
6 Supplementary Material607

6.1 Experimental Details608

Table 2: Model configurations of the large and small models for each evaluation task. For comparison,
the number of layers, hidden dimension, FFN dimension, and the number of decoder parameters
(without embeddings) for each model are provided.

Task Model # Layers dim FFN dim # Params

Machine mT5-large [75] 24 1024 2816 409M
Translation mT5-small [75] 8 512 1024 25M

Summarization T5-large [44] 24 1024 4096 402M
T5-small [44] 6 512 2048 25M

6.1.1 Training Details609

For machine translation, we use IWSLT 2017 German-English [3] and WMT 2014 German-610

English [1] as target benchmarks, and mT5 [75] as a target model. We use the 8-layer mT5-small611

and the 24-layer mT5-large as the small and large models. For summarization, we use XSUM [40]612

and CNN/DailyMail [20] as target benchmarks, and T5 [44] as a target model. We use T5-small613

and T5-large with 6 and 24 layers, respectively, for the small and large models. Table 2 summarizes614

the size and configuration of each model. All the models are fine-tuned from the pre-trained check-615

points of the HuggingFace library [70] for 500k steps using a batch size of 16. We use Adafactor616

optimizer [50] with constant learning rate of {0.5, 1, 2, 5}e−4 for the small models and {0.5, 1}e−4617

for the large models. We refer to the normally fine-tuned models on the validation datasets as the618

baseline small and large models.619

When training aligned small models via the prediction alignment method described in Section 3.5.1,620

we first generate calibration datasets using the input sequences from the training datasets of each621

benchmark. We then use the fully trained large model to generate output sequences through greedy622

sampling with a beam size of 1. To ensure a fair comparison, we fine-tune pre-trained small models623

(rather than the baseline small models that are already fine-tuned on the training datasets) on the624

calibration datasets using the same training recipes and the number of training steps as described625

above. This decision is based on our observation that fine-tuning a baseline model using the calibration626

dataset tends to improve generation quality, likely due to the increased number of training examples627

and data augmentation effects, which makes it difficult to make a fair comparison between unaligned628

BiLD and aligned BiLD. However, in practice, one can obtain aligned models by applying the629

prediction alignment method directly to the fine-tuned baseline small models to achieve the best630

performance.631

6.1.2 Evaluation Details632

All inference evaluations including latency measurement are conducted on a single NVIDIA T4 GPU633

of a GCP n1-standard-4 instance with 4 vCPUs and 15GB memory. For inference, we use batch634

size 1, which is a common use case for online serving [48]. For the distance metric d in Equation 3635

for the rollback policy, we use the cross-entropy loss between the small model’s hard label and the636

large model’s soft label. This measures the (negative log) likelihood of obtaining the small model’s637

prediction from the large model’s output. For BiLD inference, we sweep over different fallback638

and rollback thresholds to explore different trade-offs between generation quality and latency. For639

the machine translation tasks, we use fallback thresholds in [0.5, 0.9] and rollback thresholds in [1,640

10]. For the summarization tasks, fallback thresholds in [0.2, 0.6] and rollback thresholds in [2, 6].641

We keep the maximum generation length of the small model to 10 to avoid high rollback costs. In642

Appendix 6.3.3, we provide a detailed analysis of how varying the fallback and rollback thresholds643

impacts the trade-offs between generation quality and latency in the BiLD framework.644
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Figure 7: The trade-off curves between inference latency and BLEU score for BiLD and CALM in
the early exiting setting for (Left) IWSLT 2017 De-En and (Right) WMT 2014 De-En. The × marks
indicate the vanilla inference latency and BLEU score of the mT5-small models. The horizontal lines
indicate the vanilla inference score and 1 point degradation from it. BiLD outperforms CALM across
all speedup regimes by up to 2 ∼ 2.5 points better BLEU score, demonstrating the effectiveness of
our approach for the early exiting strategy.

6.2 Details of Early Exiting Strategy in the BiLD Framework645

6.2.1 Training and Evaluation Details646

BiLD. We use the mT5-small model as the large model and the first (out of 8) layer as the small647

model, and evaluate it on two machine translation benchmarks: IWSLT 2017 De-En and WMT 2014648

De-En. To ensure consistency between the prediction made after the first layer and the one made649

after the last layer, we fine-tune the pre-trained mT5 model using the average loss of the first and650

the final layers, similar to [10, 48]. That is, L = 1
2 (L1 + L−1) where L1 and L−1 are the negative651

log-likelihood loss after the first layer and the final layer. The prediction head is shared for these two652

layers. We fine the pre-trained mT5-small model on each benchmark for 500k steps using a batch size653

of 16. Similar to the main experiments, we use Adafactor optimizer [50] with constant learning rate654

of {0.5, 1, 2, 5}e−4. For evaluation, we use fallback thresholds in [0.2, 0.8] and rollback thresholds655

in [0.5, 1.5].656

CALM. To reproduce CALM [48] in our experimental setup, we have fine-tuned the pre-trained657

mT5-small model on IWSLT 2017 De-En and WMT 2014 De-En datasets. We employ the averaged658

loss across all layers, i.e., L =
∑L

i=1 wiLi, where wi = i/
∑L

j=1 j, which was introduced in the659

paper to ensure the layer consistency. We use Adafactor optimizer [50] with constant learning rate660

of {0.5, 1, 2, 5}e−4 for 500k training steps. To make a fair comparison, we match the BLEU661

score of the fine-tuned model to that of BiLD’s models Among the two training-free confidence662

measures introduced in the CALM paper, softmax-based and hidden-state saturation-based measures,663

we have chosen to use the latter approach as an early exiting criterion. That said, if the cosine664

similarity between the current layer’s hidden states and the previous layer’s hidden states exceeds a665

certain threshold, we perform early exiting. We have found that the softmax-based alternative is not666

applicable in our evaluation scenario due to the large output vocabulary (more than 200k for mT5,667

which is ∼ 10× larger than T5), which significantly increases latency overhead. As described in668

the paper, when early exiting happens, the hidden states of the exited layer are propagated down to669

the remaining layers to compute the key and value caches. To achieve different trade-offs between670

latency and generation quality, we sweep over λ in [0.7, 0.98] and t in {0, 1, 2, 4, 8} in the decaying671

threshold function.672

6.2.2 Performance Comparison between BiLD and CALM673

Figure 7 illustrates the BLEU score and latency curves of BiLD compared to CALM in the early674

exiting setting. In both tasks, our method achieves significantly better BLEU scores with the same675

latency speedup, yielding up to around 2 point better BLEU score in the ∼ 1.5× speedup regime.676

This can be attributed to two factors. First, in BiLD, even if an early exited prediction (i.e., prediction677

made by the smaller model) is incorrect, it can be corrected and replaced using the rollback policy.678

Therefore, an error in the early exited layer is propagated less drastically to the future prediction.679
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Figure 8: FLOPs, MOPs (memory operations), arithmetic intensity, and latency speedup comparison
of vanilla inference and BiLD. BiLD approach results in a remarkable reduction in MOPs due to the
improved token-level parallelism, resulting in significantly higher arithmetic intensity.

Second, the key and value caches for skipped layers are filled with actual values instead of being680

computed from the exiting layer’s hidden states. This also leads to reduced error propagation and681

improved decoding stability.682

6.3 Additional Analysis683

6.3.1 Model Analysis of BiLD: FLOPs, MOPs, and Arithmetic Intensity684

Figure 8 compares average FLOPs, MOPs (memory operations), arithmetic intensity, and the latency685

speedup of the vanilla inference and BiLD on the CNN/DailyMail benchmarks. For BiLD, we use686

the model with roughly the same ROUGE-L score as the vanilla inference, and all the numbers687

are normalized by the numbers of the vanilla inference. The figure illustrates that BiLD exhibits688

slightly higher FLOPs compared to the vanilla inference. This is due to the fact that the autoregressive689

and non-autoregressive executions have the same amount of FLOPs, and BiLD involves additional690

overhead of running the small model alongside. However, in the case of MOPs, BiLD demonstrates a691

significant ∼5× reduction of memory operations. This can be attributed to the capability of BiLD692

to process multiple tokens with a single weight load, thereby enhancing token-level parallelism693

and maximizing data reuse. In contrast, this is not the case in the vanilla inference where a single694

weight load can only process a single token. Consequently, BiLD achieves a significantly higher695

arithmetic intensity, which is approximately 5 times larger than the vanilla inference. Arithmetic696

intensity [69] measures the number of arithmetic operations that can be performed per memory697

operation. Given that memory operations can contribute more to the overall inference latency than698

arithmetic operations in many Transformer decoding scenarios [30], decreasing memory operations699

and increasing arithmetic intensity can effectively alleviate the inference bottleneck. This leads to an700

overall latency speedup of 1.85× on actual hardware.701

6.3.2 Examples of Generated Sequences702

Figure 9 provides examples of text sequences generated by BiLD on the validation set of IWSLT703

2017 De-En, along with the ground truths (i.e., labels) and outputs of the pure large and small704

baseline models. The tokens generated from the large model of BiLD are highlighted in green, while705

all the other tokens are generated by the small model. The results illustrate that the small model706

often produces low-quality texts, by predicting inaccurate tokens which can alter the meaning of707

the entire sentence. To contrast, it is observed from the examples that BiLD is able to improve the708

text generation quality by letting the large model interrupt when the small model generates incorrect709

tokens. Particularly, in the examples provided, BiLD tends to be as strong as the large model at710

predicting terminologies. Overall, the large model’s engagement in BiLD decoding not only improves711

the prediction accuracy but also prevents incorrect predictions from impacting the future ones.712
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Ground Truth And Siftables are an example of a new ecosystem of tools for manipulating digital information.

Large And the Siftables are an example of a new generation of manipulation tools for digital data.

Small And the if you look at the ifleses are an example of a new generation of technologies for manipulation of digital data.

BiLD (ours) And the Siftables are an example of a new generation of manipulation of digital data.

Ground Truth Which is great, because the Romans did not actually think that a genius was a particularly clever individual.

Large That's great. The Romans didn't really think that a genius was a particularly smart individual.

Small That's great. The tube didn't really think that a genius was a particularly lonely individual.

BiLD (ours) That's great. The Romans didn't really think that a genius was a particularly smart individual.

Ground Truth The viral particles then were released from the cells and came back and killed the E. coli.

Large The viral particles then were released by the cells and came back and killed E. coli.

Small The viral particles were then released by the cells and came back and killed E. Coke.

BiLD (ours) The viral particles then were released by the cells and came back and killed E. coli.

Figure 9: Example text sequences that BiLD generates with the validation set of IWSLT 2017 De-En,
compared to the ground truths and the outputs of the large and small baselines. For BiLD, tokens
generated by the large model are highlighted in red, while all the other tokens are generated by the
small model. This illustrates that with a small engagement of the large model, BiLD can correct not
only inaccurate vocabulary but also wrong semantics of the text that the small model would have
otherwise generated.
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Figure 10: The trade-off between latency and generation quality (ROUGE-L) for the aligned BiLD
model on two summarization tasks: (Left) XSUM and (Right) CNN/DailyMail. Each curve represents
a different rollback threshold, with smaller thresholds indicating more rollbacks. The trade-off can
be further obtained within each curve with different fallback thresholds, where larger scatter sizes
indicate larger fallback thresholds. A larger fallback threshold implies more fallbacks.

6.3.3 Impact of Fallback and Rollback on Performance713

We have explored how the BiLD framework can achieve different trade-offs between latency and714

generation quality by adjusting fallback and rollback thresholds. In this section, we present a detailed715

analysis of how these thresholds affect the performance using the aligned BiLD model on two716

different summarization tasks, XSUM and CNN/DailyMail, as illustrated in Figure 10. Different717

curves in the plot represent different rollback thresholds, and each scatter point within the curve718

represents different fallback thresholds. Note that a small rollback threshold implies more rollback,719

while a larger fallback threshold implies more fallback.720

We observe a general trend where smaller rollback thresholds (i.e., more rollbacks) result in better721

generation quality but longer latency. This trend is expected because, with more rollback, we preempt722

more small model’s predictions that can be potentially inaccurate by sacrificing the latency. Similarly,723

there is also a general trend that smaller fallback thresholds (i.e., fewer fallbacks) result in faster724

latency but a worse generation quality. However, we observed that lowering the fallback rates beyond725

a certain point can actually hurt both the latency and generation quality. This is because inaccurate726

predictions that the small model should have fallen back are later rolled back, incurring an extra727

‘flush’ cost for the tokens that follow.728
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