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A Extended results1

In this section, we expand the evaluation experiments from the main text. We use the officially2

released pre-trained methods across all benchmarks to represent each SSL method. We did not3

retrain/reimplement any competing method. In total, we pre-trained 4 instances of CARP. To evaluate4

CARP’s performance in a low training regime, we trained two 200-epoch models, one with multi-crop5

(mc) and the other without it. Similarly, to evaluate longer training performance, we trained two6

400-epoch models, one with multi-crop and the other without it.7

A.1 Transfer learning evaluation8

In Table A.1, we report detailed results for the transfer learning k-NN experiments. We evaluate SSL9

methods for values of k ∈ {10, 20, 100, 200}, including all instances of CARP. Cf. Appendix D.3 for10

the evaluation protocol.11

CARP achieved either top-1 or top-2 performance in seven out of 8 datasets. STL-10 is the only12

dataset where CARP is neither the top-1 nor top-2. Moreover, in the FGVCAircraft, Stanford13

Cars, and GTSRB datasets, CARP archived top-1 and top-2 performances with large margins.14

The average k-NN performance per value of k across all datasets is reported in Table 1 in the main15

text.16

A.2 Image retrieval and copy detection17

Tables A.2 and A.3 show additional results for image retrieval and copy detection evaluations. For18

both tasks, we compare CARP’s performance against nine SSL methods. We report mAP on the19

Medium and Hard splits of the revisited Oxford and Paris datasets for image retrieval. We report20

mAP on the “strong” set of the Copydays dataset for copy detection.21

A.3 Few-shot evaluation22

Table A.4 shows additional few-shot evaluation results on the Pascal VOC07 and INat-2018 datasets.23

We report mAP and top-1 accuracy @k, averaged over 5 independent runs, for VOC07 and INat-2018,24

respectively. We include CARP’s 200 and 400 multi-crop models. Cf. Appendix D.2 for details on25

the evaluation protocol.26

A.4 Dense prediction evaluation27

We evaluated our CARP’s multi-crop model on the object detection downstream tasks using the28

Pascal VOC07 dataset. We followed the guidelines from He et al. [11]. We fine-tuned for 24k29

iterations on PASCAL VOC trainval07+12 and evaluated on test2007. CARP performs at AP=44.2,30
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Table A.1: Transfer learning evaluation. We compare CARP’s performance against nine SSL
methods on eight datasets. We report results for k ∈ {10, 20, 100, 200}. Top methods in bold, top-2
underlined. Methods with (mc) use multi-crop.

Oxford-IIIT Pet Oxford Flowers-102 FGVCAircraft Stanford Cars

Method ep 10 20 100 200 10 20 100 200 10 20 100 200 10 20 100 200

oBoW (mc) 200 55.8 57.3 57.2 57.5 63.5 61.9 58.9 59.4 19.1 18.1 15.8 14.9 11.9 11.5 10.9 10.5
SeLa-v2 400 66.7 66.8 65.8 66.0 59.5 58.6 56.8 57.2 21.3 20.7 18.1 16.4 13.3 13.3 13.5 13.4
InfoMin 800 78.0 77.8 76.6 76.2 63.6 61.9 60.1 60.8 18.9 18.2 15.8 13.4 14.7 14.4 13.2 12.9
SWAV (mc) 800 77.2 77.0 74.9 74.5 76.4 75.2 73.7 74.6 29.6 29.0 27.5 25.1 22.7 22.7 21.8 21.0
DINO (mc) 800 81.5 80.9 79.0 78.9 82.3 81.6 80.8 81.2 36.1 35.3 33.5 31.1 30.0 30.1 28.9 27.5
DeepC v2 (mc) 800 79.0 78.3 76.3 75.4 78.3 76.3 75.3 76.0 32.5 32.0 28.9 26.5 25.2 25.0 23.4 22.1
Triplet 980 83.3 83.5 82.4 82.4 78.5 77.7 76.9 77.3 33.3 33.4 31.7 29.6 24.4 25.2 25.5 25.0
MoCo v3 1000 86.6 86.4 85.8 85.8 79.8 79.0 78.3 78.6 37.7 36.9 33.5 32.1 28.6 29.3 28.4 27.2
BarlowT 1000 82.5 82.9 82.2 82.3 79.8 78.8 77.9 78.1 32.9 32.7 30.6 29.2 25.9 26.3 26.1 25.2

CARP 200 86.8 86.8 86.2 85.9 79.0 78.2 77.4 77.7 40.5 38.9 36.0 34.4 29.4 29.8 29.6 29.6
400 86.4 86.8 86.2 86.0 81.0 80.0 79.3 79.6 42.5 42.1 39.3 38.6 32.6 33.5 32.6 31.5

CARP (mc) 200 78.7 78.7 77.1 76.8 80.6 79.7 78.7 78.8 35.7 35.0 32.4 30.6 26.4 26.6 25.4 24.3
400 83.9 83.9 83.6 83.2 81.4 80.3 79.0 79.6 35.2 34.8 32.4 30.7 26.6 27.1 26.1 24.9

Country-211 Food-101 STL-10 GTSRB

Method ep 10 20 100 200 10 20 100 200 10 20 100 200 10 20 100 200

oBoW (mc) 200 11.7 12.0 11.8 11.4 45.8 47.4 47.3 46.0 96.6 96.6 96.3 95.7 50.1 50.6 49.9 48.2
SeLa-v2 400 10.1 10.5 11.0 11.0 45.7 46.8 46.6 45.5 94.0 94.0 93.5 93.3 58.1 59.0 58.7 57.9
InfoMin 800 11.2 11.6 11.9 11.9 51.5 52.4 51.4 49.5 96.5 96.4 96.2 96.0 54.9 54.8 53.5 52.3
SWAV (mc) 800 13.6 13.8 13.1 12.7 57.9 59.1 58.2 57.0 95.5 95.2 94.0 93.0 62.9 63.2 61.6 60.0
DINO (mc) 800 14.1 14.4 14.2 13.6 60.9 62.0 61.4 60.0 95.9 95.6 94.7 93.8 62.7 62.9 62.6 61.8
DeepC v2 (mc) 800 13.3 13.6 12.5 12.1 61.2 62.3 61.4 60.1 95.7 95.6 94.5 93.3 62.9 63.4 62.4 61.3
Triplet 980 13.7 14.1 14.3 14.2 60.1 61.5 61.0 60.0 95.7 95.6 94.9 94.5 63.4 63.5 62.9 62.0
MOCO v3 1000 12.4 12.4 13.2 13.2 59.0 60.0 59.1 57.7 96.9 96.7 96.2 95.9 72.4 72.8 72.6 71.7
BarlowT 1000 12.8 13.3 13.7 13.6 60.3 61.4 60.7 59.4 94.8 94.8 94.2 93.8 65.3 65.6 65.6 64.4

CARP 200 11.9 12.2 12.7 12.8 57.4 58.4 57.7 56.3 95.5 95.5 94.6 93.9 73.1 73.7 73.5 72.6
400 11.9 12.3 12.8 12.8 57.6 58.4 57.6 56.3 96.1 95.9 95.0 94.3 74.7 75.3 75.2 74.4

CARP (mc) 200 14.2 14.5 14.3 13.9 60.5 61.8 60.7 59.3 95.8 95.5 94.1 93.4 64.6 64.7 64.2 63.0
400 14.1 14.2 14.3 13.9 61.7 62.9 62.1 60.7 95.9 95.5 94.3 93.4 62.2 62.8 62.4 61.4

AP50=79.4, and AP75=47.6; results are averaged over 5 trials. Compared to other SSL methods, such31

as MoCo-v2 Chen et al. [6] (AP=57.4 AP50=82.5 AP75=64.0), CARP underperforms significantly.32

B Ablations33

Due to a limited execution budget, the ablations and the main experiments differ slightly in some34

hyperparameters. Here, we describe the configurations used for the ablations—for the main experi-35

ments, see Appendix C.1. For ablations, we trained CARP using the full ImageNet-1M dataset for36

50 epochs. The projection head learns a latent representation of 128-dim. The batch size is set to37

256 observations, and the projection head hidden layers contain 2048 neurons. We set the number of38

learnable prototypes K = 65 536, and the number of random partition blocks NP = 128. Hence,39

each block contains NB = 512 prototypes. We report results for single runs.40

B.1 Does the number of learnable prototypes affect the learned representations?41

Table B.1 examines the effect of training CARP with different configurations of prototypes K.42

Similar to other clustering-based SSL methods [3, 4, 13], CARP also benefits from over-clustering.43

As the number of trainable prototypes K grows, the k-NN performance of the learned representations44

increases. In addition, note that if the number of prototypes K is smaller than the number of actual45

classes in the dataset, the k-NN performance of the learned representations degrades. Based on these46

experiments, we set the default number of prototypes K = 65536 for the ImageNet-1M dataset.47
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Table A.2: Image retrieval evaluation. We report mAP performance of various self-supervised
methods for the image retrieval downstream task on the revisited Oxford and Paris datasets. All SLL
methods were pre-trained on ImageNet-1M. We used the officially released pre-trained models from
respective methods for evaluation. Top-1 performers in bold, top-2 underlined.

ROx Rpar

Method Ep Medium Hard Medium Hard

Supervised 100 49.8 18.5 74 52.1
Scratch 1.6 0.7 4.1 2.5

oBoW (mc) 200 20.4 4.4 40.6 16.2
SeLa-v2 (mc) 400 20.1 4.9 37.1 13.6
InfoMin 800 24.4 5.7 44.6 18.8
DeepC-v2 (mc) 800 32.6 10.9 50.0 20.2
SwAV (mc) 800 31.1 10.1 48.9 20.6
DINO (mc) 800 35.4 11.1 55.9 27.5
Triplet 980 35.3 12.0 58.2 28.7
VICReg 1000 32.7 8.5 57.5 29.0
MoCo-v3 1000 33.1 10.9 59.1 31.3

CARP 200 38.8 15.5 58.8 30.4
400 38.9 15.1 58.5 30.2

CARP (mc) 200 32.8 10.4 53.6 24.9
400 33.7 11.6 54.0 26.5

Table A.3: Copy detection evaluation. We report mAP on the “strong” subset of the Copydays
dataset and compare CARP’s performance against seven SSL methods. Top-1 performers in bold,
top-2 underlined.

Method Ep mAP

Scratch 25.7

oBoW (mc) 200 61.5
SeLa-v2 (mc) 400 76.6
InfoMin 800 67.5
DeepC-v2 (mc) 800 76.0
SwAV (mc) 800 76.1
DINO (mc) 800 78.8
Triplet 980 81.7
VICReg 1000 83.7
MoCo-v3 1000 80.6

CARP 200 82.3
400 82.6

CARP (mc) 200 80.8
400 84.0

B.2 Does the number of partition blocks matter?48

To better understand the effect of the hyperparameters NP and NB on the learned representations49

and in the training stability, the first row of Table B.2 demonstrates the performance of CARP using50

different configurations for the number of partition blocks NP and their sizes NB . For completeness,51

we analyze the effect of removing the momentum encoder in Appendix B.3. We also present an52

ablation on the effect of the momentum update in Table B.3.53

Specifically, as the partition sizes grow and the number of partition blocks NP decreases, the quality54

of the learned representations tends to decline and eventually collapse. Note that setting a partition55

size NB = 65536 produces a single partition block NP containing all prototypes. Precisely, the56

setup in the last row and last column of Table B.2 is equivalent to CARL [16]. It shows that a57

naive implementation leads to a collapsed solution, and the divide-and-conquer approach of devising58

random partitions from the learnable prototypes avoids such trivialities.59
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Table A.4: Few-shot classification on VOC07 and INat-2018. We report mAP at n on VOC07 and
top-1 accuracy for INat-2018 across 5 independent runs, where n denotes the number of training
examples. Standard deviations rounded to the first decimal place.

Pascal VOC07

Method Ep n=1 n=2 n=4 n=8 n=16 full

PCL v2 [13] 200 47.9 ± 4.1 59.6 ± 2.7 66.2 ± 2.2 74.5 ± 0.5 78.3 ± 0.4 85.4
SeLa-v2 (mc) [1] 400 42.0 ± 2.2 54.5 ± 3.2 62.2 ± 1.5 71.4 ± 0.5 76.9 ± 0.4 85.3
DeepC v2 (mc) [2] 800 46.5 ± 2.4 58.4 ± 2.9 66.5 ± 1.6 74.5 ± 0.9 79.5 ± 0.4 87.6
SwAV (mc) [3] 800 42.9 ± 2.1 54.9 ± 4.4 64.0 ± 2.1 72.9 ± 1.1 78.7 ± 0.6 88.1
DINO (mc) [4] 800 45.6 ± 2.4 58.4 ± 3.2 66.6 ± 2.1 74.8 ± 0.8 79.6 ± 0.6 88.2
Triplet [17] 980 43.6 ± 3.3 56.2 ± 3.5 64.6 ± 1.8 73.8 ± 0.1 79.6 ± 0.7 88.3
MoCo v3 [7] 1000 46.6 ± 3.7 59.6 ± 2.9 67.0 ± 2.4 75.4 ± 0.7 80.2 ± 0.6 87.4
BarlowT [19] 1000 42.6 ± 3.7 55.5 ± 3.2 63.5 ± 1.8 72.6 ± 0.1 77.6 ± 0.5 86.3

CARP (mc) 200 46.0 ± 3.2 58.3 ± 3.3 66.5 ± 2.4 75.5 ± 0.1 79.5 ± 0.6 88.0
400 47.1 ± 3.2 59.8 ± 3.2 67.3 ± 2.2 75.8 ± 1.1 80.0 ± 0.7 88.2

INat-2018

Method Ep n=1 n=2 n=4 n=8 n=16 full

PCL [13] 200 1.4 ± 0.1 1.6 ± 0.1 2.3 ± 0.2 2.9 ± 0.1 4.8 ± 0.1 2.1
SeLa-v2 (mc) [1] 400 2.9 ± 0.2 4.2 ± 0.1 6.3 ± 0.1 10.0 ± 0.1 13.5 ± 0.1 8.2
DeepC v2 (mc) [2] 800 7.6 ± 0.2 13.0 ± 0.8 20.9 ± 0.5 29.6 ± 0.4 36.4 ± 0.2 32.8
SwAV (mc) [3] 800 5.3 ± 0.1 9.2 ± 0.5 15.6 ± 0.1 23.1 ± 0.2 29.4 ± 0.2 24.2
DINO [4] 800 6.5 ± 0.1 12.0 ± 0.5 20.4 ± 0.5 29.6 ± 0.3 35.9 ± 0.3 30.4
Triplet [17] 980 11.4 ± 0.2 19.1 ± 0.7 28.9 ± 0.8 37.6 ± 0.3 44.0 ± 0.1 41.4
MoCo v3 [7] 1000 8.1 ± 0.1 12.2 ± 0.3 18.5 ± 0.3 27.2 ± 0.3 33.5 ± 0.1 28.0
BarlowT [19] 1000 8.8 ± 0.1 12.2 ± 0.5 17.2 ± 0.2 24.6 ± 0.1 30.8 ± 0.1 25.3

CARP (mc) 200 8.6 ± 0.2 14.4 ± 0.1 23.6 ± 0.3 32.7 ± 0.3 38.2 ± 0.2 33.9
400 11.5 ± 0.1 19.6 ± 0.1 29.6 ± 0.9 39.1 ± 0.3 45.1 ± 0.2 42.6

Table B.1: CARP benefits from over-clustering. Setting a small number of prototypes may hurt the
learned representations.

K 1024 2048 4096 16384 65536 262144

k-NN 48.81 49.98 50.69 50.81 51.2 51.31

Note that as smaller the block size NB , more stable the algorithm will be. However, the quality of60

the learned representation might decrease since the pseudo-classification tasks, posed by the random61

partitions, becomes easier with fewer prototypes. On the other hand, a larger block size NB poses a62

more challenging consistency task at the expense of contributing to mode collapse.63

For most cases, however, for block sizes ranging from NB = 128 to NB = 4096, CARP learns64

useful representations and shows robustness to this hyperparameter. By default we set the partition65

block size NB = 512.66

B.3 The importance of the momentum encoder67

Table B.2 contrasts CARP’s joint-embedding architectures with and without a momentum encoder,68

which is equivalent to setting η = 0 in the momentum encoder update equation. Different from other69

SSL methods [4, 9], CARP works with both setups. However, we observe that using a momentum70

encoder significantly boosts the performance of the learned representations. Table B.2 shows that71

regardless of block sizes, representations learned using a momentum encoder-based architecture72

consistently outperform the siamese counterpart.73

B.4 Who provides the best features for downstream evaluation?74

One way to understand CARP’s joint-embedding architecture with a momentum encoder is through75

the teacher-student framework, where the momentum encoder is the teacher that guides the learning76
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Table B.2: CARP with and without a momentum encoder. Without the random partition strategy (last
column), training collapses regardless of using a momentum encoder or a pure siamese architecture.

NB 32 64 128 256 512 1024 2048 4096 16384 65536

w/ mom. enc. 49.56 50.75 51.19 51.20 51.32 51.06 51.31 51.08 49.67 0.11
w/o mom. enc. 48.95 49.28 48.81 47.37 46.16 44.68 44.29 44.39 47.25 0.11

Table B.3: The effect of the hyperparameter η on the momentum encoder updates. In the last column,
η starts as η = 0.99 and it is annealed to η = 1.0 following a cosine schedule.

η 0 0.5 0.9 0.99 0.999 0.99 → 1.0

k-NN 51.0 50.2 50.3 51.1 50.1 51.3

student. The addition of the momentum encoder raises the question of which module produces the77

best representations. To answer this question, Figure B.1 explores the k-NN performance when78

extracting features from the momentum encoder (teacher) versus the student. We observe that79

teachers’ representations constantly outperform the students’ during training. However, by the end of80

the training, the student catches up with the teacher.81

C Implementation Details82

C.1 Experimental Setup83

We train CARP on the ImageNet-1M unlabeled dataset using ResNet50 [10] encoders. We take the84

output representation of the last global average pooling layer (a 2048-dim vector) and project it to a85

256-dim vector. Following Caron et al.’s [4] work, our MLP projection head contains 3 dense layers86

with batch normalization and the GELU activations. The hidden units of the projection head contain87

2048 neurons. The 256-dim representation vector is fed to an assigner MLP that outputs unnormalized88

probabilities w.r.t. the learnable prototypes. By default, the assigner function is implemented as a89

linear layer and trains K = 65 536 prototypes. To generate the random partitions, we set the number90

of partitions NP = 128, which creates subsets containing NB = 512 randomly chosen prototypes.91

We use the same data augmentations proposed by Grill et al. [9] to generate synthetic views. The92

protocol creates three data augmentation pipelines, the first two to generate global views and the last93

to generate multi-crops. CARP is pre-trained with the LARS [18] optimizer, end to end, with weight94

decay of 1 × 10−6. For models training up to 200 epochs, the learning rate starts from 0.6 and decays95

to 0.006 with a cosine scheduling [14] without warmups. For models pre-trained for more than 40096

epochs, the learning rate starts at 0.3 and decays to 0.003 using the same cosine scheduler. We train97

the system with a global batch size of 4096 observations. For all experiments, we used 4 A100 40GB98
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Figure B.1: During training, the representations extracted from the teacher outperform the representa-
tions from the student network.
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GPUs and gradient accumulation to simulate large batch sizes. Cf. to Appendix E for a PyTorch style99

pseudo-code.100

D Evaluation Protocols101

D.1 Linear evaluation102

For ImageNet evaluation, we trained a linear classifier on top of the frozen representations extracted103

from the last average pooling layer of the ResNet50 encoder, for 100 epochs, following He et al.’s [11]104

protocol. We minimize the cross-entropy loss with the LARS optimizer, a learning rate of 1.0, and a105

batch size of 4096 observations. For each input image, we take a random crop followed by a resize106

to 224× 224, and an optional horizontal flipping. For testing, images are resized to 256× 256 and107

center-cropped to 224× 224.108

D.2 Few-shot evaluation109

We measure the few-shot learning capabilities of SSL methods on the Pascal VOC07 and iNaturalist110

2018 datasets. For VOC07, we are interested in the multi-label classification performance. We closely111

follow Li et al.’s [13] protocol and train Linear SVNs on fixed 2048-dim representations from many112

SSL ResNet-50 encoders.113

For INat-2018, we expand the few-shot evaluation challenge to a complex scenario containing more114

than 8k classes. We train linear classifiers for 20 epochs on fixed 2048-dim representations. We use115

the SGD optimizer. The learning rate starts at 0.03 and decays by a factor of 10 in epochs 12 and 18,116

respectively.117

For both datasets, we vary the number n of labeled examples per class and report the average results118

across 5 independent runs.119

D.3 k-NN evaluation120

To perform the k-NN evaluation, we use pre-trained SSL ResNet50 encoders as feature extractors to121

compute and store the representations from many vision datasets. Following Caron et al.’s [4] setup,122

the representation vector for a test image is compared against all representations from the training123

split and a prediction is made via weighted voting. If one of the closest neighbors has the same124

class as the test image, it contributes to the final voting as αi = exp
(
Miz
τ

)
where M is a memory125

bank containing representations from the training data, z is the representation from the test data,126

and τ is the temperature hyper-parameter. For all experiments, we run k-NN with configurations of127

Knear ∈ {10, 20, 100, 200}. For most experiments, a value of k = 20 is consistently the best setup128

across all methods.129

D.4 k-means evaluation130

Similar to k-NN evaluation, we take self-supervised pre-trained encoders and use them to extract131

2048-dim feature vectors from the training set of datasets like CIFAR-10/100 and ImageNet-1M. For132

ImageNet-1M, we use only 10% of the training data following the 10% subset from Chen et al. [5].133

We fit k-means classifiers on the learned representations of the training set and use the validation134

split to assess the quality of the learned prototypes. We report three metrics to assess clustering135

performance: Normalized Mutual Information (NMI), Adjusted Mutual Information (AMI), and136

Adjusted Rand Index (ARI). The number of prototypes k is set to be the number of true classes of137

each dataset. We use the faiss library [12] for fast k-means. For each experiment, we run k-means138

for 100 iterations, 20 redos, and spherical normalization. To measure the clustering performance of139

CARP, we observed that a 400 epoch model with a learning rate of 0.3 slightly outperformed the140

other instances; therefore, we use this model to report results in Table 2. This instance of CARP uses141

two views and is only used for clustering evaluation.142

D.5 Image retrieval evaluation143

We strictly follow the evaluation script eval_image_retrieval.py provided by Caron et al. [4],144

for the image retrieval evaluation task. The script uses the revisited Oxford and Paris image retrieval145
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datasets [15]. The dataset contains three protocols of varying difficulty levels. We take the ImageNet146

pre-trained ResNet-50 encoder from CARP, freeze the weights, and apply k-NN evaluation directly147

to the frozen 2048-d features for retrieval, conditioned on a query image.148

D.6 Copy detection evaluation149

We strictly follow the evaluation script eval_copy_detection.py provided by Caron et al. [4] for150

copy detection evaluation. The evaluation is performed on the INRIA Copydays dataset [8]. The151

dataset contains holiday pictures in the format query/database. Each image has suffered three kinds152

of artificial attacks: JPEG, cropping, and “strong.” We report performance evaluation on the “strong”153

subset. Images in the “strong” subset were intentionally distorted by blur, insertions, print, and scan.154

The task is to recognize these images despite distortion. We take the frozen CARP ResNet-50 encoder155

and extract 2048-dim vectors from query and database images at resolution 3202. Then, we perform156

copy detection with cosine similarity between query and database features. We report mean average157

precision (mAP) as a performance metric. Unlike the benchmark described by Caron et al. [4], we do158

not utilize additional distractors, nor do we centralize the data using statistics learned in a different159

set on images.160

E Pseudocode of CARP in a PyTorch-like Style161

# NB: number of random prototypes within a block
# K: number of prototypes
# NP: number of blocks in the partition, i.e. K // NB
# N: batch size
for x1, x2 in loader:

# student and teacher branches
z1, w1 = enc(x1), mom_enc(x1) # [N, K]
z2, w2 = enc(x2), mom_enc(x2) # [N, K]

s_logits, t_logits = [z1, z2], [w1, w2]

# sample cluster indices with no replacement
rand_proto_ids = multinomial(ones(K), K, False)
split_proto_ids = stack(split(rand_proto_ids, NB))
preds_list, targets_list = [], []

for s_log, t_log in zip(s_logits, t_logits):
preds = get_logits_gr(s_log, split_proto_ids)
targets = get_logits_gr(t_log, split_proto_ids)

preds_list.append(preds)
targets_list.append(targets)

loss = loss_fn(preds_list, targets_list)
# perform gradient descent steps

def loss_fn(s_list, t_list):
c_loss = consistency_loss(s_list[0], t_list[1]
c_loss += consistency_loss(s_list[1], t_list[0]

s = cat(s_list, dim=1)
t = cat(t_list, dim=1)
probs = cat([s, t], dim=1).transpose(0, 1)

e_loss = kl_div(mean(probs, dim=0))
return c_loss + e_loss

def consistency_loss(s, t):
loss = einsum("knc,knc->kn", [s, t])
return -log(loss).mean()
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def kl_div(p):
return mean(log(K) + sum(p * log(p), dim=-1))

def get_logits_gr(logits, proto_ids):
logits_gr = logits[:, proto_ids.flatten()]
logits_gr = logits_gr.split(NB, dim=1)
logits_gr = stack(logits_gr, dim=0)
return softmax(logits_gr, dim=-1) # [NP, N, NB]
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