Proposition 2 in Appendix B.3.

B. 1 The probabilistic exponential integrator with once-integrated Ornstein-Uhlenbeck prior

The integrated Ornstein-Uhlenbeck process prior with rate parameter L results in transition densities $Y(t+h) \mid Y(t) \sim \mathcal{N}(Y(t+h) ; \Phi(h) Y(t), Q(h))$, with transition matrices (from Proposition 1)

$$
\begin{align*}
\Phi(h) & =\exp (A h)=\left[\begin{array}{cc}
I & h \varphi_{1}(L h) \\
0 & \varphi_{0}(L h)
\end{array}\right] \tag{35}\\
Q(h) & =\int_{0}^{h} \exp (A \tau) B B^{\top} \exp \left(A^{\top} \tau\right) \mathrm{d} \tau \tag{36}\\
& =\int_{0}^{h}\left[\begin{array}{cc}
I & \tau \varphi_{1}(L \tau) \\
0 & \varphi_{0}(L \tau)
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
I & \tau \varphi_{1}(L \tau) \\
0 & \varphi_{0}(L \tau)
\end{array}\right]^{\top} \mathrm{d} \tau \tag{37}\\
& =\int_{0}^{h}\left[\begin{array}{cc}
\tau^{2} \varphi_{1}(L \tau) \varphi_{1}(L \tau)^{\top} & \tau \varphi_{1}(L \tau) \varphi_{0}(L \tau)^{\top} \\
\tau \varphi_{0}(L \tau) \varphi_{1}(L \tau)^{\top} & \varphi_{0}(L \tau) \varphi_{0}(L \tau)^{\top}
\end{array}\right] \mathrm{d} \tau \tag{38}
\end{align*}
$$

$$
\begin{align*}
H \Phi(h) & =\left[\begin{array}{ll}
-L & I
\end{array}\right], \tag{47}\\
Q(h) H^{\top} & =\left[\begin{array}{c}
h^{2} \varphi_{2}(L h) \\
h \varphi_{1}(L h)
\end{array}\right], \tag{48}\\
H Q(h) H^{\top} & =h I, \tag{49}
\end{align*}
$$

Proof.

$$
H \Phi(h)=\left(E_{1}-L E_{0}\right)\left[\begin{array}{cc}
I & h \varphi_{1}(L h) \tag{50}\\
0 & \varphi_{0}(L h)
\end{array}\right]=\left[\begin{array}{ll}
0 & \varphi_{0}(L h)
\end{array}\right]-L\left[\begin{array}{ll}
I & h \varphi_{1}(L h)
\end{array}\right]=\left[\begin{array}{ll}
-L & I
\end{array}\right]
$$

428

$$
\begin{align*}
Q(h) H^{\top} & =\int_{0}^{h}\left[\begin{array}{cc}
\tau^{2} \varphi_{1}(L \tau) \varphi_{1}(L \tau)^{\top} & \tau \varphi_{1}(L \tau) \varphi_{0}(L \tau)^{\top} \\
\tau \varphi_{0}(L \tau) \varphi_{1}(L \tau)^{\top} & \varphi_{0}(L \tau) \varphi_{0}(L \tau)^{\top}
\end{array}\right] H^{\top} \mathrm{d} \tau \tag{51}\\
& =\int_{0}^{h}\left[\begin{array}{c}
\tau \varphi_{1}(L \tau) \varphi_{0}(L \tau)^{\top}-L \tau^{2} \varphi_{1}(L \tau) \varphi_{1}(L \tau)^{\top} \\
\varphi_{0}(L \tau) \varphi_{0}(L \tau)^{\top}-L \tau \varphi_{0}(L \tau) \varphi_{1}(L \tau)^{\top}
\end{array}\right] \mathrm{d} \tau \tag{52}\\
& =\int_{0}^{h}\left[\begin{array}{c}
\tau \varphi_{1}(L \tau)\left(\varphi_{0}(L \tau)^{\top}-L \tau \varphi_{1}(L \tau)^{\top}\right) \\
\varphi_{0}(L \tau)\left(\varphi_{0}(L \tau)^{\top}-L \tau \varphi_{1}(L \tau)^{\top}\right)
\end{array}\right] \mathrm{d} \tau \tag{53}\\
& =\int_{0}^{h}\left[\begin{array}{c}
\tau \varphi_{1}(L \tau) \\
\varphi_{0}(L \tau)
\end{array}\right] \mathrm{d} \tau \tag{54}\\
& =\left[\begin{array}{c}
h^{2} \varphi_{2}(L h) \\
h \varphi_{1}(L h)
\end{array}\right] \tag{55}
\end{align*}
$$

where we used $L \tau \varphi_{1}(L \tau)=\varphi_{0}(L \tau)-I$, and $\partial_{\tau}\left[\tau^{k} \varphi_{k}(L \tau)\right]=\tau^{k-1} \varphi_{k-1}(L \tau)$. It follows that

$$
H Q(h) H^{\top}=H\left[\begin{array}{c}
h^{2} \varphi_{2}(L h) \tag{56}\\
h \varphi_{1}(L h)
\end{array}\right]=h\left(\varphi_{1}(L h)-L h \varphi_{2}(L h)\right)=h I
$$

Lemma B.2. The prediction covariance Σ_{n+1}^{-}satisfies

$$
\begin{equation*}
\Sigma_{n+1}^{-} H^{\top}=Q(h) H^{\top} \tag{57}
\end{equation*}
$$

Proof. First, since the observation model is noiseless, the filtering covariance Σ_{n} satisfies

$$
H \Sigma_{n}=\left[\begin{array}{ll}
0 & 0 \tag{58}
\end{array}\right] .
$$

433 This can be shown directly from the correction step formula:

$$
\begin{align*}
H \Sigma_{n} & =H \Sigma_{n}^{-}-H K_{n} S_{n} K_{n}^{\top} \tag{59}\\
& =H \Sigma_{n}^{-}-H\left(\Sigma_{n}^{-} H^{\top} S_{n}^{-1}\right) S_{n} K_{n}^{\top} \tag{60}\\
& =H \Sigma_{n}^{-}-H \Sigma_{n}^{-} H^{\top}\left(H \Sigma_{n}^{-} H^{\top}\right)^{-1} S_{n} K_{n}^{\top} \tag{61}\\
& =H \Sigma_{n}^{-}-I S_{n} K_{n}^{\top} \tag{62}\\
& =H \Sigma_{n}^{-}-S_{n}\left(\Sigma_{n}^{-} H^{\top} S_{n}^{-1}\right)^{\top} \tag{63}\\
& =H \Sigma_{n}^{-}-S_{n} S_{n}^{-1} H \Sigma_{n}^{-} \tag{64}\\
& =\left[\begin{array}{ll}
0 & 0
\end{array}\right] . \tag{65}
\end{align*}
$$

434 Next, since the observation matrix is $H=\left[\begin{array}{ll}-L & I\end{array}\right]$, the filtering covariance Σ_{n} is structured as

$$
\Sigma_{n}=\left[\begin{array}{c}
I \tag{66}\\
L
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{n}
\end{array}\right]_{00}\left[\begin{array}{ll}
I & L^{\top}
\end{array}\right]
$$

435 This can be shown directly from Eq. (58):

$$
\left[\begin{array}{ll}
0 & 0
\end{array}\right]=H \Sigma=\left[\begin{array}{ll}
-L & I
\end{array}\right]\left[\begin{array}{ll}
\Sigma_{00} & \Sigma_{01} \tag{67}\\
\Sigma_{10} & \Sigma_{11}
\end{array}\right]=\left[\begin{array}{ll}
\Sigma_{10}-L \Sigma_{00} & \Sigma_{11}-L \Sigma_{01}
\end{array}\right]
$$

436 and thus

$$
\begin{align*}
& \Sigma_{10}=L \Sigma_{00} \tag{68}\\
& \Sigma_{11}=L \Sigma_{01}=L \Sigma_{10}^{\top}=L \Sigma_{00} L^{\top} \tag{69}
\end{align*}
$$

437
It follows

$$
\Sigma=\left[\begin{array}{cc}
\Sigma_{00} & L \Sigma_{00} \tag{70}\\
\Sigma_{00} L^{\top} & L \Sigma_{00} L^{\top}
\end{array}\right]=\left[\begin{array}{c}
I \\
L
\end{array}\right] \Sigma_{00}\left[\begin{array}{ll}
I & L^{\top}
\end{array}\right] .
$$

438
Finally, together with Lemma B. 1 we can derive the result:

$$
\begin{align*}
\Sigma_{n+1}^{-} H^{\top} & =\Phi(h) \Sigma_{n} \Phi(h)^{\top} H^{\top}+Q(h) H^{\top} \tag{71}\\
& =\Phi(h)\left[\begin{array}{c}
I \\
L
\end{array}\right] \bar{\Sigma}_{n}\left[\begin{array}{ll}
I & L^{\top}
\end{array}\right]\left[\begin{array}{c}
-L^{\top} \\
I
\end{array}\right]+Q(h) H^{\top} \tag{72}\\
& =\Phi(h)\left[\begin{array}{c}
I \\
L
\end{array}\right] \bar{\Sigma}_{n} \cdot 0+Q(h) H^{\top} \tag{73}\\
& =Q(h) H^{\top} . \tag{74}
\end{align*}
$$

the filtering mean at step n and Σ_{n} be the filtering covariance. The prediction mean is of the form

$$
\mu_{n+1}^{-}=\Phi(h) \mu_{n}=\left[\begin{array}{c}
y_{n}+h \varphi_{1}(L h)\left(L y_{n}+N\left(\tilde{y}_{n}\right)\right) \tag{81}\\
\varphi_{0}(L h)\left(L y_{n}+N\left(\tilde{y_{n}}\right)\right)
\end{array}\right]=\left[\begin{array}{c}
\varphi_{0}(L h) y_{n}+h \varphi_{1}(L h) N\left(\tilde{y}_{n}\right) \\
\varphi_{0}(L h)\left(L y_{n}+N\left(\tilde{y}_{n}\right)\right)
\end{array}\right] .
$$

The residual \hat{z}_{n+1} is then of the form

$$
\begin{align*}
\hat{z}_{n+1} & =E_{1} \mu_{n+1}^{-}-f\left(E_{0} \mu_{n+1}^{-}\right) \tag{82}\\
& =\varphi_{0}(L h)\left(L y_{n}+N\left(\tilde{y}_{n}\right)\right)-f\left(\varphi_{0}(L h) y_{n}+h \varphi_{1}(L h) N\left(\tilde{y}_{n}\right)\right) \tag{83}\\
& =\varphi_{0}(L h)\left(L y_{n}+N\left(\tilde{y}_{n}\right)\right)-L\left(\varphi_{0}(L h) y_{n}+h \varphi_{1}(L h) N\left(\tilde{y}_{n}\right)\right)-N\left(\tilde{y}_{n+1}\right) \tag{84}\\
& =\varphi_{0}(L h) L y_{n}+\varphi_{0}(L h) N\left(\tilde{y}_{n}\right)-L \varphi_{0}(L h) y_{n}-L h \varphi_{1}(L h) N\left(\tilde{y}_{n}\right)-N\left(\tilde{y}_{n+1}\right) \tag{85}\\
& =\left(\varphi_{0}(L h)-L h \varphi_{1}(L h)\right) N\left(\tilde{y}_{n}\right)-N\left(\tilde{y}_{n+1}\right) \tag{86}\\
& =N\left(\tilde{y}_{n}\right)-N\left(\tilde{y}_{n+1}\right), \tag{87}
\end{align*}
$$

where we used properties of the φ-functions, namely $L h \varphi_{1}(L h)=\varphi_{0}(L h)$ and the commutativity $\varphi_{0}(L h) L=L \varphi_{0}(L h)$. With Lemma B.2, the residual covariance S_{n+1} and Kalman gain K_{n+1} are then of the form

$$
\begin{align*}
S_{n+1} & =H \Sigma_{n+1}^{-} H^{\top}=H Q(h) H^{\top}=h I, \tag{89}\\
K_{n+1} & =\Sigma_{n+1}^{-} H^{\top} S_{n+1}^{-1}=Q(h) H^{\top}(h I)^{-1}=\left[\begin{array}{c}
h \varphi_{2}(L h) \\
\varphi_{1}(L h)
\end{array}\right] \tag{90}
\end{align*}
$$

B. 3 Proof of Proposition 2

With these results, we can now prove Proposition 2.

Proof of Proposition 2. We prove the proposition by induction, showing that the filtering means are all of the form

$$
\mu_{n}:=\left[\begin{array}{c}
y_{n} \tag{75}\\
L y_{n}+N\left(\tilde{y}_{n}\right)
\end{array}\right],
$$

where y_{n}, \tilde{y}_{n} are defined as

$$
\begin{align*}
\tilde{y}_{0} & :=y_{0} \tag{76}\\
\tilde{y}_{n+1} & :=\varphi_{0}(L h) y_{n}+h \varphi_{1}(L h) N\left(\tilde{y}_{n}\right), \tag{77}\\
y_{n+1} & :=\varphi_{0}(L h) y_{n}+h \varphi_{1}(L h) N\left(\tilde{y}_{n}\right)-h \varphi_{2}(L h)\left(N\left(\tilde{y}_{n}\right)-N\left(\tilde{y}_{n+1}\right)\right) . \tag{78}
\end{align*}
$$

This result includes the statement of Proposition 2.
Base case $n=0 \quad$ The initial distribution of the probabilistic solver is chosen as

$$
\mu_{0}=\left[\begin{array}{c}
y_{0} \tag{79}\\
L y_{0}+N\left(\tilde{y}_{0}\right)
\end{array}\right], \Sigma_{0}=0 .
$$

This proves the base case $n=0$.
Induction step $n \rightarrow n+1$ Now, let

$$
\mu_{n}=\left[\begin{array}{c}
y_{n} \tag{80}\\
L y_{n}+N\left(\tilde{y}_{n}\right)
\end{array}\right]
$$

This gives the updated mean

$$
\begin{align*}
\mu_{n+1} & =\mu_{n+1}^{-}-K_{n+1} \hat{z}_{n+1} \tag{91}\\
& =\left[\begin{array}{c}
\varphi_{0}(L h) y_{n}+h \varphi_{1}(L h) N\left(\tilde{y}_{n}\right) \\
\varphi_{0}(L h)\left(L y_{n}+N\left(\tilde{y}_{n}\right)\right)
\end{array}\right]-\left[\begin{array}{c}
h \varphi_{2}(L h) \\
\varphi_{1}(L h)
\end{array}\right]\left(N\left(\tilde{y}_{n}\right)-N\left(\tilde{y}_{n+1}\right)\right) \tag{92}\\
& =\left[\begin{array}{c}
\varphi_{0}(L h) y_{n}+h \varphi_{1}(L h) N\left(\tilde{y}_{n}\right)-h \varphi_{2}(L h)\left(N\left(\tilde{y}_{n}\right)-N\left(\tilde{y}_{n+1}\right)\right) \\
\varphi_{0}(L h)\left(L y_{n}+N\left(\tilde{y}_{n}\right)\right)-\varphi_{1}(L h)\left(N\left(\tilde{y}_{n}\right)-N\left(\tilde{y}_{n+1}\right)\right)
\end{array}\right] . \tag{93}
\end{align*}
$$

This proves the first half of the mean recursion:

$$
\begin{equation*}
E_{0} \mu_{n+1}=\varphi_{0}(L h) y_{n}+h \varphi_{1}(L h) N\left(\tilde{y}_{n}\right)-h \varphi_{2}(L h)\left(N\left(\tilde{y}_{n}\right)-N\left(\tilde{y}_{n+1}\right)\right)=y_{n+1} . \tag{94}
\end{equation*}
$$

It is left to show that

$$
\begin{equation*}
E_{1} \mu_{n+1}=L y_{n+1}-N\left(\tilde{y}_{n+1}\right) . \tag{95}
\end{equation*}
$$

Starting from the right-hand side, we have

$$
\begin{align*}
& L y_{n+1}+N\left(\tilde{y}_{n+1}\right) \tag{96}\\
& \quad=L\left(\varphi_{0}(L h) y_{n}+h \varphi_{1}(L h) N\left(\tilde{y}_{n}\right)-h \varphi_{2}(L h)\left(N\left(\tilde{y}_{n}\right)-N\left(\tilde{y}_{n+1}\right)\right)\right)+N\left(\tilde{y}_{n+1}\right) \tag{97}\\
& \quad=\varphi_{0}(L h) L y_{n}+L h \varphi_{1}(L h) N\left(\tilde{y}_{n}\right)-L h \varphi_{2}(L h)\left(N\left(\tilde{y}_{n}\right)-N\left(\tilde{y}_{n+1}\right)\right) N\left(\tilde{y}_{n+1}\right) \tag{98}\\
& \quad=\varphi_{0}(L h) L y_{n}+\left(\varphi_{0}(L h)-I\right) N\left(\tilde{y}_{n}\right)-\left(\varphi_{1}(L h)-I\right)\left(N\left(\tilde{y}_{n}\right)-N\left(\tilde{y}_{n+1}\right)\right) N\left(\tilde{y}_{n+1}\right) \tag{99}\\
& \quad=\varphi_{0}(L h)\left(L y_{n}+N\left(\tilde{y}_{n}\right)\right)-\varphi_{1}(L h)\left(N\left(\tilde{y}_{n}\right)-N\left(\tilde{y}_{n+1}\right)\right) \tag{100}\\
& \quad=E_{1} \mu_{n+1} . \tag{101}
\end{align*}
$$

This concludes the proof of the mean recursion and thus shows the equivalence of the two recursions.

C Proof of Proposition 3: L-stability

We first provide definitions of L-stability and A-stability, following [26, Section 8.6].
Definition 1 (L-stability). A one-step method is said to be L-stable if it is A-stable and, in addition, when applied to the scalar test-equation $\dot{y}(t)=\lambda y(t), \lambda \in \mathbb{C}$ a complex constant with $\operatorname{Re}(\lambda)<0$, it yields $y_{n+1}=R(h \lambda) y_{n}$, and $R(h \lambda) \rightarrow 0$ as $\operatorname{Re}(h \lambda) \rightarrow-\infty$.
Definition 2 (A-stability). A one-step method is said to be A-stable if its region of absolute stability contains the whole of the left complex half-plane. That is, when applied to the scalar test-equation $\dot{y}(t)=\lambda y(t)$ with $\lambda \in \mathbb{C}$ a complex constant with $\operatorname{Re}(\lambda)<0$, the method yields $y_{n+1}=R(h \lambda) y_{n}$, and $\{z \in \mathbb{C}: \operatorname{Re}(z)<0\} \subset\{z \in \mathbb{C}: R(z)<1\}$.

Proof of Proposition 3. Both L-stability and A-stability directly follow from Remark 1: Since the probabilistic exponential integrator solves linear ODEs exactly its stability function is the exponential function, i.e. $R(z)=\exp (z)$. A-stability and L-stability then follow: Since $\mathbb{C}^{-} \subset\{z:|R(z)| \leq 1\}$ holds the method is A-stable. And since $|R(z)| \rightarrow 0$ as $\operatorname{Re}(z) \rightarrow-\infty$ the method is L-stable.

D Experiment details

D. 1 Burger's equation

Burger's equation is a semi-linear partial differential equation (PDE) of the form

$$
\begin{equation*}
\partial_{t} u(x, t)=-u(x, t) \partial_{x} u(x, t)+D \partial_{x}^{2} u(x, t), \quad x \in \Omega, \quad t \in[0, T], \tag{102}
\end{equation*}
$$

with diffusion coefficient $D \in \mathbb{R}_{+}$. We discretize the spatial domain Ω on a finite grid and approximate the spatial derivatives with finite differences to obtain a semi-linear ODE of the form

$$
\begin{equation*}
\dot{y}(t)=D \cdot L \cdot y(t)+F(y(t)), \quad t \in[0, T] \tag{103}
\end{equation*}
$$

with N-dimensional $y(t) \in \mathbb{R}^{N}, L \in \mathbb{R}^{N \times N}$ the finite difference approximation of the Laplace operator ∂_{x}^{2}, and a non-linear part F.
More specifically, we consider a domain $\Omega=(0,1)$, which we discretize with a grid of $N=250$ equidistant locations, thus we have $\Delta x=1 / N$. We consider zero-Dirichlet boundary conditions, that is, $u(0, t)=u(1, t)=0$. The discrete Laplacian is then

$$
[L]_{i j}=\frac{1}{\Delta x^{2}} \cdot \begin{cases}-2 & \text { if } i=j \tag{104}\\ 1 & \text { if } i=j \pm 1 \\ 0 & \text { otherwise }\end{cases}
$$

The non-linear part of the discretized Burger's equation results from another finite-difference approximation of the term $u \cdot \partial_{x} u$, and is chosen as

$$
[F(y)]_{i}=\frac{1}{4 \Delta x} \begin{cases}y_{2}^{2} & \text { if } i=1 \tag{105}\\ y_{d-1}^{2} & \text { if } i=d \\ y_{i+1}^{2}-y_{i-1}^{2} & \text { else. }\end{cases}
$$

The initial condition is chosen as

$$
\begin{equation*}
u(x, 0)=\sin (3 \pi x)^{3}(1-x)^{3 / 2} \tag{106}
\end{equation*}
$$

We consider an integration time-span $t \in[0,1]$, and choose a diffusion coefficient $D=0.075$.

D. 2 Reaction-diffusion model

The reaction-diffusion model presented in the paper, with logistic reaction term, has been used to describe the growth and spread of biological populations [21]. It is given by a semi-linear PDE

$$
\begin{equation*}
\partial_{t} u(x, t)=D \partial_{x}^{2} u(x, t)+R(u(x, t)), \quad x \in \Omega, \quad t \in[0, T] \tag{107}
\end{equation*}
$$

where $D \in \mathbb{R}_{+}$is the diffusion coefficient and $R(u)=u(1-u)$ is a logistic reaction term. We discretize the spatial domain Ω on a finite grid and approximate the spatial derivatives with finite differences, and obtain a semi-linear ODE of the form

$$
\begin{equation*}
\dot{y}(t)=D \cdot L \cdot y(t)+R(y(t)), \quad t \in[0, T], \tag{108}
\end{equation*}
$$

with N-dimensional $y(t) \in \mathbb{R}^{N}, L \in \mathbb{R}^{N \times N}$ the finite difference approximation of the Laplace operator, and the reaction term R is as before but applied element-wise.

We again consider a domain $\Omega=(0,1)$, which we discretize on a grid of $N=100$ points. This time we consider zero-Neumann conditions, that is, $\partial_{x} u(0, t)=\partial_{x} u(1, t)=0$. Including these directly into the finite-difference discretization, the discrete Laplacian is then

$$
[L]_{i j}=\frac{1}{\Delta x^{2}} \cdot \begin{cases}-1 & \text { if } i=j=1 \text { or } i=j=d \tag{109}\\ -2 & \text { if } i=j \\ 1 & \text { if } i=j \pm 1 \\ 0 & \text { otherwise }\end{cases}
$$

The initial condition is chosen as

$$
\begin{equation*}
u(x, 0)=\frac{1}{1+e^{30 x-10}} \tag{110}
\end{equation*}
$$

The discrete ODE is then solved on a time-span $t \in[0,2]$, and we choose a diffusion coefficient $D=0.25$.

