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A Theoretical Analysis for Algorithm 11

In practice, we implement BRAM in a non-parameter-server model to further reduce the communica-2

tion overhead, but the data exchange is essentially equivalent to that in a parameter-server prototype.3

Hence, we provide the theoretical analysis for BRAM in a parameter-server model as shown in4

Algorithm 1.5

According to Algorithm 1, the update ūt can be recursively formulated as6
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=
1

n

n∑
i=1

m
(i)
t

b
(i)
t

+
1

n

n∑
i=1

(
e
(i)
t − e

(i)
t+1

)
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Hence, the updating rule can be summarized as8

xt+1 = xt − αtūt

=xt − αt
(
mt

bt
+ δt + et − et+1

)
(8)

A.1 Auxiliary Lemmas9

Lemma 1. Let ut = mt

bt
, the element-wise quantization function is defined in Eq.(5) can be reformu-10

lated as11
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{
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2
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We have et = ut −Q (ut), and then the following holds true12
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Proof. From Eq.(9), we know14
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and,15
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Hence,16
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Lemma 2. Let x0 = x1 and α0 = α1 in Algorithm 1, defining the sequence17
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where the second equality follows the updating rule in Eq.(8).20
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For t ≥ 2, following the updating rule in Eq.(8), we have21
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We know xt+1 − xt + αt(et − et+1) = (1− β)(xt+1 +−αt(et+1 − δt))− (1− β)(xt − αtet) +22
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Divided both sides by 1− β, we obtain24
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Rearranging Eq. (20), we have25
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Define the sequence26

zt = xt +
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We finally obtain27
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Recalling x1 = x0 and α1 = α0, we have α1

b1
= α0

b0
. Then, combining Eq.(17) and Eq.(23), we28

obtain the conclusion.29
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A.2 Proof of Theorem 130

Proof. By the the gradient Lipschitz continuous in Assumption 2 and Lemma 2, we obtain31
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where the second equality holds due to E [δt−1] = 0 and E [et−1] = 0. The last inequality holds owing32

to E[‖a+b‖2] = E[‖a‖2]+E[‖b‖2] if E[a] = 0 or E[b] = 0, and E[‖a+b‖2] ≤ 2E[‖a‖2]+2E[‖b‖2]33

if E[a] 6= 0 and E[b] 6= 0.34

Taking telescope sum from 1 to T on the both sides of Eq.(24) , we then have35
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∥∥∥∥2
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∥∥∥∥2
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(25)

Now we focus on bounding T1 below. From Assumption 4, we know ‖gt‖ ≤ G (t = 1, 2, ..., T ) and36

‖∇f(zt)‖ ≤ G . Due to mt = βmt−1 + (1− β)gt and m1 = g1, it is easy to obtain ‖mt‖ ≤ G by37

complete induction.38
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Since ‖∇f(zt)‖ ≤ G and ‖mt‖ ≤ G, we have39

T1 =
β

1− β
E

[
T∑
i=1

〈∇f(zi),

(
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bt−1
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∥∥∥∥
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[∥∥∥∥∥
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)∥∥∥∥∥
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∥∥∥∥
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(26)

where (i) holds sice ‖a � b‖ ≤ ‖a‖maxj |(b)j | ≤ ‖a‖‖b‖1, (ii) holds due to ‖∇f(zt)‖ ≤ G and40

‖mt‖ ≤ G, (iii) holds because αt−1

(bt−1)j
− αt

(bt)j
≥ 0 for any j ∈ [1, 2, ..., d], (iv) holds due to41

minj(bt)j ≥ ρ > 0 for any j ∈ [1, 2, ..., d].42

Let us turn to bound T2,43

T2 = −E
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〉

]
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[
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〉

]
︸ ︷︷ ︸
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We now analyze T5 below,44
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∥∥∥∥2
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)∥∥∥∥2
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]
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]
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∥∥∥∥2
]
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E
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∥∥∥∥αt−1mt−1
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∥∥∥∥2
]

+
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(1− β)2
E

[
T∑
t=1

‖αt−1δt−1‖2
]

+
β2L2

(1− β)2
E

[
T∑
t=1

‖αt−1et−1‖2
]

+
β2L2

(1− β)2
E

[
T∑
t=1

‖αt−1et‖2
]

+
L2

(1− β)2
E

[
T∑
t=1

‖αt−1δt−1‖2
]

+
β2L2

(1− β)2
E

[
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+
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+
1

2
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[
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t=1

α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

=
β2L2

(1− β)2
E

[
T∑
t=1

α2
t−1

∥∥∥∥mt−1

bt−1

∥∥∥∥2
]

+
(1 + β2)L2

(1− β)2
E

[
T∑
t=1

α2
t−1 ‖δt−1‖

2

]

+
2β2L2

(1− β)2
E

[
T∑
t=1

α2
t−1 ‖et−1‖

2

]
+

(1 + β2)L2

(1− β)2
E

[
T∑
t=1

α2
t−1 ‖et‖

2

]
+

1

2
E

[
T∑
t=1

α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

(vi)

≤
(
β2L2d

(1− β)2
+

4(1 + β2)L2d

(1− β)2
+

2β2L2d

(1− β)2
+

(1 + β2)L2d

(1− β)2
+
G2

2ρ2

) T∑
t=1

α2
t−1

=

(
(8β2 + 10β + 5)L2d

(1− β)2
+
G2

2ρ2

) T∑
t=1

α2
t−1

(28)
where (i) holds by following 〈a, b〉 ≤ 1

2‖a‖
2 + 1

2‖a‖
2, (ii) holds due to Assumption 1, (iii) holds45

due to Assumption 1 owing to Eq.(15), (iii) holds since E[‖a+b‖2] = E[‖a‖2]+E[‖b‖2] if E[a] = 046

or E[b] = 0, (v) holds resulting from the updating rule in Eq. (8), (vi) holds due to
∣∣∣ (mt)j
(bt)j

∣∣∣ ≤ 1,47

|(δ)j | ≤ 2 (the definition of δtin Eq. (5) ), E[‖et‖2] ≤ d in Lemma 1, ‖gt‖ ≤ G in Assumption 248

and minj(bt)j ≥ ρ > 0.49
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We then bound T650

T6 =− E

[
T∑
t=1

〈∇f(xt), αt
gt
bt
〉

]

=− E

[
T∑
t=1

〈∇f(xt), αt
∇f(xt)

bt
〉

]
− E

[
T∑
t=1

〈∇f(xt), αt
gt −∇f(xt)

bt
〉

]
(i)

≤ − 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+ E

[
T∑
t=1

〈∇f(xt), αt
∇f(xt)− gt

bt
〉

]

=− 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+ E
[
〈∇f(x1), α1

∇f(x1)− g1
b1

〉
]

+ E

[
T∑
t=2

〈∇f(xt),∇(f(xt)− gt)�
(
αt
bt
− αt−1
bt−1

)
〉

]
+ E

[
T∑
t=2

〈∇f(xt), αt−1
∇f(xt)− gt

bt−1
〉

]
(ii)
= − 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+ E
[
〈∇f(x1), α1

∇f(x1)− g1
b1

〉
]

+ E

[
T∑
t=2

〈∇f(xt), (∇f(xt)− gt)�
(
αt
bt
− αt−1
bt−1

)
〉

]
(iii)

≤ − 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+ E
[
‖∇f(x1)‖‖∇f(x1)− g1‖

∥∥∥∥α1

b1

∥∥∥∥
1

]

+ E

[
T∑
t=2

‖∇f(xt)‖‖∇f(xt)− gt‖
∥∥∥∥αtbt − αt−1

bt−1

∥∥∥∥
1

]
(iv)

≤ − 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+ 2G2E

[∥∥∥∥α1

b1

∥∥∥∥
1

+

T∑
t=2

∥∥∥∥αtbt − αt−1
bt−1

∥∥∥∥
1

]
(v)
= − 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+ 2G2E

[∥∥∥∥∥α1

b1
+

T∑
t=2

αt−1
bt−1

− αt
bt

∥∥∥∥∥
1

]
,

=− 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+ 4G2E
[∥∥∥∥α1

b1

∥∥∥∥
1

]
,

(vi)

≤ − 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+
4G2α1d

ρ

(29)
where (i) holds due to maxj(bt)j ≤ ‖bt‖ ≤ G , (ii) holds owing to E[∇f(xt) − gt] = 0 in51

Assumption 2 and gt, bt−1 are independent, (iii) holds sice ‖a� b‖ ≤ ‖a‖maxj |(b)j | ≤ ‖a‖‖b‖1,52

(iv) holds resulting from ‖∇f(xt)‖ ≤ G and ‖∇f(xt) − gt‖ ≤ ‖∇f(xt)‖ + ‖gt‖ ≤ 2G, and (v)53

holds because αt−1

(bt−1)j
− αt

(bt)j
≥ 0 for any j ∈ [1, 2, ..., d], (vi) holds due to minj(bt)j ≥ ρ > 0 for54

any j ∈ [1, 2, ..., d].55
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Then, we pay attention to T3,56

T3 = LE

[
T∑
t=1

∥∥∥∥ β

1− β

(
αt−1
bt−1

− αt
bt

)
�mt−1

∥∥∥∥2
]

(i)

≤ β2L

(1− β)2
E

[
T∑
t=1

∥∥∥∥αt−1bt−1
− αt
bt

∥∥∥∥2 ‖mt−1‖2
]

(ii)

≤ β2LG2

(1− β)2
E

[
T∑
t=1

∥∥∥∥αt−1bt−1
− αt
bt

∥∥∥∥2
]

(iii)

≤ β2LG2

(1− β)2
E

[
T∑
t=1

max
j

∣∣∣∣ αt−1(bt−1)j
− αt

(bt)j

∣∣∣∣ ∥∥∥∥αt−1bt−1
− αt
bt

∥∥∥∥
1

]
(iv)

≤ α0β
2LG2

ρ(1− β)2
E

[
T∑
t=1

max
j

(
αt−1

(bt−1)j

)∥∥∥∥αt−1bt−1
− αt
bt

∥∥∥∥
1

]
(v)

≤ α0β
2LG2

ρ(1− β)2
E

[
T∑
t=1

∥∥∥∥αt−1bt−1
− αt
bt

∥∥∥∥
1

]
(vi)

≤ α0β
2LG2

ρ(1− β)2
E

[
T∑
t=1

∥∥∥∥αt−1bt−1

∥∥∥∥
1

−
∥∥∥∥αtbt

∥∥∥∥
1

]
(vii)

≤ α0β
2LG2

ρ(1− β)2
E
[∥∥∥∥α0

b0

∥∥∥∥
1

−
∥∥∥∥αTbT

∥∥∥∥
1

]
(viii)

≤ α2
0β

2LG2d

ρ2(1− β)2
,

(30)

where (i) holds due to ‖a � b‖ ≤ ‖a‖‖b‖, (ii) holds owing to ‖mt−1‖ ≤ G, (ii) holds due to57

‖a‖2 ≤ maxj |(a)j |‖a‖1 , (iv) holds due to αt−1

(bt−1)j
− αt

(bt)j
≥ 0 and αt

(bt)j
> 0 for any j ∈ [1, 2, ..., d],58

(v) holds resulting from minj(bt)j ≥ ρ > 0 for any j and αt is non-increasing, (vi) holds resulting59

from αt−1

(bt−1)j
− αt

(bt)j
≥ 0 for any j ∈ [1, 2, ..., d], (vii) holds due to telescoping sum, and (viii) holds60

due to minj(bt)j ≥ ρ > 0 for any j ∈ [1, 2, ..., d]..61

Now we turn attention to T4,62

T4 = LE

[
T∑
t=1

α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

+
L

2
E[

T∑
t=1

‖αt−1δt−1‖2] +
L

2
E[

T∑
t=1

‖(αt−1 − αt)et‖2]

≤
(
L
G2

ρ2
+ 2dL

) T∑
t=1

α2
t +

dL

2

T∑
t=1

(αt−1 − αt)2,

(31)

where the inequality holds owing to ‖mt−1‖ ≤ G and minj(bt)j ≥ ρ > 0, ‖(δt−1)j‖ ≤ 2, and63

E[‖et‖2] ≤ d.64

Combining Eq.(25-31), we can obtain65

E[f(zT )− f(z1)] ≤ α0βd

(1− β)ρ
G2 +

(
(8β2 + 10β + 5)L2d

(1− β)2
+
G2

2ρ2

) T∑
t=1

α2
t−1

− 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+
4G2α1d

ρ
+
α2
0β

2LG2d

ρ2(1− β)2

+

(
L
G2

ρ2
+ 2dL

) T∑
t=1

α2
t +

dL

2

T∑
t=1

(αt−1 − αt)2.

(32)
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Reformulating Eq.(32), we then have66

1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]
≤E[f(z1)− f(zT )]

+

(
(8β2 + 10β + 5)L2d

(1− β)2
+
G2(1 + L)

2ρ2
+ 2dL

) T∑
t=1

α2
t−1

+
dL

2

T∑
t=1

(αt−1 − αt)2

+
α0βd

(1− β)ρ
G2 +

4G2α1d

ρ
+
α2
0β

2LG2d

ρ2(1− β)2

(33)

It is known the learning rate saftifies αt = c√
t
,∀t ≥ 1 and α0 = α1 = c. Utiliz-67

ing non-increasing αt and Cauchy-Schwarz inequality, we know E
[∑T

t=1 αt‖∇f(xt)‖2
]
≥68

TαTE
[
1
T

∑T
t=1 ‖∇f(xt)‖

]2
=
√
T
c E

[
1
T

∑T
t=1 ‖∇f(xt)‖

]2
.
∑T
t=1 α

2
t−1 =

∑T
t=1

c2

t ≤ c2(1 +69 ∫ T−1
1

1
t dt) ≤ c2(1 + log T ), and

∑T
t=1(αt−1 − αt)2 =

∑T
t=2(αt−1 − αt)2 ≤

∑T
t=2

c2

4(t−1)3 ≤70

c2

4 (1 +
∫ T−2
1

t−3dt) = c2

4 ( 3
2 −

1
2(T−2) ) ≤

3c2

8 , we further have71

E

[
1

T

T∑
t=1

‖∇f(xt)‖

]2
≤ C1√

T
+
C2(1 + log T )√

T
, (34)

where we define72

C1 = cG

(
E[f(z1)− f∗] +

3c2dL

16
+

βcdG2

(1− β)ρ
+

4cdG2

ρ
+
c2β2LG2d

ρ2(1− β)2

)
, (35)

C2 = c3G

(
(8β2 + 10β + 5)L2d

(1− β)2
+
G2(1 + L)

2ρ2
+ 2dL

)
. (36)

B Experiments for Comparing Vanilla SGD, SGDM, Adam, BRAM and73

SoftSignSGD74

To address the bottleneck in communication during distributed training, numerous gradient compres-75

sion algorithms have been proposed, aiming to reduce the communication volume. Most of these76

algorithms can be reduced to Vanilla SGD without momentum if compression is not performed. Gen-77

erally speaking, the epoch-wise convergence rate and inference performance a compressed algorithms78

is upper bounded by its uncompressed counterpart. In the experiments, we conducted empirical79

experiments to evaluate the training and inference performance of of Vanilla SGD, SGDM, Adam,80

BRAM and its uncompressed version in training typical CNN-base, LSTM-base and Transformer-base81

DNNs.82

Algorithm 1. SoftSignSGD
1: Input: model parameter x0, x1 , the momentum m

(i)
0 = 0, b(i)0 = 0, the

exponential moving average factor β, the learning rate sequence {αt}
2: for t = 1, ..., T do
3: Randomly sample ξt and compute the gradient: gt = ∇f(xt; ξt)
4: Update the momentum mt: mt = βmt−1 + (1− β)gt
5: Update the momentum bt: bt = βbt−1 + (1− β)|gt|
6: Update the model parameter xt+1: xt+1 = xt − αt

mt
bt

7: end for

We refer to the uncompressed BRAM as SoftSignSGD. The implementation details for SoftSignSGD83

are presented in Algorithm 1. When comparing SoftSignSGD to Adam, there are two key differences.84

First, instead of using the square root of the exponential moving average of the squared gradient,85
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denoted as
√
vt =

√
(1− β2)vt−1 + (1− β2)g2t , SoftSignSGD utilizes the exponential moving86

average of the absolute gradient, represented as bt = (1−β)bt−1 + |gt|. Second, in SoftSignSGD, the87

exponential moving factors for both the numerator mt and the denominator bt are the same. These88

differences ensure that each element of the updating amount in SoftSignSGD satisfies the condition89

−1 ≤ (mt

bt
)j ≤ 1.90

B.1 Experimental Results for training VGG1691

We evaluated the performance of five optimization algorithms: Vanilla SGD, SGDM, AdamW, BRAM92

and SoftSignSGD, for training VGG-16 on CIFAR100. Each batch consisted of a set of 128 examples93

sampled with replacement. For SGDM, we set the momentum parameter β to 0.9, while for SoftSignS-94

GD and BRAM, it was set to 0.95. For AdamW, the parameters β1 and β2 were set to 0.9 and 0.999,95

respectively. The weight decay was uniformly set to 0.0005 for Vanilla SGD and SGDM, and 0.0596

for AdamW, BRAM and SoftSignSGD. To simplify the tuning process and ensure fair comparisons,97

we initialized the learning rates at 0.1 for Vanilla SGD and SGDM, and 0.005 for AdamW, BRAM98

and SoftSignSGD. We divided the learning rates by 10 after 75 and 130 epochs, and terminated the99

training after 150 epochs.100

Figure 1 visually demonstrates that Vanilla SGD exhibits slower convergence speed and lower test101

accuracy compared to SGDM. In contrast, both BRAM and SoftSignSGD show comparable training102

and inference performance to the commonly used SGDM and AdamW. This observation suggests that103

BRAM outperforms existing gradient compression algorithms when training CNN-based VGG-16104

models.105

(a) Train Loss (b) Test Accuracy

Figure 1: Training loss and test accuracy for VGG-16 on CIFAR100.

B.2 Experimental Results for training LSTM106

We conducted experiments to train a 3-layer LSTM model on the Penn TreeBank dataset to evaluate107

the performance of five optimization algorithms: Vanilla SGD, SGDM, AdamW, BRAM and SoftSignS-108

GD. Our implementations were built upon the code provided in the AdaBelief paper1, and we used109

the default experimental settings for SGDM and AdamW. For Vanilla SGD, we used the experimental110

settings of SGDM with the exception that we set the momentum parameter β to 0. For BRAM and111

SoftSignSGD, we adopted the experimental settings of AdamW, except that we set the momentum112

parameter β to 0.99.113

As visually illustrated in Figure 2, Vanilla SGD is still less effective than SGDM in terms of the114

convergence speed and the test accuracy, while the training and inference performance of SoftSignSGD115

and BRAM are comparative to common-used SGDM and AdamW. It indicates the BRAM is superior116

to exiting gradient compression algorithms for training LSTM.117

1https://github.com/juntang-zhuang/Adabelief-Optimizer
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(a) Train Loss (b) Test Perplexity

Figure 2: Training loss and test perplexity (the lower, the better) for 3-layer LSTM on Penn TreeBank.

B.3 Experimental Results for training ViT118

We train ViT-B with Vanilla SGD, SGDM, AdamW, SoftSignSGD and BRAM on the ILSVRC2012 with119

32 GPUs (4 nodes). We use the Pytorch official implementation for ViT 2. For AdamW, SoftSignSGD120

and BRAM, we followed the recommended experimental settings, with the exception that we set the121

momentum parameter β to 0.95 for SoftSignSGD and BRAM. As for Vanilla SGD and SGDM, we set122

the basic learning rate to 0.1 and the weight decay to 0.001, while keeping other settings the same as123

AdamW. Instead of the default 300 epochs, we uniformly set the total number of epochs to 150 for all124

optimizers125

As visually illustrated in Figure 3, Vanilla SGD is still less effective than SGDM in terms of the126

convergence speed and the test accuracy, while the training and inference performance of SoftSignSGD127

and BRAM are comparative to common-used SGDM and AdamW. Notably, the performance of SGD-128

type optimizers are substantially inferior to that of adaptive optimizers.129

(a) Train Loss (b) Test Accuracy

Figure 3: Training loss and test accuracy for ViT-B-16 on ILSVRC2012.

C Experimental Results for pre-training BERT-Base130

We employed BertAdam and BRAM to pre-train BERT-Base on Wikipedia using 64 GPUs (8 nodes).131

The sequence length was set to 512, and the batch size per GPU was set to 16. The training process132

2https://github.com/pytorch/vision/tree/main/references/classification
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(a) Iteration-wise, BERT-Base, batch size=16× 64 (b) Time-wise, BERT-Base, batch size=16× 64

Figure 4: Iteration-wise and time-wise convergence speed for pre-training BERT-Base with 16 samples per
GPU with 64 GPUs.

consisted of 37, 000 iterations. The learning rate started at 4× 10−4 and linearly increased in the first133

12, 500 iterations, after which it linearly decreased to 0 for the remaining iterations. ForBertAdam,134

the parameter values [β1, β2] were set to [0.9, 0.999], and for BRAM, the momentum parameter beta135

was set to 0.9.136

As depicted in Figure 4,BRAM demonstrates a comparable iteration-wise convergence rate to137

BertAdam. However, in terms of time-wise convergence, BRAM achieves a 4.2x faster convergence138

rate compared to BertAdam.139

D Experiments with InfiniBand connections140

Table 1: System throughput (samples/s) of SGDM, 1-bit Adam and BRAM for training ResNet-50 on
ILSVRC2012 with 10Gbps Ethernet and 200Gbps InfiniBand.

#GPUs Optimizer Ethernet (10Gbps) InfiniBand (200Gbps)
Throughput
(samples/s)

Speedup Scale
Efficiency

Throughput
(samples/s)

Speedup Scale
Efficiency

8
SGDM 3693 1.00× 100% 3693 1.00× 100%
1-bit Adam 3243 0.83× 100% 3243 0.83× 100%

BRAM 3462 0.94× 100% 3462 0.94× 100%

16
SGDM 2959 1.00× 40.1% 4673 1.00× 63.2%
1-bit Adam 4715 1.60× 72.7% 5708 1.22× 88.0%

BRAM 6015 2.03× 86.9% 6784 1.45× 97.9%

32
SGDM 4270 1.00× 28.9% 9063 1.00× 61.3%
1-bit Adam 7268 1.70× 56.0% 10249 1.13× 79.0%

BRAM 9416 2.21× 68.0% 12131 1.34× 87.6%

32
SGDM 6189 1.00× 20.9% 16608 1.00× 56.2%
1-bit Adam 5546 0.89× 21.3% 16920 1.02× 65.2%

BRAM 15253 2.47× 55.1% 19956 1.21× 72.1%

To further evaluate the communication efficiency of SGDM/Adam, SoftSignSGD and BRAM with141

high bandwidth connections, we implement experiments for training ResNet-50 and BERT-Base with142

distributed nodes connected with 200Gbps InfiniBand. All the experimental settings are the same as143

we perform experiments with Ethernet in Subsection 5.1, and the experimental results are listed in144

Table 1 and Table 2.145

As shown in Table 1 and Table 2, compared with the baseline SGDM/Adam, BRAM can still reach up146

to 1.45× speedup for ResNet-50 on ILSVRC2012 and 2.85× speedup for BERT-Base on SQuAD 1.1,147

although the speed advantage is not so obvious as that with lower-bandwidth Ethernet connections.148

An interesting phenomenon is that the system throughput of BRAM with 10Gbps Ethernet can match149

that of SGDM/Adam with 200Gbps InfiniBand.150

The experimental results in Table 1 and Table 2 also show that as the number of GPUs is increasing,151

the scale efficiency of SGDM/Adam, SoftSignSGD and BRAM becomes lower. The reason for this152

phenomenon can be summarized in the following. When the number of GPUs doubles, the number153

of communication trips also multiplies. We take the communication scheme All-Reduce for example.154
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Table 2: System throughput (samples/s) of BertAdam, 1-bit Adam and BRAM for fine tuning BERT-Base on
SQuAD 1.1 with 10Gbps Ethernet and 200Gbps InfiniBand.

#GPUs Optimizer Ethernet (10Gbps) InfiniBand (200Gbps)
Throughput
(samples/s)

Speedup Scale
Efficiency

Throughput
(samples/s)

Speedup Scale
Efficiency

8
BertAdam 413 1.00× 100% 413 1.00× 100%
1-bit Adam 358 0.87× 100% 358 0.83× 100%
BRAM 412 1.00× 100% 412 0.94× 100%

16
BertAdam 84 1.00× 10.1% 272 1.00× 32.9%
1-bit Adam 213 2.54× 29.7% 522 1.92× 72.9%
BRAM 431 5.13× 52.3% 776 2.85× 94.1%

32
BertAdam 119 1.00× 7.20% 543 1.00× 32.8%
1-bit Adam 274 2.30× 19.1% 903 1.66× 63.1%
BRAM 730 6.13× 44.2% 1365 2.51× 82.9%

32
BertAdam 158 1.00× 4.78% 998 1.00× 30.2%
1-bit Adam 252 1.59× 8.80% 1496 1.50× 52.2%
BRAM 990 6.26× 30.0% 2299 2.30× 69.8%

If the number of GPUs is n, each GPU requires 2(n− 1) trips across the network confections. When155

the number is non-trivial, the computation time of the communication primitives may exceed the156

time of the pure communication itself and dominate the overall communication time, since the total157

communication overhead does not change with the number of GPUs. Notably, All-reduce is more158

efficient than All-to-All which is the core of our Hierarchical-1-bit-All-Reduce. Hence, as shown in159

in Table 1 and Table 2, the scale efficiency of BRAM decreases more quickly than SGDM/Adam with160

the number of GPUs growing.161

E Discussion162

The original paper on 1-bit Adam reports a significant speed advantage (up to 3.8×) for 1-bit Adam163

compared to full-precision Adam, with the advantage becoming more prominent as the number of164

GPUs increases. However, in our experiments, we did not observe clear speed advantages for 1-bit165

Adam over the original Adam. In fact, when running on 64 GPUs, 1-bit Adam was not only slower166

than the original Adam, but its throughput rate was even lower than that on 32 GPUs. There are167

several reasons for this phenomenon. First, the speedup of 1-bit Adam is obtained by comparing the168

throughput of the compression phase with that of the warm-up phase. However, in our experiments,169

we evaluated the overall average throughput of both the warm-up phase and the compression phase170

for 1-bit Adam. Second, the baseline Adam did not run with system-level efficient DDP. Third,171

the authors of 1-bit Adam customized highly efficient communication primitives specifically for172

their optimizer, whereas we utilized off-the-shelf communication primitives in PyTorch for all the173

optimizers to ensure fairness.174

As shown in Figure 4, as the number of GPUs increases, the communication time for BRAM also175

grows superlinearly. One of the reasons for this is that the communication primitive All-to-All176

accounts for an increasing portion of the communication time. However, the native All-to-All in Step177

(iii) of the Hierarchical-1-bit-All-Reduce is not less efficient than the native All-Reduce. Therefore,178

we plan to further optimize the All-to-All and All-Gather primitives to accelerate BRAM.179

When training large-scale DNNs, the mixed-precision technique is commonly used to reduce memory180

consumption, allowing for larger model sizes. While optimizers still utilize full-precision states and181

computations, which typically contribute to 33-75% of the total memory footprint, BRAM does not182

require full-precision states or computations. Moreover, due to the random quantization of updates to183

1 or -1, BRAM can leverage lower precision than FP16 gradients to estimate the update. Therefore,184

BRAM shows promise for applications that focus on reducing memory usage, as highlighted in recent185

research on 8-bit optimizers via block-wise quantization (Tim Dettmers et al., ICLR 2022).186
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