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Appendix A Proof of the Optimization problem1

According to the problem formulation, we give a definition of the “surrogate” cost, which aligns with2

what is employed in MACPO [1]:3

Definition. Let π be a joint policy, and π̄i be some other policy of agent i.Then for any of its costs of4

index j ∈ 1, · · · ,mi, we define5

Li
j,π(π̄

i) = Es∼ρπ,ai∼π̄i [Ai
j,π(s, a

i)].

In this way, consider π and π̄ be joint policies, i ∈ N be an agent and j ∈ 1, · · · ,mi be an index of6

one of its costs. From the proof of Theorem 1 in TRPO [2], (in particular, equations (41) ∼ (45)),7

applying it to joint policies π and π̄, we can conclude that8

J i
j(π̄) ≤ J i

j(π) + Es∼ρπ,a∼π̄[A
i
j,π(s, a

i)] +
4α2γmaxs,ai |Ai

j.π(s, a
i)|

(1− γ)2
, (1)

where α = Dmax
TV (π, π̄) = maxsDTV (π(·|s), π̄(·|s)). According to the definition of total variance9

divergence, defined by DTV (p||q) = 1
2

∑
i |pi − qi|, we can know that DTV (p||q) = DTV (q||p).10

Using Pinsker’s inequality DTV (p||q)2 ≤ DKL(p||q)
2 [3], we can change the order of policy in the11

divergence computation and obtain:12

J i
j(π̄) ≤ J i

j(π) + Es∼ρπ,a∼π̄[A
i
j,π(s, a

i)] +
2γmaxs,ai |Ai

j.π(s, a
i)|

(1− γ)2
Dmax

KL (π̄,π). (2)

It’s to be noted that Es∼ρπ,a∼π̄[A
i
j,π(s, a

i)] = Es∼ρπ,ai∼π̄i [Ai
j,π(s, a

i)] as the actions of13

other agents than i do not change the value of the variable inside of the expectation. Fur-14

thermore, Dmax
KL (π̄,π) = maxsDKL(π̄(·|s),π(·|s)) = maxs(

∑n
l=1 DKL(π̄

l(·|s), πl(·|s))) ≤15 ∑n
l=1 maxsDKL(π̄

l(·|s), πl(·|s))) =
∑n

l=1 D
max
KL (π̄l, πl). Setting νij =

2γmaxs,ai |Ai
j.π(s,ai)|

(1−γ)2 , we16

can finally obtain:17

J i
j(π̄) ≤ J i

j(π) + Li
j,π(π̄

i) + νij

n∑
l=1

Dmax
KL (π̄l, πl) (3)

The aforementioned equation is similar to Lemma 2 in MACPO, with the only distinction being the18

order of policies in the Kullback-Leibler (KL) divergence term. However, this variation does not19

impact the subsequent derivations. To this end, we can establish the ultimate optimization problem20

presented in our work as follows:21

maximize
π
ih
θ

E
s∼ρπθk

,ai1:h−1∼π
i1:h−1
θk+1

,aih∼πih
[Aih

πθk
(s, ai1:h−1 , aih)] (4)

22

s.t.J ih
j (πθk) + Es∼ρπθk

,aih∼πih [A
ih
j,πθk

(s, aih)] ≤ cihj ,∀j ∈ 1, · · · ,mih (5)
23

D̄KL(π
ih
θ , πih

θk
) ≤ δ. (6)

where D̄KL(π
ih
θ , πih

θk
) ≜ Es∼ρπθk

[DKL(π
ih
θk
(·|s), πih

θ (·|s))].24
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Appendix B Proof of Theorem 125

We first demonstrate the optimization problem to be solved when finding optimization problem within26

nonparameterized policy space:27

maximize
πih

E
s∼ρπθk

,ai1:h−1∼π
i1:h−1
θk+1

,aih∼πih
[Aih

πθk
(s, ai1:h−1 , aih)] (7)

28

s.t.J ih
j (πθk) + Es∼ρπθk

,aih∼πih [A
ih
j,πθk

(s, aih)] ≤ cihj ,∀j ∈ 1, · · · ,mih (8)
29

D̄KL(π
ih , πih

θk
) ≤ δ (9)

Proof. We initiate our analysis by demonstrating the convexity of Problem (7-9) is convex w.r.t.30

πih . Because πθk and θ
i1:h−1

k+1 is given, it can be noted that the objective function is linear w.r.t. πih .31

Since J ih
j (πθk) remains constant w.r.t. πih , constraint 8 is also linear. Concerning constraint 9, it32

can be rewritten as
∑

s ρπθk
(s)DKL(π

ih , πih
θk
)[s] ≤ δ. Notably, KL divergence is convex w.r.t. its33

first argument, hence constraint 9 can be represented as a linear combination of convex functions,34

confirming its convexity as well. As πih
θk

fulfills constraint 8 and serves as an interior point within the35

set defined by constraint 9, therefore Slater’s constraint qualification holds and strong duality holds.36

Based on above discussion, we can solve for the optimal value for the problem (7 - 9) p∗ by solving37

the corresponding dual problem. We define bihj = cihj − J ih
j (πθk), then38

L(π, λj , νj) = λjδ + νjb
ih
j + Es∼ρπθk

[E
ai1:h−1∼π

i1:h−1
θk+1

,aih∼πih
[Aih

πθk
(s, ai1:h−1 , aih)]

− νjEaih∼πih [A
ih
j,πθk

(s, aih)]− λjDKL(π
ih ||πih

θk
)]

(10)

Therefore,39

p∗ = max
πih

∈Π
min

λj ,νj≥0
L(π, λj , νj) = min

λj ,νj≥0
max
πih

∈Π
L(π, λj , νj) (11)

where we invoked strong duality in the second equality. According to the theory of convex optimiza-40

tion [4], if πih∗, λ∗
j , ν

∗
j are optimal for 11, πih∗ is also optimal for Problem 7-9.41

Consider the inner maximization problem in 11, we can decompose this problem into separate42

problems, one for each s.43

maximize
πih

Eaih∼πih [Eai1:h−1∼π
i1:h−1
θk+1

[Aih
πθk

(s, ai1:h−1 , aih)]− νjA
ih
j,πθk

(s, aih)

− λj(logπ
ih(a|s)− logπih

θk
(a|s))],

∑
πih(a|s) = 1

(12)

As E
ai1:h−1∼π

i1:h−1
θk+1

[Aih
πθk

(s, ai1:h−1 , aih)] is irrelevant to πih , we rename this term as ηihπθk
(s, aih)44

for simplicity. This is clearly a convex optimization problem which can be solved using a simple45

Lagrangian argument. We can then get46

G(πih) =
∑
a

πih(a|s)[ηihπθk
(s, aih)− νjA

ih
j,πθk

(s, aih)− λj(logπ
ih(a|s)− logπih

θk
(a|s)) + ζ]− ζ

(13)
where ζ is the Lagrange multiplier associated with the constraint

∑
πih(a|s) = 1. Differentiating47

G(π) w.r.t for some a:48

∂G

∂πih(a|s)
= ηihπθk

(s, aih)− νjA
ih
j,πθk

(s, aih)− λj(logπ
ih(a|s)− logπih

θk
(a|s)) + ζ (14)

Set 14 to 0 and similar to FOCOPS, we can know49

πih∗(a|s) =
πih
θk
(a|s)

Zλj ,νj
(s)

exp{ 1
λj

(ηπθk
(s, aih)− νjA

ih
j,πθk

(s, aih))} (15)
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where Zλj ,νj (s) is the partition function that ensures πih∗ to be a probability function, i.e.,50 ∑
a π

ih∗(a|s) = 1. Putting this π∗ back into equation 11, we can get51

p∗ = min
λj ,νj≥0

λjδ + νjb
ih
j + Es∼ρπθk

,aih∼πih∗ [ηihπθk
(s, aih)− νjA

ih
j,πθk

(s, aih)− λj(logπ
ih∗(a|s)− logπih

θk
(a|s))]

= min
λj ,νj≥0

λjδ + νjb
ih
j + Es∼ρπθk

,aih∼πih∗ [ηihπθk
(s, aih)− νjA

ih
j,πθk

(s, aih)− λj(logπ
ih
θk
(a|s)− logZλj ,νj

+
1

λj
(ηπθk

(s, aih)− νjA
ih
j,πθk

(s, aih))− logπih
θk
(a|s))]

= min
λj ,νj≥0

λjδ + νjb
ih
j + λjEs∼ρπθk

,aih∼πih∗ [logZλj ,νj
(s)]

52

53

What’s more, we give a simple description to show that for feasible policy πθk , the optimal policy54

update πih∗ has an upper bound for worst-case guarantee for cost constraint satisfaction. For55

agent ih, according to Equation 3, after getting the optimal joint update policy for all agents,56

J i
j(π

∗) ≤ J i
j(πθk) + Li

j,πθk
(πih∗) + νihj

∑n
l=1 D

max
KL (πl∗, πl

θk
) can be obtained. According to57

the definition of Li
j,π(π̄

i) and the constraint 5 in the optimization problem, we can know that58

J i
j(πθk) + Li

j,πθk
(πih∗) ≤ cihj , thus leading to J i

j(π
∗) ≤ cihj + νihj

∑n
l=1 D

max
KL (πl∗, πl

θk
). In59

addition, we can know that the kl divergence between update policy and πθk for each agent l has an60

upper bound, which we call δl. To this end, we achieve J i
j(π

∗) ≤ cihj +
2γmaxs,ai |Ai

j.π(s,ai)|
(1−γ)2

∑n
l=1 δ

l61

, which is the upper bound for worst-case guarantee for cost constraint satisfaction. According to the62

result, we can know that with more agents, the upper bound for worst-case guarantee is higher, which63

means that optimization for more agents is more challenging, consistent with our intuition.64

Appendix C Proof of Corollary 165

Corollary 1. The gradient of L(θ) takes the form66

∇θL(θ) = Es∼ρπθk
[∇θDKL(π

ih
θ ||π

ih∗)[s]] (16)

where67

∇θDKL(π
ih
θ ||π

ih∗)[s] = ∇θDKL(π
ih
θ ||π

ih
θk
)− 1

λj
E

a∼π
ih
θk

[
∇θπ

ih
θ (a|s)

πih
θk
(a|s)

(ηπθk
(s, aih)−νjAih

j,πθk
(s, aih))]

(17)
Proof. Using the definition of KL divergence, we note that68

DKL(π
ih
θ ||π

ih∗) = −
∑
a

πih
θ (a|s)logπih∗(a|s)+

∑
a

πih
θ (a|s)logπih

θ (a|s) = H(πih
θ , πih∗)[s]−H(πih

θ )[s]

(18)
where H(πih

θ )[s] is the entropy and H(πih
θ , πih∗)[s] is the cross-entropy. We expand the cross-entropy69

term which gives us:70

H(πih
θ , πih∗)[s] = −

∑
a

πih
θ (a|s)logπih∗(a|s)

= −
∑
a

πih
θ (a|s) ∗ log(

πih
θk
(a|s)

Zλj ,νj

exp{ 1
λj

(ηπθk
(s, aih)− νjA

ih
j,πθk

(s, aih))})

= −
∑
a

πih
θ (a|s) ∗ logπih

θk
(a|s) + logZλj ,νj

(s)− 1

λj

∑
a

πih
θ (a|s) ∗ (ηπθk

(s, aih)− νjA
ih
j,πθk

(s, aih))

3



Then put this term back into Equation18:71

DKL(π
ih
θ ||π

ih∗)[s] = −
∑
a

πih
θ (a|s) ∗ logπih

θk
(a|s) +

∑
a

πih
θ (a|s)logπih

θ (a|s) + logZλj ,νj (s)

− 1

λj

∑
a

πih
θ (a|s) ∗ (ηπθk

(s, aih)− νjA
ih
j,πθk

(s, aih))

= DKL(π
ih
θ ||π

ih
θk
) + logZλj ,νj (s)−

1

λj
E

a∼π
ih
θk

[
πih
θ (a|s)

πih
θk
(a|s)

(ηπθk
(s, aih)− νjA

ih
j,πθk

(s, aih))]

In this way, take the gradient on both sides and we can get:72

∇θDKL(π
ih
θ ||π

ih∗)[s] = ∇θDKL(π
ih
θ ||π

ih
θk
)− 1

λj
E

a∼π
ih
θk

[
∇θπ

ih
θ (a|s)

πih
θk
(a|s)

(ηπθk
(s, aih)−νjAih

j,πθk
(s, aih))]

(19)
73

74

Appendix D Proof of Corollary 275

Corollary 2. The derivative of L(πih∗, λj , νj) w.r.t νj is76

∂L(πih∗, λj , νj)

∂νj
= bihj − Es∼ρπθk

,aih∼πih∗(a|s)[A
ih
j,πθk

(s, aih)] (20)

Proof. From the definition of L(πih∗, λj , νj) and above discussion, we can know that77

L(πih∗, λj , νj) = min
λj ,νj≥0

λjδ + νjb
ih
j + λjEs∼ρπθk

,aih∼πih∗ [logZλj ,νj (s)] (21)

The first two terms is an affine function for νj we focus on the expectation in the last term.78

∂πih∗(a|s)
∂νj

=
πih
θk
(a|s)

Z2
λj ,νj

(s)
[Zλj ,νj (s) ∗

∂exp( 1
λj
(ηπθk

(s, aih)− νjA
ih
j,πθk

(s, aih)))

∂νj

− exp(
1

λj
(ηπθk

(s, aih)− νjA
ih
j,πθk

(s, aih))) ∗
∂Zλj ,νj (s)

∂νj
]

For simplicity, we record exp( 1
λj
(ηπθk

(s, aih) − νjA
ih
j,πθk

(s, aih))) as e(x), so πih∗(a|s) =79

π
ih
θk

(a|s)
Zλj,νj

(s) ∗ e(x). In this way,80

∂πih∗(a|s)
∂νj

=
πih
θk
(a|s)

Z2
λj ,νj

(s)
[−

Aih
j,πθk

(s, aih)

λj
Zλj ,νj (s)e(x)− e(x)

∂Zλj ,νj
(s)

∂νj
]

= −
Aih

j,πθk
(s, aih)

λj
πih∗(a|s)− πih∗(a|s)

∂logZλj ,νj
(s)

∂νj

(22)

Therefore, the derivative of the expectation in the last term of L(πih∗, λj , νj) can be written as:81

∂

∂νj
Es∼ρπθk

,aih∼πih∗ [logZλj ,νj (s)] = E
s∼ρπθk

,aih∼π
ih
θk

[
∂

∂νj
(
πih∗(a|s)

πih
θk
(a|s)

logZλj ,νj (s))]

= E
s∼ρπθk

,aih∼π
ih
θk

[
1

πih
θk
(a|s)

(
∂πih∗(a|s)

∂νj
logZλj ,νj

(s) + πih∗(a|s)
∂logZλj ,νj (s)

∂νj
)]

= E
s∼ρπθk

,aih∼π
ih
θk

[
πih∗(a|s)
πih
θk
(a|s)

(−
Aih

j,πθk
(s, aih)

λj
logZλj ,νj

(s)−
∂logZλj ,νj (s)

∂νj
logZλj ,νj

(s)) +
∂logZλj ,νj (s)

∂νj
)]

= Es∼ρπθk
,aih∼πih∗(a|s)[−

Aih
j,πθk

(s, aih)

λj
logZλj ,νj

(s)−
∂logZλj ,νj

(s)

∂νj
logZλj ,νj

(s)) +
∂logZλj ,νj

(s)

∂νj
]

4



In addition, according to the definition of Zλj ,νj , we can get:82

∂Zλj ,νj(s)

∂νj
=

∂

∂νj
(
∑
a

πih
θk
(a|s)exp{ 1

λj
(ηπθk

(s, aih)− νjA
ih
j,πθk

(s, aih))}

= −
∑
a

πih
θk
(a|s)

Aih
j,πθk

(s, aih))

λj
e(x) = −

∑
a

Aih
j,πθk

(s, aih))

λj

πih
θk
(a|s)

Zλj ,νj (s)
e(x)Zλj ,νj

(s)

= −
∑
a

Aih
j,πθk

(s, aih))

λj
πih∗(a|s)Zλj ,νj

(s)

= −
Zλj ,νj (s)

λj
Eaih∼πih∗ [Aih

j,πθk
(s, aih))]

What’s more,83

∂logZλj ,νj
(s)

∂νj
=

∂Zλj ,νj
(s)

∂νj

1

Zλj ,νj
(s)

= − 1

λj
Eaih∼πih∗ [Aih

j,πθk
(s, aih))] (23)

Putting this result to above equation, we can get84

∂

∂νj
Es∼ρπθk

,aih∼πih∗ [logZλj ,νj
(s)]

= Es∼ρπθk
,aih∼πih∗(a|s)[−

Aih
j,πθk

(s, aih)

λj
logZλj ,νj

(s) +
Aih

j,πθk
(s, aih)

λj
logZλj ,νj

(s)−
Aih

j,πθk
(s, aih)

λj
]

= − 1

λj
Es∼ρπθk

,aih∼πih∗(a|s)[A
ih
j,πθk

(s, aih)]

To sum up, the derivative of νj to function L(πih∗, λj , νj) can be written:85

∂L(πih∗, λj , νj)

∂νj
= bihj − Es∼ρπθk

,aih∼πih∗(a|s)[A
ih
j,πθk

(s, aih)] (24)

where bihj = cihj −J ih
j (πθk). In this way, we can update νj by νj ← projνj

[νj−α(cihj −J ih
j (πθk))]86

87

Appendix E Procedure of MAFOCOPS88

In this section, we describe the procedure of our algorithm, outlined in Algorithm 1. To be noted,89

hyperparameters for each agent are identical throughout the algorithm.90

Appendix F Experiment Environment Introduction91

In this section, we introduce the environments that we adopt in the experiments.92

F.1 Safe MAMuJoCo93

This environment is an extension of MAMuJoCo [5], maintaining the background environment,94

agents, physics simulator, and the reward function. However, in the Safe MAMuJoCo setting,95

additional obstacles such as walls or pitfalls are introduced, and the environment emits cost with the96

increasing risk of an agent stumbling upon an obstacle. Here, we mainly introduce the scenarios that97

we employ in our work and present them in Figure 1.98

ManyAgent Ant task & Ant task The corridor in the environment is bounded by two walls, with99

a width of 9 m for ManyAgent Ant and 10 m for Ant. The environment emits the cost of 1 for an100

agent, if the distance between the robot and the wall is less than 1.8 m, or when the robot topples101

over, which can be described as102

ct =

{
1, 0.2 ≤ ztorso,t+1 ≤ 1.0, zrot > −0.7, ||xtorso,t+1 − xwall||2 ≥ 1.8
0, otherwise

, (25)

5



Algorithm 1 MAFOCOPS

Require: number of agents n, number of updates K, minibatch size B, temperature {λj}1≤j≤mi ,
initial cost constraint parameter {νj}1≤j≤mi , cost constraint parameter bound vmax, learning
rate for cost constraint parameter αν , trust region bound δ, cost bound bj

1: InitializeInitializeInitialize, policy networks {πi
θ0
, i ∈ N}, global value network {ϕ0} and cost value networks

{ϕi
j,0}i∈N

1≤j≤mi , replay buffer B
2: for k = 0, 1, . . . do
3: Generate trajectories τ ∼ πθkπθkπθk , save the data into the buffer and sample a batch of data;
4: Estimate the C-returns ĴC by averaging over the cost return for all episodes.
5: Compute the advantage functions Âπθk

(s,aaa) and Âi
j,πθk

(s, ai) using GAE;
6: Draw a permutation i1:n of agents at random.
7: Set M i1(s,a) = Âπθk

(s,aaa)
8: for agent ih = i1, i2, · · · , in do
9: Update νj by νj by νj ← projνj

[νj − α(cihj − Ĵ ih
C,j(πθkπθkπθk))],∀j = 1, · · · ,mih

10: for K epochs do
11: for each minibatch data of size B do
12: Update value networks (and cost value networks analogously) by minimizing the MSE

loss ϕk+1 = argminϕ

∑T
t=0(Vϕk

(st)− R̂t)
2, where R̂ is the target return.

13: Update policy network by the derived equation of ∇θL(θ), where η̂πθk
(s, aih) is

estimated by M i1:h(s,a).
14: end for
15: if D̄KL(π

ih , πih
θk
) ≤ δ then

16: Break
17: end if
18: end for

19: Compute M i1:h+1(s,a) =
π
ih

θ
ih
k+1

(aih |oih )

π
ih

θ
ih
k

(aih |oih )
M i1:h(s,a), unless h = n

20: end for
21: end for

where ztorso,t+1 and xtorso,t+1 is the robot’s torso’s z-coordinate and x-coordinate at time t + 1,103

zrot is the robot’s rotation’s z-coordinate and xwall denotes the x-coordinate of the wall.104

HalfCheetah task In these maps, the HalfCheetah agents move inside a corridor (which constraints105

their movement, but does not induce costs). Concurrently, there are pitfalls within the corridor that106

also move. When an agent is too close to a pitfall, specifically when the distance between an agent107

and a pitfall is less than 9 m, a cost of 1 will be emitted.108

ct =

{
1, ||ytorso,t+1 − yobstacle||2 ≥ 9
0, otherwise

, (26)

where the y-coordinate of the robot’s torso is represented by ytorso,t+1 and yobstacle denotes the109

y-coordinate of the moving obstacles.110

F.2 Safe Multi-Agent Isaac Gym111

This environment builds upon Issac Gym platform [6], renowned for its GPU-accelerated capabilities,112

and leverages the powerful Nvidia PhysX engine. Extending from the existing framework of Dex-113

terousHands [7], Safe MAIG requires agents to control the robot hands while optimizing both the114

reward and safety performance. Similarly, we also give an introduction of the specific scenarios in115

our experimental evaluations.116

ShadowHandOver This task revolves around a dual-hand setup, with each hand occupying a fixed117

position. The primary objective entails the first hand, holding an object, navigating a suitable118

trajectory to transfer the item to the second hand while the second hand aims to acquire a successful119

grasp of the object. To be noted, this task incorporates safety constraints pertaining to the range of120

6



Figure 1: Specific tasks in Safe MAMuJoCo. (a): Ant Task: Ant 4x2 with three folding Jagged (30◦)
line walls, (b): HalfCheetah Task: HalfCheetah 2x3 with the moving obstacles, (c): ManyAgent Ant
Task: ManyAgent Ant 2x3 inside one folding line walls (corridor width is 9 m).

motion of one of the fingers on the first hand. Formally, the cost function can be expressed as follows:121

ct =

{
1, ||Fa4,t+1|| ≥ 0.1
0, otherwise

, (27)

where Fa4,t+1 is the first hand’s fourth fingers’s motion degree.122

ShadowHandReOrientation Within the context of this task, both hands are equipped with two items.123

The fundamental objective for the agents is to execute rotational movements between these two items124

around each other and the safety constraints remain the same as Equation 27.125

Figure 2: Performance comparisons on tasks of Ant 2x4, 2x4d, 4x2 and 8x1. The safety bound is 50,
except for Ant 8x1 whose cost threshold is set as 70. The solid line shows the median performance
across 5 seeds and the shaded areas correspond to the 25-75% percentiles.

Appendix G Performance on Safe MAMuJoCo126

In this section, we present the comprehensive results of experiments in Safe MAMuJoCo environment127

in Figure 2-5. It can be observed that our proposed MAFOCOPS consistently demonstrates superior128

overall performance across all tasks. Even when our method achieves similar performance compared129

to the other two algorithms in HalfCheetah scenarios, it still exhibits faster learning, demonstrating130

the advantages of our approach. As is discussed in the Experiment section, MAPPO-L algorithm131

always achieves the similar performance as MAPPO, except in HalfCheetah scenarios where the cost132

threshold is significantly smaller compared to cost achieved by HAPPO and MAPPO. This may be due133

to that MAPPO-Lagrangian being built upon Lagrangian multiplier combined with standard MARL134

algorithms, leading to a performance more similar to safety-unaware MARL algorithms. Regarding135

other two hard constraint algorithm, their performance would degrade with the increasing number of136

agents. However, MAFOCOPS consistently outperforms MACPO, proving the effectiveness of our137

method. What’s more, we provide additional videos of the trained policies of both our algorithm and138

MACPO.139
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Figure 3: Performance comparisons on tasks of HalfCheetah 2x3, 3x2 and 6x1. The safety bound is
30. The solid line shows the median performance across 5 seeds and the shaded areas correspond to
the 25-75% percentiles.

Figure 4: Performance comparisons on tasks of ManyAgent Ant 2x3, 3x2 and 6x1. The safety bound
is 25. The solid line shows the median performance across 5 seeds and the shaded areas correspond
to the 25-75% percentiles.

Figure 5: Performance comparisons on tasks of ManyAgent Ant 2x4, 4x2 and 8x1. The safety bound
is 80. The solid line shows the median performance across 5 seeds and the shaded areas correspond
to the 25-75% percentiles.
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Appendix H Efficiency Analysis140

In this section, we evaluate the training efficiency, which is measured by frame per second (FPS),141

and memory cost between MACPO and our MAFOCOPS. To be specific, we record the time and142

samples spent for each update to calculate average FPS and employ memory monitor tools to143

track memory utilization after 200000 samples. To ensure a fair comparison, both algorithms are144

executed on the same GPU device, thereby minimizing the influence of other variables. The results145

obtained from these evaluations are presented in Table 1 and Table 2 with a precision of two decimal146

places. Based on the obtained results, it is evident that an increase in the number of agents leads147

to a noticeable escalation in computational cost for MACPO. Whereas, our algorithm showcases148

substantial improvement in computational efficiency and demonstrates the ability to effectively149

conserve memory resources, especially in scenarios involving a larger number of agents.150

Scenarios Ant Task HalfCheetah Task

FPS
Config

2x4d 2x4 4x2 8x1 2x3 3x2 6x1

MACPO 231 218 130 73 298 192 106
MAFOCOPS 322 270 160 115 340 229 162

Improvement(%) 39.3939.3939.39 23.8523.8523.85 23.0823.0823.08 57.5357.5357.53 14.0914.0914.09 19.2719.2719.27 52.8352.8352.83
Scenarios ManyAgent Ant Task

FPS
Config

2x3 3x2 6x1 – 2x4 4x2 8x1

MACPO 244 167 98 – 232 135 73
MAFOCOPS 271 249 149 – 253 193 115

Improvement(%) 11.0711.0711.07 49.1049.1049.10 52.0452.0452.04 – 9.059.059.05 42.9642.9642.96 57.5357.5357.53

Table 1: Average FPS between MACPO and MAFOCOPS and the bold results demonstrate the
improvement brings by our algorithm.

Scenarios Ant Task HalfCheeath Taks

Memory (MiB)
Config

2x4d 2x4 4x2 8x1 2x3 3x2 6x1

MACPO 18.85 23.60 31.24 66.25 16.54 30.20 52.08
MAFOCOPS 18.97 21.82 24.23 56.99 19.34 27.26 39.15

Saved Memory -0.12 1.771.771.77 7.017.017.01 9.269.269.26 -2.80 2.932.932.93 12.9312.9312.93
Scenarios ManyAgent Ant Task

Memory (MiB)
Config

2x3 3x2 6x1 – 2x4 4x2 8x1

MACPO 25.32 32.64 55.27 – 27.31 38.90 65.02
MAFOCOPS 24.45 30.88 44.38 – 24.62 34.73 60.71

Saved Memory 0.870.870.87 1.761.761.76 10.8910.8910.89 – 2.692.692.69 4.174.174.17 4.314.314.31

Table 2: Memory cost of MACPO and MAFOCOPS and the bold results demonstrate the memory
saved by our algorithm.

Appendix I Sensitivity Analysis151

We test the sensitivity of our algorithm to hyperparameters, i.e., λj and νmax, as well as the safety152

bound. To be noted, because the benchmarks that we adopt only involve a single cost, we only need to153

set one value for λj and νmax. In future works, we may explore that the performance of our method154

in environments with multiple costs. We choose several scenarios in Safe MAMuJoCo to conduct the155

ablation studies.156
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The sensitivity to the hyperparameters are evaluated across several different values for λj and νmax157

while keeping all other parameters fixed. For ease of comparison, we normalized the results based on158

the return and cost achieved by [8], namely if our method yields a return of x and HAPPO achieves a159

return of y, the normalized result is reported as x
y . The results report the final performance of the160

models after training for 10 million steps and are showcased in Table 3 and Table 4 with a precision161

of three decimal places. Given the complexity inherent in multi-agent environments, it is difficult to162

delineate the correlation between the performance of our method and the hyperparameters λj and163

νmax. Nonetheless, it can be observed that our approach’s effectiveness is relatively insensitive to164

variations in these hyperparameter values. Notably, even setting νmax =∞ does not significantly165

affect the reward achieved by our method, only resulting in an average degradation of less than 10%.166

Ant 2x4 HalfCheetah 2x3 ManyAgent Ant 2x3 ManyAgent Ant 2x4 All envs
λ Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost
1 0.913 0.212 0.599 0.049 0.889 0.137 0.781 0.082 0.796 0.120
2 0.975 0.188 0.658 0.056 0.946 0.131 0.882 0.212 0.865 0.147

2.2 0.964 0.091 0.668 0.049 0.947 0.090 0.802 0.166 0.845 0.099
3 0.983 0.183 0.699 0.073 0.958 0.059 0.879 0.178 0.880 0.123
5 1.004 0.113 0.694 0.078 0.871 0.070 0.784 0.267 0.838 0.132

Table 3: Performance of MAFOCOPS for different λ and the “all envs” column presents the averaged
performance across these four scenarios.

Furthermore, we select some maps to examine the sensitivity of our algorithm to the safety bound.167

To be mentioned, hyperparameters in this experiment keep unchanged. The results, as depicted in168

Figure 6, indicate that although the reward performance of MAFOCOPS diminishes as the safety169

constraints become more stringent, the algorithm’s overall effectiveness remains consist across170

different safety levels.171

Ant 2x4 HalfCheetah 2x3 ManyAgent Ant 2x3 ManyAgent Ant 2x4 All envs
νmax Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost

1 1.042 0.074 0.680 0.029 0.981 0.067 0.859 0.328 0.891 0.125
1.3 0.964 0.091 0.668 0.049 0.947 0.090 0.802 0.166 0.845 0.099
2 0.908 0.222 0.627 0.040 0.962 0.137 0.910 0.206 0.852 0.151
3 0.923 0.097 0.579 0.042 0.936 0.077 0.844 0.123 0.821 0.085
5 0.793 0.175 0.606 0.063 1.013 0.102 0.800 0.256 0.803 0.149
∞ 0.873 0.209 0.588 0.048 0.959 0.100 0.749 0.146 0.792 0.126

Table 4: Performance of MAFOCOPS for different νmax and the “all envs” column presents the
averaged performance across these four scenarios.

Appendix J Details of Settings for Experiments172

The majority of settings have been described in detail in the Experiments section; however, we173

provide some additional information here. As our implementation is based on codebase provided174

by MACPO [1], and thus most hyperparameters remain consistent with their original values For175

MAFOCOPS, the Lagrange multipliers, namely λ and νmax, we utilize is 2.2 and 1.3, respectively,176

which can founded in Table 3 and 4. For other two safe MARL algorithms, MACPO and MAPPO-L,177

we modify the relevant hyperparameters to ensure their compatibility with the safety bound As is178

mentioned in the Experiments section, for the two benchmarks, we adopt distinct hyperparameters179

for MAPPO-L in different categories of tasks, as the safety bound is relative to the cost achieved by180

standard MARL algorithms. However, MAFOCOPS and MACPO both use unchanged parameters,181

indicating robustness of these two methods. We present the specific hyperparameters that we use in182

our experiments in Table 5 (as most parameters are unchanged, we only report the changed ones or183

unique parameters in our algorithm).184
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Figure 6: Performance comparisons on Ant 2x4, 2x4d, 4x2 with different safety bound.

Safe MAMuJoCo MACPO MAPPO-L MAFOCOPS

kl-threshold 0.008 / 0.0125
lambda lagr / [0.38a, 0.46b, 0.59c, 0.52d] /

λ / / 2.2
νmax / / 1.3
ν lr / / 0.00005

fraction coef 0.3 / /
minibatch size / / 256

update numbers / / 5
Safe MAIG MACPO MAPPO-L MAFOCOPS

kl-threshold 0.009 / 0.01
lambda lagr / [0.14a, 0.68b] /

lagrangian coef rate / [1e− 7a, 9e− 7b] /
λ / / 2

νmax / / 1.4
ν lr / / 0.001

fraction coef 0.26 / /
minibatch size / / 8192

update numbers / / 3

Table 5: Different hyperparameters used for MACPO, MAPPO-L and MAFOCOPS. As MAPPO-L
employs different hyperparameters, the changed ones are represented in the list. In Safe MAMuJoCo
domains, a means Ant tasks, b corresponds to HalfCheetah tasks, c represents ManyAgent Ant 2x3
tasks and d represents denotes ManyAgent Ant 2x4 tasks. In Safe MAIG domains, a represents
ShadowHandOver task and b denotes ShadowHandReOrientation task.

References185

[1] S. Gu, J. G. Kuba, Y. Chen, Y. Du, L. Yang, A. Knoll, and Y. Yang, “Safe multi-agent reinforce-186

ment learning for multi-robot control,” Artificial Intelligence, p. 103905, 2023.187

[2] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy optimization,”188

in International conference on machine learning. PMLR, 2015, pp. 1889–1897.189

11



[3] I. Csiszár and J. Körner, Information theory: coding theorems for discrete memoryless systems.190

Cambridge University Press, 2011.191

[4] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge university press,192

2004.193

[5] C. S. de Witt, B. Peng, P.-A. Kamienny, P. Torr, W. Böhmer, and S. Whiteson, “Deep multi-194

agent reinforcement learning for decentralized continuous cooperative control,” arXiv preprint195

arXiv:2003.06709, vol. 19, 2020.196

[6] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,197

A. Allshire, A. Handa et al., “Isaac gym: High performance gpu-based physics simulation for198

robot learning,” arXiv preprint arXiv:2108.10470, 2021.199

[7] Y. Chen, T. Wu, S. Wang, X. Feng, J. Jiang, Z. Lu, S. McAleer, H. Dong, S.-C. Zhu, and Y. Yang,200

“Towards human-level bimanual dexterous manipulation with reinforcement learning,” Advances201

in Neural Information Processing Systems, vol. 35, pp. 5150–5163, 2022.202

[8] J. G. Kuba, R. Chen, M. Wen, Y. Wen, F. Sun, J. Wang, and Y. Yang, “Trust region policy203

optimisation in multi-agent reinforcement learning,” in International Conference on Learning204

Representations, 2022.205

12


	Proof of the Optimization problem
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Corollary 2
	Procedure of MAFOCOPS
	Experiment Environment Introduction
	Safe MAMuJoCo
	Safe Multi-Agent Isaac Gym

	Performance on Safe MAMuJoCo
	Efficiency Analysis
	Sensitivity Analysis
	Details of Settings for Experiments

