
Doubly Robust Peer-To-Peer Learning Protocol

Anonymous Author(s)
Affiliation
Address
email

Abstract
Collaborative machine learning (ML) approaches are widely used to enable institu-1

tions to learn better models from distributed data. While collaborative approaches2

to learning intuitively protect user data, they remain vulnerable to either the server3

or clients deviating from the protocol, or both. Indeed, because the protocol is4

asymmetric, a malicious server can abuse its power to reconstruct client data points.5

Conversely, malicious clients can corrupt learning with malicious updates. Thus,6

both clients and servers require a guarantee when the other cannot be trusted to7

fully cooperate. In this work, we propose a peer-to-peer (P2P) learning scheme that8

is doubly robust: secure against malicious servers and robust to malicious clients.9

Our core contribution is a generic framework that transforms any (compatible)10

algorithm for robust aggregation of model updates to the setting where servers and11

clients can act maliciously. Finally, we demonstrate the computational efficiency12

of our approach even with 1-million parameter models trained by 100s of peers on13

standard datasets.14

1 Introduction15

To leverage data that is located across different clients, service providers increasingly resort to16

collaborative forms of distributed machine learning. Rather than centralize the data on a single server,17

data remains on the owner’s device(s) also known as clients, which could be a consumer’s phone18

or bank/hospital’s local data center. Take the canonical example of federated learning (FL) [27].19

Rather than share data, clients instead send model updates to the server. Our work caters to settings20

where neither clients nor servers can be entirely trusted to faithfully participate in the Collaborative21

Learning (CL) protocol. For example, consider if a group of banks wished to learn a better fraud22

detection model. Banks may not be able to directly share data [11] and further because banking is a23

competitive industry, it must be assumed that banks will deviate from the protocol if it serves their24

interest.25

Server

C1 C2 C3

D1 D2 D3

Server attack vector:
breach client confidentiality

alter global parameters arbitrarily

Client attack vector:
(intentional) model poisoning

(unintentional) bad data

1

Figure 1: Motivation for P2P Learn-
ing. Current collaborative learning ap-
proaches are vulnerable to both client
(denoted as C with data D) and server at-
tack vectors. Our framework tackles all
of these vulnerabilities simultaneously.

First, malicious server banks may breach the intuitive con-26

fidentiality of CL. A long line of work [6, 7, 17, 30, 35, 40,27

41, 43] has shown that when the server acts maliciously,28

it can, for instance, construct model parameter values that29

exactly extract client data from (even aggregated) model30

updates. To protect client data from servers acting ma-31

liciously, it is thus paramount to design approaches to32

CL where no single server can have full control over the33

orchestration of the protocol. On the other hand, mali-34

cious client banks may entirely prevent learning by sub-35

mitting poor updates. This may be intentional as in a36

model poisoning attacks [1, 4, 37, 38] or unintentional if37

their dataset contained malformed data. Though a separate38

line of work [18, 19, 22, 23, 25, 31, 39] has studied how39

to robustly learn in the face of malicious updates (or data), there are none that have studied how to40

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

integrate such robust learning algorithms within a protocol that is secure to malicious servers. In this41

work, we design the first scheme that is doubly robust to the harms of both malicious server(s) and42

clients, which are shown in Figure 1.43

We observe that asymmetric power is the fundamental requirement for malicious servers to breach44

user data privacy. Thus, we design a fully-decentralized peer-to-peer (P2P) learning protocol where45

each participant (e.g., bank), or peer herein, can equally contribute to the role of the server aggregating46

updates (and of a client computing updates). Further, we ensure that no single peer has the power to47

orchestrate the protocol—instead, we elect a committee of peers to perform the aggregation at any48

given training round in a way that requires no central or trusted third party (see Section 3 for the49

full threat model). On the other hand, there is now a greater need for protection against malicious50

clients as the distributed nature may increase the chances of intentional poisoning or bad data51

quality interfering with learning (e.g., due to fewer resources among some banks and/or competitive52

advantages). Thus, we ensure that our protocol can efficiently integrate with classical approaches for53

robustness against malicious clients, such as RSA [25], FL Trust (FLT) [10], or Centered Clipping54

(CC) [22]. Importantly, our work generalizes the setups of these works and introduces the general55

framework that adapts any (compatible) algorithm for robust aggregation of model updates to settings56

where servers and clients may behave maliciously.57

To achieve this, our approach builds on cryptographic multi-party computation (MPC) protocols.58

This allows peers to collectively emulate the server’s role while being robust against the collusion of59

a subset of these peers that may act maliciously. However, naively combining these with (insecure)60

robust aggregation techniques incurs prohibitive overhead because the server computation for robust61

aggregation, which must be securely computed in MPC, is almost always of a complexity that leads62

to a high multiplicative slowdown. We design a framework that modularizes the processing steps of63

robust aggregation so as to select the most suitable cryptographic building blocks for each one, leading64

to significant computational improvements. One such improvement is our proposed computational65

surjectivity. We show that aggregation algorithms with component functions satisfying this property66

can efficiently obtain security while still guaranteeing robustness against malicious peers; we also67

show that existing robustness algorithms satisfy this property, or can be tailored to do so.68

To summarize, our contributions are the following:69

1. We provide the first collaborative learning protocol that operates under the malicious threat model70

and is robust to both malicious clients and servers. We prove its cryptographic security, providing71

the necessary security guarantees.72

2. We design our protocol as a generic compiler that can convert broad categories of robust aggre-73

gation algorithms to our doubly robust P2P security model efficiently. This modular approach74

enables practitioners to benefit from our improved security model while selecting the most appro-75

priate model poisoning defense for their use case. To demonstrate our framework’s flexibility, we76

generate malicious-secure protocols for three existing robust aggregation algorithms. We show77

empirically that the generated protocols retain their robustness guarantees.78

3. We demonstrate the computational efficiency of our protocols. We benchmark our protocols up to 179

million parameter models, and thousands of peers. For example, we show that the aggregation step80

of our malicious-secure implementation of robust aggregation with RSA [25] obtains a per-round81

CPU time of roughly 46 seconds with 105 parameters when trained by 1000 peers.82

2 Related Work83

Federated learning is perhaps the most studied collaborative learning framework [21, 28]. Most84

related to ours are variants based on Secure Aggregation (SecAgg) [8] that provide confidentiality of85

gradient transmission. However, existing work does not provide robust aggregation within SecAgg86

and is focused on the single-server setting, or additionally on their use for tighter differential privacy87

guarantees [12, 20]. In contrast, we focus solely on confidentiality in the distributed server setting with88

robust aggregation. Other works include CaPC [13] but this requires a trusted third party to reduce89

the computational overhead. We make no such assumptions. In Swarm Peer-2-Peer learning [36],90

participants can dynamically join or leave the collaboration and are enrolled via a Blockchain smart91

contract. There is no central party and each per-round server is dynamically elected via Blockchain92

smart contracts. Crucially, Swarm Learning supports neither secure (confidentiality-preserving) nor93

robust aggregation—it uses standard parameter averaging.94

2

METHOD

PROPERTY

PREVENTED
ATTACKS

UPDATE
CONFIDENTIALITY

MALICIOUS
CLIENTS

MALICIOUS
SERVER

AGGREGATION
COMMITTEE

ROBUST
AGGREGATION

PLAINTEXT
INSPECTION

POISONING OR
BACKDOORING
[1, 4, 37, 38]

GRADIENT
INVERSION

[16, 41, 30, 35, 40, 41]

DATA
RECONSTRUCTION

[6, 7];
MALFORMED DATA

DEGRADE UTILITY

SECAGG V1 [8] ✓ ✗ ✗ ✗ ✗
SECAGG V2 [3] ✓ ✗ ✗ ✗ ✗

CAPC [13] ✓ ✗ ✗ ✓ ✗
SWARM P2P LEARNING [36] ✗ ✗ ✗ ✓ ✗

BISCOTTI [32] ✓ ✗ ✗ ✓ **
EIFFEL MS [14] ✓ ✓ ✓ ✗ *
ACORN MS [2] ✓ ✓ ✓ ✗ *

DR-P2P SHS (OURS) ✓ ✗ ✗ ✓ ✓
DR-P2P MS (OURS) ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of Security Models between Aggregation Protocols. Robust aggregation
provides protection against data poisoning by clients in the collaboration protocol. Update confiden-
tiality guarantees that an individual updated from a client is not revealed. SHS denotes Semi-Honest
Security while MS is Malicious Security. *Guarantees data integregity, not robust aggregation of
updates. **Only under a single robust aggregation protocol.

Biscotti [32] incorporates robustness to poisoning by combining Multi-Krum [5] and secure aggre-95

gation through Shamir secret-sharing. Its core parts are a verification committee that runs robust96

update selection, and aggregation committee that computes the final model update. However, Biscotti97

only guarantees security in the semi-honest setting and is solely compatible with Multi-Krum, which98

is not always the preferable robustness algorithm [22]. Blockchain is also used as an alternative to99

the centralized aggregator in FL to deal with malicious participants or servers in [42]. The initial100

model is uploaded on the blockchain following which the participants train local models, then sign on101

hashes with their private keys, and upload the locally trained models to the blockchain. The validity102

of the uploaded models is verified with digital signatures and Multi-Krum. Algorand is used as the103

consensus algorithm in the blockchain system to update the global model. However, it uses a single104

leader for each training round and is compatible only with Multi-Krum.105

Konstantinov and Lampert [24] present a distributed robust learning procedure that allows for robust106

learning from untrusted sources. Distributed Robust Learning (DRL) [15] is another approach to107

robust learning which uses a divide and conquer strategy. However, none of the papers achieves the108

two notions of robustness at the same time. Closest to our work are those that look to combine data109

integrity and confidentiality (security) [2, 14]. However, these works are crucially different from110

ours in that they perform checks on the underlying data of each client, not the update—then, these111

protocols drop clients with poor data. Because these approaches operate over a different input, they112

may be used simultaneously with ours.113

3 Threat Model114

Collaborative learning is conducted among a set of parties performing one of two roles: a client (or115

worker) who performs learning on a repository of local data or a server that aggregates the many116

client updates. We consider a malicious threat model for collaborative learning where both roles117

may be corrupted, and adversarial parties can perform arbitrary actions to interfere with the learning118

process. In particular, parties may act as:119

1. Malicious Clients who can attempt to: (1) lower the quality of the trained model by sending120

distorted model updates, which may occur (a) intentionally as in model poisoning attacks, or121

(b) unintentionally due to errors in computation, skewed, or incorrect local data sets; (2) steal122

information about the other peers’ data, i.e., break confidentiality, e.g., by colluding with other123

malicious peers and sharing the transcripts of the protocol execution.124

2. Malicious Servers who can strive to (1) reconstruct individual data points from the clients’125

updates, thus breaking data confidentiality, which can be achieved by arbitrarily modifying model126

parameters or colluding with other peers (Servers or Clients), (2) degrade the fidelity of the shared127

model by omitting updates from selected clients as well as intentionally computing incorrect or128

even malicious aggregates of model updates.129

3

Trusted Single-Server Robust Aggregation
Public Functions: Single-server robust aggregation algorithms are defined by three functions:
• FC(·) – client-side update computation
• FP (·) – server-side update preprocessing
• FR(·) – server-side update aggregation.
Input: Global parameters w from the previous round. Each client Pi has input data; all
participants have local state st.
Client update:
1. Each client Pi computes ui ← FC(data, st,w) and sends update ui to the server.
Server preprocessing:
2. For each i ∈ [m], the server obtains vj for all j ∈ Si and computes vi ← FP ({uj}j∈Si).
Server update:
3. Server computes w ← FR({vi}i∈[m]) and sends w to all clients.

Figure 2: Template for single-server robust aggregation.

Problem Setup. To construct a collaborative learning protocol that is doubly robust against both130

malicious clients and servers, we must decentralize the task of update aggregation. Accordingly, P2P131

Learning is conducted among a set of participants or peers, who may be assigned take on the role of132

client or server.133

4 Doubly Robust Framework134

Our framework efficiently lifts the robust aggregation algorithms (e.g., aforementioned RSA, FLT,135

or CC) to the P2P learning setting with guaranteed malicious-secure protocol fidelity. This security136

model guarantees confidentiality and protocol fidelity against peers that may take arbitrary actions137

to disrupt the P2P learning, while retaining the model fidelity guarantees of a robust aggregation138

algorithm. Indeed, we previously mentioned that many algorithms provide model fidelity against139

poisonous adversaries in the single-server setting [5, 18, 22, 23, 25, 31]. Each algorithm makes140

different assumptions about the threat model, e.g., how many times a given malicious client can141

participate, what sort of malicious update they send, what the underlying data distribution is, etc. Thus,142

rather than pinning our framework on a single robustness algorithm, we propose a modular design143

that encompasses a broad class of such robust aggregation algorithms designed for the single-server144

setting.145

4.1 Framework Design146

In order to strengthen the security models of a broad class of robust aggregation algorithms, we design147

a modular template (Figure 2), which organizes aggregation algorithms in terms of three functions:148

FC : D × S × Ω→ U FP : U → V FR : V m → Ω

The first function, FC , represents the computation of client updates based on local data, state, and149

global model parameters; accordingly,D is the space of possible client datasets, S is the space of local150

states, Ω is the space of global model parameters, and U is the space of client updates. In the trusted151

single-server setting, each client computes FC and sends their update ui ∈ U to the server. Next152

comes the server’s computation. We break the server’s work into two parts: a preprocessing function153

FP and an aggregation function FR. The former transforms each client update to a preprocessed154

domain V , and the latter combines the preprocessed local updates into a global model update w ∈ Ω.155

Our primary contribution is the design of a protocol that lifts any robust aggregation algorithm156

described in terms of these functions to a stronger security model. The security model in question is157

secure against malicious clients without relying on a trusted server, all while retaining the protection158

against poisoning attacks offered by the original algorithm.159

Protocol Description. Peers carrying out a P2P Learning protocol (Figure 3) begin by randomly160

selecting an aggregation committee, the size of which is parameterized to guarantee an honest161

4

majority with all but negligible probability (see Appendix C for details). Since the committee is162

honest-majority, it can securely use the MPC (Secure Multi-Party Computation) and VSS (Verifiable163

Secret Sharing) schemes later in the protocol. All clients then compute local updates via FC , and164

preprocess those updates via FP . Peers secret share their updates with VSS, and pass shares to the165

aggregation committee. Each member of the committee receives a share of a local update from every166

peer. The committee uses distributed zero knowledge proofs to ensure that all updates are well-formed167

outputs of FP – Section 4.2 discusses in detail how to do so with practical efficiency. Finally, FR168

is computed by the aggregation committee by using the shares as input to a malicious-secure MPC169

protocol, and committee members send the resulting global model update to all peers.170

Strengthened Security Model. In the single-server setting, the computation of FR is handled171

by a single party. This makes it vulnerable to tampering – a malicious server may breach client172

confidentiality, omit updates from certain clients, modify updates, or simply make arbitrary changes173

to the global model. Our framework lifts aggregation algorithms to a security model where none174

of that is possible. Distributing the computation of FR to an honest-majority committee equipped175

with malicious-secure MPC means that FR is computed with guaranteed correctness and that no176

information about the local updates is leaked in the process. Further, using VSS guarantees that no177

committee member can breach the confidentiality of client updates before the computation of FR,178

and that it is impossible to modify client updates before the computation of FR without being caught179

(except with negligible probability). Further, since the committee is majority-honest, all peers can180

guarantee the correctness of the received global update by taking the majority result received from181

the committee members.182

Obtaining Practical Efficiency. It is possible to strengthen the security model of almost any183

distributed computation by simply running it inside of a generalized MPC protocol, but doing so184

usually results in unbearable computational overhead since MPC substantially amplifies the cost185

of most operations. A key challenge that the present study surmounts is strengthening security186

whilst maintaining the efficiency necessary to scale to real-world collaborative learning scenarios.187

The design choices we employ while formulating our protocol make this possible. For example,188

in applications of robust aggregation with a trusted single-server, the role of the server is typically189

executed by a data center with high compute capabilities. In such a setting it is beneficial to minimize190

client-side computation and shift the compute responsibility to the server wherever possible.191

In contrast, collaborative learning with no trusted parties requires a committee to aggregate client192

updates, and operations performed in MPC by the committee are especially costly. Thus it becomes193

beneficial to offload as much of the computation as possible to the client-side. Our template (Figure 2)194

and protocol (Figure 3) do this by separating the trusted server’s work into two parts, FP and FR,195

and shifting the work of computing FP to the clients. This dramatically reduces the computational196

burden of the aggregation committee, but introduces potential concerns about the correctness of197

the underlying aggregation algorithm. Namely, in the trusted server setting FP is guaranteed to198

be computed correctly since it is executed by a trusted party, but a malicious client may introduce199

arbitrary faults into the computation of FP . To prevent this while maintaining confidentiality, one200

could use a zero-knowledge proof to guarantee that FP was computed correctly, however this would201

introduce substantial computational overhead. We achieve a much more efficient result by instead202

verifying that each peer’s local update is well-formed – that it properly falls within the preprocessed203

domain V . We observe that if FP has a certain property, which we call computational surjectivity,204

verifying that the update is within V is just as good as verifying correct computation of FP , even205

though the former comes at substantially lower cost.206

4.2 Computational Surjectivity207

Our key insight is that by leveraging the properties of robust aggregation, we can relax certain208

requirements on the correctness of FP . These relaxed requirements allow us to offload computation209

of FP to the client-side, while also avoiding the computational overhead of a full zero-knowledge210

proof that FP was computed correctly.211

A robust aggregation algorithm guarantees that even when adversaries provide arbitrary values as212

the output of FC , a satisfactory output of FR will be computed. Accordingly, we observe that as213

long as some valid output of FC maps to each client’s output of FP , the final global update will be214

computed properly. Thus if FP is a surjective function (i.e. if ∀v ∈ V,∃u ∈ U : v = FP (u)), it215

is only necessary to verify that vi ∈ V for all client updates vi in order to correctly compute FR.216

5

Secure P2P Learning Against Malicious and Poisonous Adversaries
Protocol:
1. The clients randomly select an aggregation committee C ⊂ {Pi}i∈[m].

2. Each client Pi applies local computation ui ← FC(data, st,w).

3. For each client Pi, compute vi ← FP (ui).
4. Pi secret shares vi to obtain [vi] and sends one share to each Pj ∈ C.

5. If FP is not computationally surjective, Pi uses Distributed Zero Knowledge (DZK) to prove
to the committee C that vi is correctly computed from some ui of Pi’s choice. Otherwise,
Pi uses DZK to prove that vi ∈ V .

6. If Domain(FR) ̸= Image(FP), Pi uses DZK to prove to the committee C that vi ∈
Image(FP).

7. All committee members Pj ∈ C input shares [vi] for all i ∈ [n] to a |C|-party computation
protocol in order to compute w ← FR({vi}i∈[n]). Committee members send w to all
clients.

Figure 3: Main protocol outline for the malicious setting.

Below we specify a computational analogue of surjectivity—we require the preimage can be found in217

polynomial time so the whole protocol can achieve simulation security (Appendix C.2 has details).218

Definition 1 A function f : U → V is computationally surjective if there is a probabilistic219

polynomial-time algorithm A : V → U such that for any v ∈ V , we have f(A(v)) = v.220

In the general case where we have no guarantees on the structure of FP , peers must prove in221

zero knowledge that vi is the result of a valid computation of FP (step 5 of fig. 3). But if FP is222

computationally surjective, then all possible vi ∈ V are implicitly the output of some computation223

of FP . Thus in this case it only becomes necessary to prove that the shares of each peers’ input224

reconstructs a point within V .225

The security of this protocol in the malicious setting is stated as Theorem 1 and proven in Ap-226

pendix C.2.227

Theorem 1 For any single-server robust aggregation algorithm described in (FC , FP , FR) as228

in Figure 2, the protocol described in Figure 3 is a secure P2P learning protocol against malicious229

clients and servers when the underlying MPC scheme is secure.230

5 Lifting Robust-Aggregation Algorithms to a Malicious-Security Model231

Having discussed how a single-server robust aggregation with a computationally surjective FP can232

be lifted to the malicious peer-to-peer setting with high efficiency, we apply this principle to the233

design of malicious-secure versions of three popular robust aggregation algorithms: robust stochastic234

aggregation (RSA) [25], centered clipping (CC) [22], and FLTrust (FLT) [10] in the peer-to-peer235

setting.236

5.1 Instantiating RSA in Malicious-Secure Framework237

Robust stochastic aggregation (RSA) is a lightweight algorithm for Byzantine-robust convex opti-238

mization [25] (see Appendix C.3.1 for a summary). We observe that it can be lifted to the malicious239

security model with high efficiency with very few modifications to the algorithm: it is computation-240

ally surjective (which we show formally in Appendix C) and the underlying MPC can be efficiently241

instantiated.242

In RSA peer updates are the sign of the difference between each parameter of the local and global243

models. In other words, the FP of RSA gives V = {−1, 1}d, where d is the number of parameters in244

the model. Thus, it is sufficient for peers to prove in zero-knowledge that their updates are in the set245

6

V = {−1, 1}d. This can be accomplished efficiently by having each peer represent their update as d246

shares of binary values. The committee can perform a distributed zero knowledge (DZK) proof that247

a shared x is binary-valued by constructing shares of x · (1− x) and revealing it to be zero. These248

proofs can be batched together for a substantial improvement in efficiency. In particular, for every249

shared value xi, parties uniformly sample a random value ri, and locally construct shares of the sum250 ∑
ri · (xi · (1− xi)). The parties then reconstruct the sum – if it is 0, then each of the (xi · (1− xi))251

components must have been 0 with all but negligible probability. For a more detailed treatment of252

this technique, see [9].253

During the computation of FR, the committee needs only to sum the shares and send out the254

reconstructed sum. The actual value of the summed updates in {−1, 1} is implicitly given by the sum255

of the binary values (if the sum of the binary values is x, simply take 2x−m).256

5.2 Instantiating CC in Malicious-Secure Framework257

Centered clipping with momentum (CC) is a robust aggregation algorithm that ensures protection258

against time-coupled poisoning attacks [22] (see Appendix C for a summary). To lift it to our259

improved security model with practical efficiency, we construct a computationally surjective variant260

of the CC algorithm. Namely, while canonical CC clips local updates using the ℓ2 norm, we use the261

ℓ∞ norm.1 In other words, we clip the gradients to a τ -box rather than a τ -ball. This modification262

admits a computationally surjective FP with an efficient DZK proof that a client update is within263

the valid domain. In particular, we take V = [0, 2θ − 1]d. Then in FP we scale, round, and map264

clipped gradient updates to be within this domain. Here θ is a public constant large enough to limit265

discretization error of local updates during scaling – in experiments with CC we set θ to 32 in order266

to align with 32-bit fixed-point numbers. Smaller values of θ will increase protocol efficiency, at the267

expense of higher discretization error during rounding and mapping in FP step 3. The computational268

surjectivity of this FP follows from a similar argument to Lemma 2 (see Appendix C).269

DZK Proof of Valid Update. We specify that local updates vi are submitted as vectors of the270

individual component bits of the processed gradient update. This means that each bit will be271

individually secret shared, which allows the committee to verify whether each one is binary-valued272

(using the same DZK technique described above for the RSA protocol). Since we scaled each update273

to fit within a 2θ-sized d-dimensional box, the d sets of θ binary values in the update trivially encode274

a point within the box. Thus, a proof that each component of the bitwise update is binary-valued275

equates to a proof that the update is in V .276

The global update is aggregated by summing the bits at each position of the client update vectors.277

The sums are reconstructed and sent directly to all clients. They implicitly encode the updated global278

parameters w′, which are recovered via client-side computation in order to keep the computation of279

FR light-weight. Details of our malicious-secure Centered Box Clipping protocol can be found in280

Figure 8 (in Appendix).281

5.3 Instantiating FLTrust in Malicious-Secure Framework282

FLTrust (FLT) is a robust aggregation algorithm that uses a trusted dataset to filter out poisoned283

updates [10] (see Appendix C for a summary). As with CC, we construct a tailored variant of FLT284

that admits a computationally surjective FP to improve efficiency. In particular we rotate and scale285

the “root” update g0 to be a unit vector aligned with the x-axis. This allows us to take V to be the286

set of unit vectors in the half-space defined by a non-negative x-coordinate. As such, FP involves287

scaling and rotating client updates so that the angle between them and g0 is preserved. Similarly to288

CC, we encode client updates as θ-bit fixed point numbers. In our benchmarks for FLT, we set θ to289

16 to compensate for the increased memory demands of this protocol. We use a committee size of290

121 in order to enable multiplication of secret shared values (see Appendix C for details).291

DZK Proof of Valid Update. As in CC, the magnitudes of local updates vi are submitted as shares292

of each bit in the binary representation of each fixed-point number. Clients additionally submit shares293

encoding sign for each parameter, with the exception of the x-coordinate, which is assumed to be294

1The theoretical robustness guarantees proven for centered clipping by Karimireddy et al. [22] cover clipping
for the ℓp norm for arbitrary choice of real numbers p ≥ 1, but do not extend to the ℓ∞ norm. We show
empirically that centered clipping with the ℓ∞ norm achieves similar model fidelity against known attacks
in Appendix C.

7

10^3 10^4 10^5 10^6
Number of parameters

10
0

10
1

10
2

10
3

10
4

R
un

tim
e

(s
ec

on
ds

)

RSA
FLT
CC

(a) Runtime vs Number of Parameters.

50 100 500 1000 2500 5000
Number of peers

10
2

10
3

10
4

R
un

tim
e

(s
ec

on
ds

)

RSA
FLT
CC

(b) Runtime vs Number of Peers.

Figure 5: Computational Efficiency vs Number of Parameters and Peers. We report CPU wall-
clock time for the execution of the aggregation step of our protocol – the computation of FR in a
single training round. The runtime performance of the algorithms (RSA, FLT, and CC) scales linearly
with the number of parameters and peers. When modifying parameters we use a total of 100 peers
(left subfigure) and 105 parameters set when changing the number of peers (right subfigure). For
RSA and CC, the aggregation committee size is set to 46, and for FLT it is set to 121 in order to
accommodate the secret share multiplications of the protocol (see Appendix C for details).

always non-negative. We use the previously described technique to verify that the shares encoding295

magnitude are binary-valued. We use a similar technique to verify that shares encoding sign are in296

the set {−1, 1} (i.e. we reveal (b + 1)(b − 1) to be zero using a batch check). Further, we verify297

that submitted updates are unit length by constructing shares of ⟨ḡi, ḡi⟩ − C, where C is the squared298

length of a unit vector represented as a θ-bit fixed-point number. Revealing this quantity to be zero299

verifies in zero-knowledge that ḡi was indeed unit length.300

6 Verifying Empirical Efficacy and Efficiency301

Our empirical evaluation focuses on exploring three major axes: (1) the Byzantine robustness of our302

implementations due to modifications we introduced, (2) the computational efficiency of our protocol,303

and (3) the tradeoff between computational efficiency and Byzantine robustness. To this end, we304

center our comparisons on robust stochastic aggregation (RSA), Centered Clipping (CC), and FLTrust305

(FLT) but remark that our framework is compatible with other (potentially future) Byzantine robust306

algorithms as well. We demonstrate the practical efficiency of our case studies in the P2P Learning307

framework while maintaining the same robustness of the algorithms as in their clear versions.308

6.1 Security Does not Impact Robustness309

0 100 200 300 400
Round

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

f = 10

attack = alie

num_type
fixed
floating

Figure 4: Fixed vs floating-point
numerical precision for CC.

We verify if the properties of the robust aggregation algorithms310

hold after the required modifications to lift them to the malicious311

setting, e.g., switching to fixed point numerical precision. In312

Figure 4, we use the IID MNIST dataset and 20 peers, of which313

there are 10 malicious workers. We compare the robustness of314

CC against the ALIE (A Little Is Enough) attack [1] before and315

after lowering CC’s numerical precision. We observe that the316

algorithm preserves its robustness despite the required changes.317

We also present corresponding additional studies (e.g. com-318

parison between ℓ2 and ℓ∞ norm for CC) in Appendix C. We319

observe that all the modified algorithms, namely CC, FLT, and320

RSA exhibit comparable performance to the original algorithms.321

6.2 Scaling of Computational Efficiency322

Because P2P learning algorithms typically require upwards of 1000 rounds of the protocol to converge,323

it is a necessity to have an efficient protocol. In Figure 5, we analyze the two major factors influencing324

this: the size of the vector (ML model) being aggregated (denoted as the number of parameters), and325

8

104 106

Runtime (s)
0

20
40
60
80

100

Ac
cu

ra
cy

 (%
)

attack = None

104 106

Runtime (s)

attack = sf

104 106

Runtime (s)

attack = lf

104 106

Runtime (s)

attack = ipm

104 106

Runtime (s)

f = 10

attack = alie
agg
RSA
CC
FLT

Figure 6: Byzantine Robustness of Doubly Robust Protocols for iid EMNIST. We compare RSA,
FLT, and CC after their instantiations in our framework. A cohort size of 50 peers is used, of which
there are 10 malicious workers. We consider four attacks and have a baseline without any malicious
workers. We run each algorithm until its completion. CC achieves the highest final accuracy. FLT
and CC converge much faster than RSA.

the number of peers participating in the collaborative learning. We observe much better performance326

for RSA than other algorithms per training round. This results from a more concise form of the327

information exchanged between peers in the case of RSA, where local updates from each peer are328

represented as an array of bits. In contrast, the model updates sent between peers in FLT or CC are329

always encoded as fixed points, 16 for FLT vs 32 for CC. The more efficient encoding of messages330

between peers in RSA provides a speedup of around ∼30X in comparison to CC and ∼6X over FLT.331

Our framework is able to scale efficiently to even 5000 participants, for which we observe a linear332

growth in terms of the elapsed time per training round. Similarly, the computation time scales linearly333

for RSA, FLT, and CC, with the number of parameters. We further compare the communication cost334

between frameworks in Appendix C.335

6.3 End-to-end Protocol Evaluation in Presence of Attacks336

We estimate the accuracy and runtime of the modified algorithms in the presence of different types of337

attacks in Figure 6. We compute the number of rounds to convergence, and use the per-round CPU338

time for computation of FR in each algorithm, to estimate overall training runtime and accuracy339

for EMNIST (and similar results for MNIST in Appendix C). We plot the test accuracy (%) on the340

y-axis and the x-axis represents the estimated CPU time (measured in seconds, note that this is in341

the logarithmic scale) of the P2P training. We observe that in all cases, CC and FLT algorithms342

outperform RSA in terms of convergence speed and achieve higher final accuracy. Note that the343

overall convergence speed is decided by both the number of iterations of training and the cost of each344

iteration. Although RSA is faster to compute for one iteration due to reduced information exchanged345

in each iteration, it requires much more iterations than CC and FLT, and hence slower to converge.346

When considering only utility, CC also outperforms FLT consistently; however, under computation347

constraints, it is often the case that FLT is more efficient than CC. This is primarily because we use a348

fixed-point length (θ) of 16 bits in the experiments for FLT, but 32 bits for CC.349

7 Conclusions350

The benefits of collaborative learning make it an attractive new paradigm that is increasingly adopted351

in many domains, such as the financial sector, e.g., to enable collaboration between banks. However,352

there are many risks associated with collaboration due to clients or server(s) acting maliciously.353

Malicious clients can submit corrupted updates which leads to the failure of creating a useful shared354

model. Conversely, the leakage of the client’s local data when contributing model updates has been355

demonstrated to be particularly strong when a central party cannot be trusted to orchestrate the356

collaborative learning protocol. To mitigate these issues, we propose Peer-to-Peer Learning that357

provides a doubly robust protocol against malicious clients and server(s) to train a shared model358

without a central party. We prove the cryptographic security of our protocol, providing the necessary359

security guarantees. Our novel framework is designed as a generic compiler that can efficiently360

convert robust aggregation algorithms to the P2P learning setting with the guaranteed malicious-361

secure protocol. We show empirically that the generated protocols retain their robustness guarantees.362

This generic approach can be applied to many (possibly future) aggregation algorithms.363

9

References364

[1] Moran Baruch, Gilad Baruch, and Yoav Goldberg. A little is enough: Circumventing defenses365

for distributed learning. 2019. doi: 10.48550/ARXIV.1902.06156. URL https://arxiv.366

org/abs/1902.06156.367

[2] James Bell, Adrià Gascón, Tancrède Lepoint, Baiyu Li, Sarah Meiklejohn, Mariana Raykova,368

and Cathie Yun. Acorn: Input validation for secure aggregation. Cryptology ePrint Archive,369

2022.370

[3] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Lepoint, and Mariana371

Raykova. Secure single-server aggregation with (poly)logarithmic overhead. In Proceed-372

ings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, CCS373

’20, page 1253–1269, New York, NY, USA, 2020. Association for Computing Machinery.374

ISBN 9781450370899. doi: 10.1145/3372297.3417885. URL https://doi.org/10.1145/375

3372297.3417885.376

[4] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector377

machines, 2012. URL https://arxiv.org/abs/1206.6389.378

[5] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learn-379

ing with adversaries: Byzantine tolerant gradient descent. Advances in Neural Information380

Processing Systems, 30, 2017.381

[6] Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov,382

and Nicolas Papernot. When the curious abandon honesty: Federated learning is not private,383

2021. URL https://arxiv.org/abs/2112.02918.384

[7] Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov,385

and Nicolas Papernot. Is federated learning a practical pet yet? 2023.386

[8] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan,387

Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for388

privacy-preserving machine learning. In proceedings of the 2017 ACM SIGSAC Conference on389

Computer and Communications Security, pages 1175–1191, 2017.390

[9] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge391

proofs on secret-shared data via fully linear pcps. Cryptology ePrint Archive, Paper 2019/188,392

2019. URL https://eprint.iacr.org/2019/188. https://eprint.iacr.org/2019/393

188.394

[10] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. Fltrust: Byzantine-robust395

federated learning via trust bootstrapping. arXiv preprint arXiv:2012.13995, 2020.396

[11] PETs Prize Challenge. https://www.drivendata.org/competitions/98/nist-federated-397

learning-1/page/522/, 2023. URL https://www.drivendata.org/competitions/398

98/nist-federated-learning-1/page/522/.399

[12] Wei-Ning Chen, Christopher A Choquette-Choo, Peter Kairouz, and Ananda Theertha Suresh.400

The fundamental price of secure aggregation in differentially private federated learning. arXiv401

preprint arXiv:2203.03761, 2022.402

[13] Christopher A. Choquette-Choo, Natalie Dullerud, Adam Dziedzic, Yunxiang Zhang, Somesh403

Jha, Nicolas Papernot, and Xiao Wang. CaPC Learning: Confidential and Private Collaborative404

Learning. In International Conference on Learning Representations, 2021. URL https:405

//openreview.net/forum?id=h2EbJ4_wMVq.406

[14] Amrita Roy Chowdhury, Chuan Guo, Somesh Jha, and Laurens van der Maaten. Eiffel: Ensuring407

integrity for federated learning. arXiv preprint arXiv:2112.12727, 2021.408

[15] Jiashi Feng, Huan Xu, and Shie Mannor. Distributed robust learning, 2015.409

[16] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients–410

how easy is it to break privacy in federated learning? arXiv preprint arXiv:2003.14053,411

2020.412

10

https://arxiv.org/abs/1902.06156
https://arxiv.org/abs/1902.06156
https://arxiv.org/abs/1902.06156
https://doi.org/10.1145/3372297.3417885
https://doi.org/10.1145/3372297.3417885
https://doi.org/10.1145/3372297.3417885
https://arxiv.org/abs/1206.6389
https://arxiv.org/abs/2112.02918
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188
https://www.drivendata.org/competitions/98/nist-federated-learning-1/page/522/
https://www.drivendata.org/competitions/98/nist-federated-learning-1/page/522/
https://www.drivendata.org/competitions/98/nist-federated-learning-1/page/522/
https://openreview.net/forum?id=h2EbJ4_wMVq
https://openreview.net/forum?id=h2EbJ4_wMVq
https://openreview.net/forum?id=h2EbJ4_wMVq

[17] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting Gradients413

– How easy is it to break privacy in federated learning? 2020. 23 pages, 20 figures. The first414

three authors contributed equally.415

[18] Rachid Guerraoui, Sébastien Rouault, et al. The hidden vulnerability of distributed learning in416

byzantium. In International Conference on Machine Learning, pages 3521–3530. PMLR, 2018.417

[19] Lie He, Sai Praneeth Karimireddy, and Martin Jaggi. Byzantine-robust learning on heteroge-418

neous datasets via resampling. 2020.419

[20] Peter Kairouz, Ziyu Liu, and Thomas Steinke. The distributed discrete gaussian mechanism for420

federated learning with secure aggregation. In International Conference on Machine Learning,421

pages 5201–5212. PMLR, 2021.422

[21] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-423

jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,424

et al. Advances and open problems in federated learning. Foundations and Trends® in Machine425

Learning, 14(1–2):1–210, 2021.426

[22] Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Learning from history for byzantine robust427

optimization. In International Conference on Machine Learning, pages 5311–5319. PMLR,428

2021.429

[23] Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Byzantine-robust learning on heteroge-430

neous datasets via bucketing. In International Conference on Learning Representations, 2022.431

URL https://openreview.net/forum?id=jXKKDEi5vJt.432

[24] Nikola Konstantinov and Christoph Lampert. Robust learning from untrusted sources. In433

Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International434

Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,435

pages 3488–3498. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/436

konstantinov19a.html.437

[25] Liping Li, Wei Xu, Tianyi Chen, Georgios B Giannakis, and Qing Ling. Rsa: Byzantine-438

robust stochastic aggregation methods for distributed learning from heterogeneous datasets. In439

Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 1544–1551,440

2019.441

[26] Yehuda Lindell and Ben Riva. Cut-and-choose based two-party computation in the online/offline442

and batch settings. IACR Cryptol. ePrint Arch., 2014:667, 2014.443

[27] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.444

Communication-efficient learning of deep networks from decentralized data. In Artificial445

intelligence and statistics, pages 1273–1282. PMLR, 2017.446

[28] H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially447

private recurrent language models. arXiv preprint arXiv:1710.06963, 2017.448

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,449

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas450

Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,451

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-452

performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-453

Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,454

pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/455

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.456

pdf.457

[30] Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shiho Moriai. Privacy-458

preserving deep learning: Revisited and enhanced. pages 100–110. Springer, Singapore, 2017.459

doi: 10.1007/978-981-10-5421-1_9. URL https://link.springer.com/content/pdf/460

10.1007%2F978-981-10-5421-1_9.pdf.461

11

https://openreview.net/forum?id=jXKKDEi5vJt
https://proceedings.mlr.press/v97/konstantinov19a.html
https://proceedings.mlr.press/v97/konstantinov19a.html
https://proceedings.mlr.press/v97/konstantinov19a.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://link.springer.com/content/pdf/10.1007%2F978-981-10-5421-1_9.pdf
https://link.springer.com/content/pdf/10.1007%2F978-981-10-5421-1_9.pdf
https://link.springer.com/content/pdf/10.1007%2F978-981-10-5421-1_9.pdf

[31] Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated462

learning. arXiv preprint arXiv:1912.13445, 2019.463

[32] Muhammad Shayan, Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. Biscotti: A ledger464

for private and secure peer-to-peer machine learning. arXiv preprint arXiv:1811.09904, 2018.465

[33] Victor Shoup. A library for doing numbery theory. URL https://libntl.org.466

[34] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and efficient467

maliciously secure two-party computation. Cryptology ePrint Archive, Paper 2017/030, 2017.468

URL https://eprint.iacr.org/2017/030. https://eprint.iacr.org/2017/030.469

[35] Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and Hairong Qi. Beyond470

inferring class representatives: User-level privacy leakage from federated learning. In IEEE471

INFOCOM 2019 - IEEE Conference on Computer Communications. IEEE, 2019. doi: 10.1109/472

infocom.2019.8737416.473

[36] Stefanie Warnat-Herresthal, Hartmut Schultze, Krishnaprasad Lingadahalli Shastry, Sathya-474

narayanan Manamohan, Saikat Mukherjee, Vishesh Garg, Ravi Sarveswara, Kristian Händler,475

Peter Pickkers, N Ahmad Aziz, et al. Swarm learning for decentralized and confidential clinical476

machine learning. Nature, 594(7862):265–270, 2021.477

[37] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized byzantine-tolerant sgd, 2018.478

URL https://arxiv.org/abs/1802.10116.479

[38] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Fall of empires: Breaking byzantine-tolerant sgd480

by inner product manipulation, 2019. URL https://arxiv.org/abs/1903.03936.481

[39] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed482

learning: Towards optimal statistical rates. In International Conference on Machine Learning,483

pages 5650–5659. PMLR, 2018.484

[40] Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M. Alvarez, Jan Kautz, and and Pavlo485

Molchanov. See through Gradients: Image Batch Recovery via GradInversion. 2021. URL486

https://openaccess.thecvf.com/content/cvpr2021/html/yin_see_through_487

gradients_image_batch_recovery_via_gradinversion_cvpr_2021_paper.html.488

[41] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. iDLG: Improved Deep Leakage from489

Gradients. 2020.490

[42] Yang Zhao, Jun Zhao, Linshan Jiang, Rui Tan, Dusit Niyato, Zengxiang Li, Lingjuan Lyu, and491

Yingbo Liu. Privacy-preserving blockchain-based federated learning for iot devices. IEEE492

Internet of Things Journal, PP:1–1, 08 2020. doi: 10.1109/JIOT.2020.3017377.493

[43] Ligeng Zhu and Song Han. Deep leakage from gradients. In Federated Learning, pages 17–31.494

Springer, Cham, 2020. doi: 10.1007/978-3-030-63076-8_2. URL https://link.springer.495

com/chapter/10.1007/978-3-030-63076-8_2.496

12

https://libntl.org
https://eprint.iacr.org/2017/030
https://eprint.iacr.org/2017/030
https://arxiv.org/abs/1802.10116
https://arxiv.org/abs/1903.03936
https://openaccess.thecvf.com/content/cvpr2021/html/yin_see_through_gradients_image_batch_recovery_via_gradinversion_cvpr_2021_paper.html
https://openaccess.thecvf.com/content/cvpr2021/html/yin_see_through_gradients_image_batch_recovery_via_gradinversion_cvpr_2021_paper.html
https://openaccess.thecvf.com/content/cvpr2021/html/yin_see_through_gradients_image_batch_recovery_via_gradinversion_cvpr_2021_paper.html
https://link.springer.com/chapter/10.1007/978-3-030-63076-8_2
https://link.springer.com/chapter/10.1007/978-3-030-63076-8_2
https://link.springer.com/chapter/10.1007/978-3-030-63076-8_2

A Broader Impacts497

The goal of our work is to provide a protocol that enables collaborative learning with guaranteed498

confidentiality of client data and fidelity of the trained model, even when both clients and server(s)499

can act maliciously. A potential positive impact of this work is increased privacy and accountability in500

machine learning systems. One potentially negative impact could be the degradation of performance501

(in terms of compute time, communication overhead, or additional storage) for legitimate users.502

However, as shown in our experimental results, we are still able to cater to 100s of users with a model503

size of 1 mln parameters.504

B Limitations505

We provided a reference implementation of our protocol for three popular robust aggregation algo-506

rithms, namely RSA, FTL, and CC. We hope that our framework will be easy to extend to future507

robust aggregation methods. We acknowledge that operating in the malicious threat model also508

increases the cost of computation, communication, and storage, in comparison to the fully trusted509

environment or an honest-but-curious threat model.510

C Additional Information511

We further present additional information, experimental results, as well as a comparison between512

RSA, Centered Clipping with Momentum, and FL Trust.513

C.1 Committee Size514

The main protocol proceeds by first selecting a subset from the pool of peers which will be responsible515

for aggregating the updates of all the peers. This subset is termed the aggregation committee. To516

guarantee security, the size of the committee m has to be adjusted based on the number of corrupted517

parties. Let us denote the set of corrupted parties as B with |B| = b. If the committee members are518

selected randomly, then with probability p = b/n, a given committee member is an adversary. To519

ensure security in the malicious case, we need the aggregation committee to have an honest majority520

except with negligible probability (i.e. occurring with probability less than 2−40 as in [26, 34]). We521

can assess the probability of this event by modeling the number of corrupted peers in a uniform522

sample as a binomial random variable X with bias p = b
n and m trials. In particular, we are interested523

in values of p and m for which Pr[X ≥ n/2] < 2−40. These values can be computed from the524

cumulative density function of the binomial distribution. Assuming a 10% adversarial corruption525

threshold (i.e. setting p = 1/10), we obtain a committee size of 46. We use this committee size for526

experiments with RSA and CC. With FLTrust, in order to accommodate secret share multiplications527

with Shamir secret sharing, we guarantee Pr[X ≥ n/3] < 2−40, which gives a committee size of528

121.529

C.2 Security Proof530

We provide a proof of Theorem 1 (malicious security of Figure 3) below.531

Proof: We prove the security of the protocol by constructing a simulator interacting with the532

adversaries controlling a subset of the parties.533

1 The simulator plays the role of coin flipping and return a uniform aggregation committee. If the534

committee contains more adversary than the allowed threshold, the simulator aborts.535

The probability of simulator aborts in this step is negligible given the committee size and threshold.536

2-4 The simulator obtains shares of vi from the adversary and sends them random shares on behalf of537

the honest parties.538

5 If FP is not computationally surjective, The simulator plays the role of DZK to obtain the539

adversary’s input ui. If FP is computationally surjective, the simulator use vi to compute some540

ui.541

The simulator’s running time is always polynomial in this step either because efficient extraction542

from DZK or because of the definition of computational surjectivity.543

13

6 The simulator plays the role of DZK and check if vi is in the image of FP and aborts if it is not544

the case.545

7 The simulator sends ui to FP2PL and gets back the new updates; it then plays the role of FMPC546

and sends back the new updates to the adversary.547

□548

C.3 Instantiating Our Malicious Framework549

C.3.1 Malicious-Secure P2P RSA.550

Overview of Single-Server RSA. Single-server Byzantine-robust stochastic aggregation (RSA) [25]551

is a set of subgradient based algorithms for robust aggregation. The key component of the method552

is a regularization term incorporated into the objective function to make learning robust. To enable553

graceful handling of heterogeneous worker datasets, each client i maintains a local set of model554

parameters xk
i whilst working together to optimize the global model parameters wk at a step k. At555

each step, clients compute a parameter update which takes into account their local data, their prior556

local model, as well as the global model parameters. The server receives the local client updates557

and uses the regularized objective to obtain a robust aggregate update. Client and server updates,558

respectively, are given by the equations:559

xk+1
i = xk

i − ηk
(
∇F (xk

i , ξ
k
i) + λsign(xk

i −wk)
)

(1)

wk+1 = wk − ηk

∇f0(wk) + λ

∑
i∈[n]

sign(wk − xk
i)

 (2)

where η is a decaying learning rate hyper parameter, ξ is a sampling of the local client dataset, F (·, ·)560

is the loss function, f(·, ·) is the robust (ℓ2) regularization term, λ is a hyper parameter controlling561

the weighting of the robustness term, the sign is performed element-wise, and [n] is the set of clients.562

Lifting RSA to the P2P setting. To cast RSA into our framework, we first observe that563 ∑
i∈[n] sign(wk − xk

i) is the only term of the server’s update that requires input from the clients.564

Thus we limit the work of the committee solely to computing this term, and the rest of the work is565

done locally. We instantiate RSA for our framework in Figure 7.566

In the FC (client update computation) part of the RSA protocol, each peer receives the global model567

parameters wk. It computes local parameter update xk+1
i based on the global model, the local568

model xk
i , and the local gradient ∇F . In the FP (update preprocessing) part of the protocol, peers569

compute the sign of the difference between their local parameters and the global model parameters570

sign(wk − ui), resulting in a bit vector vi (one bit per model parameter). In the FR (aggregation)571

part of the protocol, the committee members receive secret shares of sign(wk − xk
i) from each572

participant. We observe that RSA can be lifted to the malicious security model with high efficiency:573

it is provably computational surjective and the underlying MPC can be efficiently instantiated.574

Computational Surjectivity. Recall that in RSA peer updates are the sign of the difference between575

each parameter of the local and global models (Figure 7). In other words, the FP of RSA gives576

V = {−1, 1}d, where d is the number of parameters in the model. In the single-server model of577

RSA [25] and in Figure 7, poisonous peers can choose arbitrary ui before FP is computed, which578

gives vi = sign(wk − ui). Now we are ready to show the computational surjectivity of this FP .579

Lemma 1 FP described in Figure 7 is a computationally surjective function.580

Proof: Fix an arbitrary point v = (v1, · · · , vd) ∈ V = {−1, 1}d. We can construct u ∈ U that FP

maps to v by first fixing some arbitrary wk = (w1, · · · , wd), and letting u = (u1, · · · , ud) such that

uj = wj − vj for each j ∈ [d].

Clearly the FP of RSA vi = sign(wk − ui) maps u to the arbitrary v. So FP is computationally581

surjective. □582

14

ui ← FC(data, st,w)

1. (k,xk
i)← st

2. Sample ξki from local data Di

3. xk+1
i = xk

i − ηk
(
∇F (xk

i , ξ
k
i) + λsign(xk

i −wk)
)

4. ui = xk
i

5. st← (k + 1,xk+1
i)

vi ← FP (ui)

1. Set vi = sign(wk − ui)

w ← FR({vi}i∈[n])

1. Set wk+1 = wk − ηk
(
∇f0(wk) + λ(

∑
i∈[n] vi)

)
Figure 7: P2P Learning with RSA. FR can be computed efficiently by performing only

∑
i∈[n] vi

on the committee side. The rest of the terms are public, so the remainder of the update can be
computed locally.

Details of the cryptographic protocol. Thus, following Figure 3, it is sufficient for peers to prove in583

zero knowledge that their updates are in the set V = {−1, 1}d. This can be accomplished efficiently584

by having each peer represent their update as d shares of binary values.585

The committee can verify that a shared x is binary-valued by constructing shares of x · (1− x) and586

revealing it to be zero. We implement this step efficiently by batching the binary-value DZK proofs587

together. That is, for every shared value xi, parties uniformly sample a random value ri, and locally588

construct shares of the sum
∑

ri · (xi · (1− xi)). The parties then reconstruct the sum – if it is 0,589

then each of the (xi · (1− xi)) components must have been 0 with all but negligible probability. For590

a more detailed treatment of this technique, see [9].591

During the computation of FR, the committee needs only to sum the shares and send out the592

reconstructed sum. The actual value of the summed updates in {−1, 1} is implicitly given by the sum593

of the binary values (if the sum of the binary values is x, simply take 2x−m). The updated global594

model parameters can then be obtained via local computation of Equation 2.595

Computational Surjectivity. In RSA, peer updates are the sign of the difference between each596

parameter of the local and global models (Figure 7). The FP of RSA gives V = {−1, 1}d, where d597

is the number of parameters in the model. In the single-server model of RSA [25] and in Figure 7,598

poisonous peers can choose arbitrary ui before FP is computed, which gives vi = sign(wk − ui).599

Now we are ready to show the computational surjectivity of this FP .600

Lemma 2 FP described in Figure 7 is a computationally surjective function.601

Proof: Fix an arbitrary point v = (v1, · · · , vd) ∈ V = {−1, 1}d. We can construct u ∈ U that FP

maps to v by first fixing some arbitrary wk = (w1, · · · , wd), and letting u = (u1, · · · , ud) such that

uj = wj − vj for each j ∈ [d].

Clearly the FP of RSA vi = sign(wk − ui) maps u to the arbitrary v. So FP is computationally602

surjective. □603

C.3.2 Malicious Secure P2P CC604

Overview of Single-Server Centered Clipping. Centered Clipping [22] is a recent robust aggrega-605

tion that ensures a high level robustness even when the noise distribution is not uni-modal (which is606

assumed in many prior works.) It also provides better robustness when corrupted updates at different607

rounds are correlated. Below we first discuss details of the algorithm and then how to express it in608

our framework.609

Centered Clipping (no momentum): Given the training iteration k, globally shared model610

parameters wk, local model parameters xk+1
i in client i, and a radius τ , CC using the ℓ2-norm611

15

computes an updated weight vector as follows:612

xk+1
i = (xk+1

i − wk)min

(
1,

τ

||xk+1
i − wk||2

)
(3)

wk+1 = wk +
1

n

n∑
i=1

xk+1
i (4)

In Equation (3), we clip the parameters for each client i, and then aggregate them in Equation (4).613

Centered Clipping with Momentum: In addition to the above, each non-Byzantine client i first614

computes a gradient update ∇F based on their mini-batch ξki and the current global weights wk.615

Then, using the momentum parameter β, each client computes a momentum vector as shown in616

Equation 5 (executed before Equation (3) and Equation (4)):617

xk+1
i = (1− β)∇F (wk, ξki) + βxk

i (5)

Lifting CC to the P2P setting. We bring CC into the P2P setting by placing the momentum618

computation inside FC , the clipping operation inside FP , and the aggregation of clipped updates in619

FR. The clipping operation is performed on individual client updates, and thus can be performed on620

the client side. Further, as in RSA we note that FR is a linear function, and thus can be computed621

efficiently using the homomorphic addition and scalar multiplication properties of Shamir secret622

sharing.623

Centered Clipping does not naturally give us a surjective FP . Of note, if a corrupted peer supplies624

a value of vi that is outside of the τ -ball surrounding w, the global update will be computed625

incorrectly and the model fidelity guarantees will be broken. To avoid this possibility, we make a626

slight modification to the CC algorithm. Namely, we clip local updates using the ℓ∞ norm rather than627

the ℓ2 norm. In other words, we clip the gradients to a τ -box rather than a τ -ball. The computation of628

the global update thus becomes629

wk+1 = wk +
1

m

m∑
i=1

min(τ,max(−τ, xi −wk)) (6)

This modification admits a computationally surjective FP with an efficient DZK proof that a client630

update is within the valid domain. In particular, we take V = [0, 2θ − 1]d. Then in FP we scale,631

round, and map clipped gradient updates to be within this domain. Here θ is a public constant large632

enough to limit discretization error of local updates during scaling – in the present study we set θ633

to 32 in order to align with 32-bit fixed-point numbers. Smaller values of θ will increase protocol634

efficiency, at the expense of higher discretization error during rounding and mapping in FP step 3.635

Computational surjectivity of this FP follows from a similar argument to Lemma 2.636

DZK Proof of Valid Update. We specify that local updates vi are submitted as vectors of the637

individual component bits of the processed gradient update. This means that each bit will be638

individually secret shared, which allows the committee to verify whether each one is binary-valued639

(using the same DZK technique described above for the RSA protocol). Since we scaled each update640

to fit within a 2θ-sized d-dimensional box, the d sets of θ binary values in the update trivially encode641

a point within the box. Thus, a proof that each component of the bitwise update is binary-valued642

equates to a proof that the update is in V .643

The global update is aggregated by summing the bits at each position of the client update vectors.644

The sums are reconstructed and sent directly to all clients. They implicitly encode the updated global645

parameters w′, which are recovered via client-side computation in order to keep the computation of646

FR light-weight. Details of our malicious-secure Centered Box Clipping protocol can be found in647

Figure 8.648

C.3.3 Malicious Secure P2P FLTrust649

Overview of Single-Server FLTrust. Single-server FLTrust (abbreviated FLT) [10] is a robust650

aggregation algorithm that bootstraps trust using a clean “root” dataset maintained by the server.651

16

ui ← FC(data, st,w)

1. (k,mk
i)← st

2. Parse w =
{
bwj
}
j∈[d·θ] into d sets of θ values each, corresponding to the d parameters

of the model. Index them as pih where i ∈ [θ] and h ∈ [d]. // Parse and index the bitwise
global update to align with parameters of the model

3. For h ∈ [d], sh ←
∑

i∈[θ] pih · 2i // intermediate value of global update reconstruction

4. wk
h ← wk−1

h − η(1
m · sh) for h ∈ [d]. Call w′ ←

{
wk

h

}
h∈[d]

// reconstruct global model
parameters

5. Sample ξki from local data Di

6. Compute ui = (1− βk)(∇F (w′, ξki)) + βkmk
i

7. st← (k + 1,ui)

vi ← FP (ui,w)

1. Compute v′′′
i ← min(τ,max(−τ,ui −w)) + τ

2. Compute v′′
i ←

(v′′
i −w)
τ · 2θ−1 // scale the clipped value and center it to the origin

3. Round and map entries of v′′
i to unsigned θ-bit integers values ∈ [0, 2θ − 1]. Call the

result v′
i.

4. Decompose v′
i into the component bits used to represent each value in the vector, indexed

as bij for j ∈ [d · θ]. Submit a vector of the individual bits as vi.

w ← FR({vi}i∈[n],w)

1. (k)← st

2. For j ∈ [d · θ], compute bwj ←
∑

i∈[m] bij . // sum each bit across client updates

3. w ←
{
bwj
}
j∈[d·θ]

4. st← (k + 1)

Figure 8: Centered Box Clipping. By clipping to a box and scaling that box to size 2θ, this
modification of Centered Clipping achieves computational surjectivity and an efficient proof to verify
that shared peer updates are inside V .

During each iteration, the server compares client gradients against the gradient computed from the652

root dataset. Specifically, the server computes a ‘trust score’ (TS) for each client gradient i ∈ [m],653

which it uses to compute a weighted sum of normalized gradients which makes up the final aggregate.654

The trust score and update aggregation are given by the following equations:655

TSi = ReLU

(
⟨gi, g0⟩
||gi||||g0||

)
(7)

g =
1∑m

j=1 TSi

m∑
i=1

TSi · ḡi (8)

w = w + α · g (9)

Where TSi is the trust score for client i, gi is the local gradient for client i, g0 is the gradient656

computed from the root dataset, and ḡi is the gradient of client i normalized to have the same length657

as g0. As a brief explanation of the framework, the trust score acts as a clipped version of the cosine658

similarity – the greater the angle between gi and g0, the smaller the scaling factor that weights ḡi in659

the weighted sum. The ReLU ensures that any gi with a negative cosine similarity is clipped to 0, and660

thus contributes no weight to the sum.661

Lifting FLT to the P2P setting. We begin by assuming that the root dataset D0 is publicly accessible,662

so that all clients may compute the root update g0 locally, in addition to their local update gi inside of663

FC . In FP we perform normalization and rotation to simplify the computation of Equations 7 and 8664

in FR (explained in more detail below). In FR, we securely compute the trust score of each client665

17

and the corresponding weighted sum of gradients. This weighted sum is submitted as the global666

update – computation of the updated model parameters is left to the clients as a post-processing step.667

The representation of vi is chosen to enable efficient computation of FR and of DZK proofs of668

update validity. In detail, we perform a rotation of gi and g0 such that g0 is aligned with the x-669

axis (and the angle between g0 and gi is preserved). We also normalize such that g0 and gi are670

unit-length. Further, when submitting client updates we use a representation that can only encode a671

non-negative x-coordinate (by decomposing each entry of ḡ′i into a sign and magnitude, and only672

accepting a magnitude – and not a sign bit – for the x-coordinate). This canonical representation673

simplifies computation of the trust score. In particular, since g0 and gi are normalized to unit vectors,674

computation of the cosine similarity ⟨gi,g0⟩
||gi||||g0|| simplifies to ⟨gi, g0⟩, and since g0 is aligned with the675

x-axis, this further simplifies to selecting the x-coordinate of gi. Further, we avoid taking the ReLU676

within FR by choosing a representation of vi that cannot represent a gi with negative x-coordinate,677

and specifying that any honest party whose local gradient has negative x-coordinate supplies an678

update that will have 0 weight during the computation of Equation 8 (we use the symbol ⊥ as a679

placeholder for such an update – in practice, this can be any arbitrary unit vector with 0 in the680

x-coordinate). Thus computation of the trust score during FR is simplified to taking the x-coordinate681

of ḡ′i.682

The chosen representation of vi constrains the image of FP to the set of unit vectors with non-683

negative x-coordinates. If we restrict the codomain of FP to this set, we achieve computational684

surjectivity. This follows from a simple argument:685

Proof: Fix an arbitrary point v in the set of unit vectors with non-negative x-coordinates. Fix an686

arbitrary g0. Let M be a rotation matrix that rotates g0 to the x-axis. Consider a client update u such687

that Mu is on the line extending from the origin to v. By definition, FP maps u to v. □688

Finally, we construct DZK proofs to verify that vi falls inside the set of unit vectors with non-negative689

x-coordinates.690

DZK Proof of Valid Update. As in RSA and CC, we perform a batch check that all submitted shares691

are binary-valued (see previous sections for details). We additionally perform a DZK proof that all692

updates are unit length, by constructing shares of ⟨ḡ′i, ḡ′i⟩ −C and revealing them to be 0, where C is693

a constant which encodes the square of a θ-bit fixed point number with unit magnitude. We batch694

check these proofs by obtaining shared random field elements ri and constructing shares of the sum695 ∑
ri · (⟨ḡ′i, ḡ′i⟩ −C), and finally revealing them to be 0 (i.e. using the same technique as described in696

the binary-value batch check for RSA). We also perform a DZK proof to ensure that the sign bits are697

in {−1, 1} by computing shares of (b− 1)(b+ 1) and revealing them to be 0 – this check is batched698

in the same way as the previous checks.699

C.4 Experimental Design700

While lifting robust aggregation algorithms to the malicious-secure P2P Learning security model,701

we make small changes to the algorithms to tailor them for efficiency in the setting. Thus, in order702

to evaluate P2P Learning, we design experiments to test (1) the effectiveness (in terms of accuracy703

and robustness) of these tailored algorithms, as well as (2) the efficiency of their implementation as704

cryptographic protocols. These goals are performed using distinct code bases: we used PyTorch to705

benchmark accuracy and robustness, and we used the NTL package [33] in C++ to implement the706

local computation for the aggregation steps of our malicious-secure framework.707

C.4.1 Accuracy and Robustness Experiments708

To benchmark the robustness of the different aggregation protocols evaluated in the paper, we ran709

experiments under each to train a central model in a collaborative machine learning setting with a710

cohort size of 50 participants and varying numbers of malicious workers (0, 10, 23). 4 attacks, namely711

bit flip (bf) [37], label flip (lf) [4], inner product manipulation (ipm) [38], and "a little is enough"712

(alie) [1], were evaluated. In all cases, we computed the testing accuracy as a function of the number713

of rounds of training.714

MNIST (Digits) and EMNIST (Letters) datasets were used as the datasets with the data being evenly715

divided among the peers. The model architecture from [23] (with 1.2M parameters) was used for716

18

Inputs / Public Constants:
• Assume all client states S contain a public root dataset D0 (in addition to their private dataset Di)

ui ← FC(data, st,w)

1. g0 ← ModelUpdate(w, D0) // compute update from root dataset, save in client state
2. gi ← ModelUpdate(w, Di) // compute local update from client dataset
3. ui ← gi

vi ← FP (ui,w)

1. ḡ0 ← g0
∥g0∥ // normalize to unit length

2. ḡi ← ui

∥ui∥ // normalize to unit length
3. M ← rotation matrix aligning ḡ0 with the x-axis.
4. ḡ0 ←Mḡ0
5. ḡi ←Mḡi // rotate client update by the same angle
6. Represent ḡi and ḡ0 as θ-bit fixed-point numbers with a designated sign bit, call this

representation ḡ′i and ḡ′0.
7. If the x-coordinate of ḡ′i is negative, submit ⊥ as vi.
8. Otherwise, submit a vector of the individual bits of ḡ′i as vi. Each coordinate should

be submitted as a sign bit and a binary-encoded magnitude, except for the x-coordinate
which should only have a magnitude since it is non-negative.

w ← FR({vi}i∈[n],w)

1. Parse vi appropriately as ḡ′i
2. TSi ← magnitude of x-coordinate of ḡ′i // since g0 is aligned with x-axis
3. Submit ḡ ←

∑
i∈[n] ḡ

′
i · TSi as global update. Denormalization, rotation, and computa-

tion of global model parameters via w ← w + α · g is performed as post-processing on
the client side.

Figure 9: FLTrust.

MNIST and this architecture was modified to have 26 neurons in the last layer for EMNIST. During717

training, each client uses a local mini-batch of size 32 at each round and a learning-rate of 0.01.718

The training experiments were repeated over two random seeds. The PyTorch [29] framework was719

used for all experiments.720

C.4.2 Computational Efficiency Experiments721

To benchmark the efficiency of our framework, we wrote code to perform all local computation722

steps necessary to run the aggregation step for a single committee member (FR) of malicious-723

secure P2P RSA, CC, and FLT. We used an m5.metal instance on Amazon EC2 to obtain the724

benchmarks reported in Figure 5. Each benchmark reports the mean runtime of 3 trials – trials were725

run concurrently in separate threads.726

C.5 Communication Cost727

In Table 2 we calculate the communication cost of our framework for CC and RSA and compare it to728

the cost of the standard Secure Aggregation protocol. For a fair comparison between the methods, we729

do not include messages related to clients sending public keys to the server or the server broadcasting730

the keys to all the clients.731

19

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

attack = None attack = sf attack = lf attack = ipm

f = 0

attack = alie

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

f = 10

104 106

Runtime (s)
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

104 106

Runtime (s)
104 106

Runtime (s)
104 106

Runtime (s)
104 106

Runtime (s)

f = 23
agg
RSA
CC
FLT

Figure 10: Byzantine Robustness of Doubly Robust Protocols for iid EMNIST. We compare RSA
and CC after their instantiations in our framework. A cohort size of 50 peers is used. f is the number
of malicious workers. We run each algorithm until its completion.

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

attack = None

Runtime (s)

attack = sf

Runtime (s)

attack = lf

Runtime (s)

attack = ipm

Runtime (s)

f = 0

attack = alie

Runtime (s)0

20

40

60

80

100

f = 10

104 106

Runtime (s)
0

20

40

60

80

100

104 106

Runtime (s)
104 106

Runtime (s)
104 106

Runtime (s)
104 106

Runtime (s)

f = 23

agg
RSA
CC
FLT

Figure 11: Byzantine Robustness of Doubly Robust Protocols for iid MNIST. We compare RSA
and CC after their instantiations in our framework. A cohort size of 50 peers is used. f is the number
of malicious workers. We run each algorithm until its completion.

20

0 500 1000
Round

0
20
40
60
80

100

Ac
cu

ra
cy

 (%
)

attack = None

0 500 1000
Round

attack = sf

0 500 1000
Round

attack = lf

0 500 1000
Round

attack = ipm

0 500 1000
Round

f = 10

attack = alie

p_norm
2
inf

Figure 12: ℓ2 vs ℓ∞ norm for CC for iid EMNIST.

Table 2: Comparison of Communication Cost between Aggregation Protocols. We present the
communication cost (in GB) of exchanging updates for a model of size 106 parameters (as this is a
minimal practical scenario as indicated in [3]). SecAgg denotes the Secure Aggregation, while DR
P2P is our Doubly Robust Peer-to-Peer protocol. (∗the reported communication cost is per server or
an aggregation committee member).

METHOD
COST PER CLIENT SERVER(S)∗ ALL PEERS

SECAGG V1 SHS[8] 26 2638 52772
DR-P2P+RSA 3 286 13454
DR-P2P+CC 90 9164 430531

21

	Introduction
	Related Work
	Threat Model
	Doubly Robust Framework
	Framework Design
	Computational Surjectivity

	Lifting Robust-Aggregation Algorithms to a Malicious-Security Model
	Instantiating RSA in Malicious-Secure Framework
	Instantiating CC in Malicious-Secure Framework
	Instantiating FLTrust in Malicious-Secure Framework

	Verifying Empirical Efficacy and Efficiency
	Security Does not Impact Robustness
	Scaling of Computational Efficiency
	End-to-end Protocol Evaluation in Presence of Attacks

	Conclusions
	Broader Impacts
	Limitations
	Additional Information
	Committee Size
	Security Proof
	Instantiating Our Malicious Framework
	Malicious-Secure P2P RSA.
	Malicious Secure P2P CC
	Malicious Secure P2P FLTrust

	Experimental Design
	Accuracy and Robustness Experiments
	Computational Efficiency Experiments

	Communication Cost

