Closing the Gap Between the Upper Bound and the Lower Bound of Adam’s Iteration Complexity

Anonymous Author(s)

Affiliation

Address

Abstract

Recently, Arjevani et al. [1] establish a lower bound of iteration complexity for the first-order optimization under an L-smooth condition and a bounded noise variance assumption. However, a thorough review of existing literature on Adam’s convergence reveals a noticeable gap: none of them meet the above lower bound. In this paper, we close the gap by deriving a new convergence guarantee of Adam, with only an L-smooth condition and a bounded noise variance assumption. Our results remain valid across a broad spectrum of hyperparameters. Especially with properly chosen hyperparameters, we derive an upper bound of iteration complexity of Adam and show that it meets the lower bound for first-order optimizers. To the best of our knowledge, this is the first to establish such a tight upper bound for Adam’s convergence. Our proof utilizes novel techniques to handle the entanglement between momentum and adaptive learning rate and to convert the first-order term in the Descent Lemma to the gradient norm, which may be of independent interest.

1 Introduction

First-order optimizers, also known as gradient-based methods, make use of gradient (first-order derivative) information to find the minimum of a function. They have become a cornerstone of many machine learning algorithms due to the efficiency as only gradient information is required, and the flexibility as gradients can be easily computed for any function represented as directed acyclic computational graph via auto-differentiation [2, 19]. Therefore, it is fundamental to theoretically understand the properties of these first-order methods. Recently, Arjevani et al. [1] establish a lower bound on the iteration complexity of stochastic first-order methods. Formally, for a well-studied setting where the objective is L-smooth and a stochastic oracle can query the gradient unbiasedly with bounded variance (see Assumption 1 and 2), any stochastic first-order algorithm requires at least ϵ^{-4} queries (in the worst case) to find an ϵ-stationary point, i.e., a point with gradient norm at most ϵ. Arjevani et al. [1] further show the above lower bound is tight as it matches the existing upper bound of iteration complexity of SGD [1].

On the other hand, among first-order optimizers, Adam [16] becomes dominant in training state-of-the-art machine learning models [3, 15, 4, 11]. Compared to vanilla stochastic gradient descent (SGD), Adam consists of two more key components: (i) momentum to accumulate historical gradient information and (ii) adaptive learning rate to rectify coordinate-wise step sizes. The pseudo-code of Adam is given as Algorithm 1. While the sophisticated design of Adam enables its empirical superiority, it brings great challenges for the theoretical analysis. After examining a series of theoretical works on the upper bound of iteration complexity of Adam [24, 9, 10, 27, 14, 21, 25], we find that none of them match the lower bound for first-order optimizers: they not only consume more queries than the lower bound to reach ϵ-stationary iterations but also requires additional assumptions.
This theoretical mismatch becomes even more unnatural given the great empirical advantage of Adam over SGD, which incites us to think:

Is the gap between the upper and lower bounds for Adam a result of the inherent complexity induced by Adam’s design, or could it be attributed to the proof techniques not being sharp enough?

This paper answers the above question, validating the latter hypothesis, by establishing a new upper bound on iteration complexity of Adam for a wide range of hyperparameters that cover typical choices. Specifically, our contribution can be summarized as follows:

- We examine existing works that analyze the iteration complexity of Adam, and find that none of them meets the lower bound of first-order optimization algorithms;
- We derive a new convergence guarantee of Adam with only assuming L-smooth condition and bounded variance assumption (Theorem 1), which holds for a wide range of hyperparameters covering typical choices;
- With chosen hyperparameters, we further tighten Theorem 1 and show that the upper bound on the iteration complexity of Adam meets the lower bound, closing the gap (Theorem 2).

Our upper bound is tighter than existing results by a logarithmic factor, in spite of weaker assumption.

To the best of our knowledge, this work provides the first upper bound on the iteration complexity of Adam without additional assumptions other than L-smooth condition and bounded variance assumption. It is also the first upper bound matching the lower bound of first-order optimizers.

Organization of this paper. The rest of the paper is organized as follows: in Section 2, we first present the notations and setup of analysis in this paper; in Section 3, we revisit the existing works on the iteration complexity of Adam; in Section 4, we present a convergence analysis of Adam with general hyperparameters (Theorem 1); in Section 5, we tighten Theorem 1 with a chosen hyperparameter, and derive an upper bound of Adam’s iteration complexity which meets the lower bound; in Section 6, we discuss the limitation of our results; in Section 7, we discuss the related works.

2 Preliminary

The Adam algorithm is restated in Algorithm 1 for convenient reference. Note that compared to the original version of Adam in Kingma and Ba [16], the bias-correction terms are omitted to simplify the analysis, and our analysis can be immediately extended to the original version of Adam because the effect of bias-correction term decays exponentially. Also, in the original version of Adam, the adaptive learning rate is $\eta \sqrt{t + \frac{\nu}{d}}$ instead of $\eta \sqrt{\nu t}$; However, our setting is more challenging and our result can be easily extend to the original version of Adam, since the ε term makes the adaptive learning rate upper bounded and eases the analysis.

Algorithm 1 Adam

Input: Stochastic oracle O, learning rate $\eta > 0$, initial point $w_1 \in \mathbb{R}^d$, initial conditioner $\nu_0 \in \mathbb{R}^+$, initial momentum m_0, momentum parameter β_1, conditioner parameter β_2, number of epoch T

1: Sample $r \sim \text{Unif} \{1, \cdots, T\}$
2: For $t = 1 \rightarrow T$:
3: Generate a random z_t, and query stochastic oracle $g_t = O_f(w_t, z_t)$
4: Calculate $\nu_t = \beta_2 \nu_{t-1} + (1 - \beta_2) g_t^2$
5: Calculate $m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$
6: Update $w_{t+1} = w_t - \eta \frac{1}{\sqrt{\nu_t}} \odot m_t$
7: EndFor

Output: w_r

Notations. For $a, b \in \mathbb{Z}_{\geq 0}$ and $a \leq b$, denote $[a, b] = \{a, a + 1, \cdots, b - 1, b\}$. For any two vectors $w, v \in \mathbb{R}^d$, denote $w \odot v$ as the Hadamard product (i.e., coordinate-wise multiplication) between w and v. When analyzing Adam, we denote the true gradient at iteration t as $G_t = \nabla f(w_t)$, and
Furthermore, the iteration complexity of the family of first-order optimization algorithms \(\mathcal{A}_{\text{first}} \) is

\[
C_c(\Delta, L, \sigma^2) = \sup_{\theta \in \Theta} \sup_{f \in \mathcal{F}(L)} \sup_{w_1, f(w_1)} \inf \{ T : \mathbb{E}\|\nabla f(w_{T}^{A(\theta)})\| \leq \varepsilon \}.
\]

It should be noticed that the iteration complexity of the family of first-order optimization algorithms is a lower bound of the iteration complexity of a specific first-order optimization algorithm, i.e.,

\[
\forall A \in \mathcal{A}_{\text{first}}, C_c(A, \Delta, L, \sigma^2) \geq C_c(\Delta, L, \sigma^2).
\]

3 None of existing upper bounds match the lower bound

In this section, we examine existing works that study the iteration complexity of Adam, and defer a discussion of other existing works to Appendix A. We find that none of them match the lower bound for first-order algorithms provided in [1] (restated as follows).

\[\text{1Such a random seed allows sampling from all iterations to generate the final output of the optimization algorithm. As an example, Algorithm 1 set } \mathcal{P}_r.\]
Proposition 1 (Theorem 3, [1]). \(\forall L, \Delta, \sigma^2 > 0, \) we have \(C_\epsilon(\Delta, L, \sigma^2) = \Omega\left(\frac{1}{\epsilon}\right) \).

Note that in the above bound, we omit the dependence of the lower bound over \(\Delta, L, \) and \(\sigma^2, \) which is a standard practice in existing works (see Cutkosky and Mehta [8], Xie et al. [23], Faw et al. [13] as examples) because the dependence over the accuracy \(\epsilon \) can be used to derive how much additional iterations is required for a smaller target accuracy and is thus of more interest. In this paper, when we say "match the lower bound", we always mean that the upper bound has the same order of \(\epsilon \) as the lower bound.

Generally speaking, existing works on the iteration complexity of Adam can be divided into two categories: they either (i) assume that gradient is universally bounded or (ii) make stronger assumptions on smoothness. Below we respectively explain how these two categories of works do not match the lower bound in [1].

The first line of works, including Zaheer et al. [24], De et al. [9], Défossé et al. [10], Zou et al. [27], Guo et al. [14], assume that the gradient norm of \(f \) is universally bounded, i.e., \(\| \nabla f(w) \| \leq G, \) \(\forall w \in \mathbb{R}^d \). In other words, what they consider is another iteration complexity defined as follows:

\[
C_\epsilon(A, \Delta, L, \sigma^2, G) \triangleq \sup_{O \in \mathcal{O}(\sigma^2)} \sup_{f \in \mathcal{F}(L)} \sup_{\| \nabla f \| \leq G} \inf \{ T : \mathbb{E}\| \nabla f(w_T^{A(\theta)}) \| \leq \epsilon \}.
\]

This line of works do not match the lower bound due to the following two reasons: First of all, the upper bound they derive is \(O(\log \frac{1}{\epsilon}) \), which has an additional \(\log \epsilon \) factor more than the lower bound; secondly, the bound they derive is for \(C_\epsilon(A, \Delta, L, \sigma^2, G) \). Note that \(\mathcal{F}(L) \cap \{ f : \| \nabla f \| \leq G \} \) is a proper subset of \(\mathcal{F}(L) \) for any \(G \), where a simple example in \(\mathcal{F}(L) \) but without bounded gradient is the quadratic function \(f(x) = \| x \|^2 \). Therefore, we have that

\[
C_\epsilon(A, \Delta, L, \sigma^2) \geq C_\epsilon(A, \Delta, L, \sigma^2, G), \quad \forall G \geq 0,
\]

and thus the upper bound on \(C_\epsilon(A, \Delta, L, \sigma^2, G) \) does not apply to \(C_\epsilon(A, \Delta, L, \sigma^2) \). Moreover, their upper bound of \(C_\epsilon(A, \Delta, L, \sigma^2, G) \) tends to \(\infty \) as \(G \rightarrow \infty \), which indicates that if following their analysis the upper bound of \(C_\epsilon(A, \Delta, L, \sigma^2) \) would be infinity based on Eq. (1).

The second line of works includes Shi et al. [21], Zhang et al. [25], Wang et al. [22], which additionally assume a mean-squared smoothness property besides Assumption 1 and 2, i.e., \(\mathbb{E}_{z \sim \mathcal{P}} \| O_f(w, z) - O_f(v, z) \|^2 \leq L \| w - v \|^2, \) \(\forall w, v \in \mathbb{R}^d \) \(\cap \mathcal{O}(\sigma^2) \). The iteration complexity that they consider is defined as follows:

\[
\tilde{C}_\epsilon(A, \Delta, L, \sigma^2) = \sup_{O \in \tilde{\mathcal{O}}(\sigma^2, L)} \sup_{f \in \mathcal{F}(L)} \sup_{\| \nabla f \| = \Delta} \inf \{ T : \mathbb{E}\| \nabla f(w_T^{A(\theta)}) \| \leq \epsilon \}.
\]

The rate derived in [21, 25, 22] is \(O\left(\frac{1}{\epsilon^2}\right) \), which is derived by minimizing the upper bounds in [21, 25, 22] with respect to the hyperparameter of adaptive learning rate \(\beta_2 \). According to [1], the lower bound of iteration complexity of \(\tilde{C}_\epsilon(A, \Delta, L, \sigma^2) = \Omega\left(\frac{1}{\epsilon^2}\right) \) and smaller than the original lower bound \(\Omega\left(\frac{1}{\epsilon^2}\right) \), resulting in an even larger gap between the upper bound and lower bound.

On the other hand, a concurrent work [17] which does not require bounded gradient assumption and mean-squared smoothness property but poses a stronger assumption on the stochastic oracle: the set of stochastic oracles they consider is \(\tilde{\mathcal{O}} = \{ O : \forall w \in \mathbb{R}^d, \mathbb{E}_{z \sim \mathcal{P}} O_f(w, z) = \nabla f(w), \mathbb{P}\{ ||O_f(w, z) - \nabla f(w)||^2 \leq \sigma^2 \} = 1 \} \). \(\tilde{\mathcal{O}} \) is a proper subset of \(\mathcal{O} \) because a simple example is that \(O_f(w, z) = \nabla f(w) + z \) where \(z \) is a standard gaussian variable. Therefore, their result does not provide a valid upper bound of \(C_\epsilon(A, \Delta, L, \sigma^2) \).

4 Convergence analysis of Adam with only Assumptions 1 and 2

As discussed in Section 3, existing works on analyzing Adam require additional assumptions besides Assumption 1 and 2. In this section, we provide the first convergence analysis of Adam with only Assumption 1 and 2, which naturally gives an upper bound on the iteration complexity \(C_\epsilon(A, \Delta, L, \sigma^2) \).

Specifically, we present the following theorem.
Theorem 1. Let A be by Adam (Algorithm 1) and $\theta = (\eta, \beta_1, \beta_2)$ are the hyperparameters of A.

Let Assumption 1 and 2 hold. Then, if $0 \leq \beta_1 < \beta_2 < 1$, we have

$$
\mathbb{E} \sum_{t=1}^{T} \|\nabla f(w_t)\| \leq \sqrt{1-\beta_2} C_2 + \frac{2\sqrt{1-\beta_2}}{(1-\beta_1)\eta} C_1 d \ln \left(12C_2 + 2T \sum_{l=1}^{d} \|\nu_{0,l}\| + (3-\beta_2)\sigma^2 + 4dC_1 \ln dc_1 \right)
$$

$$
\quad + \sqrt{C_2 + \frac{2}{(1-\beta_1)\eta} C_1 d \ln \left(12C_2 + 2T \sum_{l=1}^{d} \|\nu_{0,l}\| + (3-\beta_2)\sigma^2 + 4dC_1 \ln dc_1 \right)}

\quad \times 12C_2 + 2T \sum_{l=1}^{d} \|\nu_{0,l}\| + (3-\beta_2)\sigma^2 + 4dC_1 \ln dc_1.
$$

(2)

where $\nu_{0,l}$ is the l-th coordinate of ν_0.

$$
C_1 = \left(\frac{L}{2} \eta^2 + \frac{2\sqrt{1-\beta_2}}{(1-\beta_1)^2} \eta \sigma + \frac{\eta^2 \beta_1}{\sqrt{\sigma^2(1-\frac{\beta_1}{\sqrt{2}})}} + \frac{\eta^2}{\sqrt{\sigma^2(1-\frac{\beta_1}{\sqrt{2}})}} \right),
$$

and

$$
C_2 = \frac{2}{(1-\beta_1)\eta} \left(f(w_1) + \sum_{l=1}^{d} 2C_1 \left(\mathbb{E} \ln \left(\frac{1}{\nu_{0,l}} \right) - T \ln \beta_2 \right) \right).
$$

A proof sketch is given in Section 4.2 and the full proof is deferred to Appendix.

4.1 Discussion on Theorem 1

Required assumptions and conditions. As mentioned previously, Theorem 1 only requires Assumption 1 and 2, which aligns with the setting of the lower bound (Proposition 1). To our best knowledge, this is the first analysis of Adam without additional assumptions. Also, Theorem 1 holds for general choices of hyperparameters since the only condition posed on hyperparameters is $\beta_1 < \beta_2$. Such condition covers a wide range of hyperparameters, e.g., the default setting $\beta_1 = 0.9$ and $\beta_2 = 0.999$ in PyTorch [19].

Dependence over β_2, η, and T. Here we consider the influence of β_2, η, and T while fixing β_1 constant (we will discuss the effect of β_1 in Section 6). With logarithmic factors ignored and coefficients hidden, C_1, C_2 and the right-hand-side of Eq. (2) can be rewritten with asymptotic notations as

$$
C_1 = \tilde{O} \left(\frac{\eta \sqrt{1-\beta_2}}{\sqrt{(1-\beta_2)^2}} \right),
$$

$$
C_2 = \tilde{O} \left(\frac{\eta^2}{\sqrt{(1-\beta_2)^2}} + \frac{1}{\eta} T \sqrt{1-\beta_2} + \frac{\eta^2 T}{(1-\beta_2)^2} \right),
$$

$$
\mathbb{E} \sum_{t=1}^{T} \|\nabla f(w_t)\| = \tilde{O} \left(\sqrt{1-\beta_2} C_2 + \frac{\sqrt{1-\beta_2}}{\eta} C_1 + C_2 + \frac{C_1}{\eta} \right).
$$

where \tilde{O} denotes O with logarithmic terms ignored. Consequently, the dependence of Eq. (2) over β_2, η, and T becomes

$$
\mathbb{E} \sum_{t=1}^{T} \|\nabla f(w_t)\| = \tilde{O} \left(\frac{\eta^2}{\sqrt{(1-\beta_2)^2}} + \frac{1}{\eta} T \sqrt{1-\beta_2} + \frac{(\eta^2 T)}{(1-\beta_2)^2} \right)
$$

$$
\quad + \tilde{O} \left(\frac{T}{\sqrt{1-\beta_2}} + \frac{\eta T}{\sqrt{\eta}} + \frac{T}{\sqrt{\eta}} \sqrt{1-\beta_2} + \frac{\eta T}{(1-\beta_2)^2} \right).
$$

Therefore, in order to ensure convergence, $\min_{\eta \in [\eta]} \mathbb{E} \|G_t\|_1 \to 0$ as $T \to \infty$, a sufficient condition is that the right-hand-side of the above equation is $o(T)$. Specifically, by choosing $\eta = \Theta(T^{-\gamma})$ and $1-\beta_2 = \Theta(T^{-\delta})$, we obtain that

$$
\frac{1}{T} \mathbb{E} \sum_{t=1}^{T} \|\nabla f(w_t)\| = \tilde{O} \left(T^{\frac{1}{2} - 1} + T^{-2\alpha + \frac{1}{2} - \frac{1}{2}} + T^{\alpha - 1} + T^{-2\alpha + \frac{1}{2} + \frac{1}{2}} + T^{\frac{1}{2} - \frac{1}{2}} + T^{\alpha - \frac{1}{2}} + T^{\alpha + \frac{1}{2}} \right).
$$
By simple calculation, we obtain that the right-hand side of the above inequality is \(o(1)\) as \(T \to \infty\) if and only if \(0 < \frac{1}{2} < a < 1\) and \(3b - 4a < 2\). Moreover, the minimum of the right-hand side of the above inequality is \(\tilde{O}\left(\frac{1}{T^2}\right)\), which is achieved at \(a = \frac{1}{2}\) and \(b = 1\). Such a minimum implies an upper bound of the iteration complexity which at most differs from the lower bound by logarithmic factors as solving \(\tilde{O}\left(\frac{1}{T^2}\right) = \varepsilon\) gives \(T = \tilde{O}\left(\frac{1}{\varepsilon}\right)\). In Theorem 2, we will further remove the logarithmic factor by giving a refined proof when \(a = \frac{1}{2}\) and \(b = 1\) and close the gap between the upper and lower bounds.

4.2 Proof Sketch of Theorem 1

In this section, we demonstrate the proof idea of Theorem 1. Concretely, we sketch the proof by identifying two key challenges in the proof and provide our solutions respectively.

Challenge I: Disentangle the stochasticity in momentum and adaptive learning rate. According to the standard descent lemma, we have that

\[
\begin{align*}
\mathbb{E} f(w_{t+1}) &= f(w_t) + \mathbb{E} \left[G_t, w_{t+1} - w_t \right] + \frac{L}{2} \left\| w_{t+1} - w_t \right\|^2 \\
&\leq \mathbb{E} f(w_t) + \mathbb{E} \left[G_t, -\frac{1}{\sqrt{\nu_t}} \odot m_t \right] + \frac{L}{2} \mathbb{E} \left\| \frac{1}{\sqrt{\nu_t}} \odot m_t \right\|^2 \\
&\quad \text{First Order} \\
&\leq \mathbb{E} f(w_t) + \mathbb{E} \left[G_t, v_t \odot m_t \right] + \frac{L}{2} \mathbb{E} \left\| \frac{1}{\sqrt{\nu_t}} \odot m_t \right\|^2 \\
&\quad \text{Second Order}
\end{align*}
\]

(3)

The first challenge arises from bounding the "First Order" term above. To facilitate the understanding of the difficulty, we compare the "First Order" term of Adam to the corresponding "First Order" term of SGD, i.e., \(-\eta \mathbb{E} [G_t, g_t]\). By directly applying \(\mathbb{E}^F [g_t] = G_t, g_t\), we obtain that the "First-Order" term of SGD equals to \(-\eta \mathbb{E} \|G_t\|^2\). However, as for Adam, there are two folds of the above problem: firstly, we do not know what \(\mathbb{E}^F \frac{1}{\sqrt{\nu_t}} \odot m_t\) is, as the stochasticity in \(m_t\) and \(\nu_t\) entangles. Secondly, even without \(\nu_t\), it is unclear how \(\mathbb{E}^F m_t\) aligns with \(G_t\) given the existence of \(g_{t-1}, \ldots, g_t\) in \(m_t\).

Solution to Challenge I. For \(i \in [1, t]\), we define a set of surrogate condition \(v_t^i \triangleq \beta^i \nu_{t-i}\) + \(\sum_{j=0}^{i-1} \beta^i (1 - \beta^j) G_{t+i-1} \odot \nu_{t-i} + \nu_{t-j} \triangleq \nu_t\). Note that \(v_t^i\) is measurable with respect to \(F_{t-i+1}\). The key idea of our solution is the following peeling-off strategy: starting from \(\mathbb{E} \left[G_t, \frac{1}{\sqrt{\nu_t}} \odot m_t \right]\), we replace \(\nu_t = \nu_t^i\) by \(\nu_t^i\) (of course, such a replacement will bring a error term, which we temporally ignore and will consider it in the formal proof) and obtain \(\mathbb{E} \left[G_t, \frac{1}{\sqrt{\nu_t^i}} \odot m_t \right]\). As \(m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t\), we further have \(\mathbb{E} \left[-\nu_t^i \odot m_t \right] = \mathbb{E} \left[(1 - \beta_1) g_t \right] + \mathbb{E} \left[G_t, \frac{1}{\sqrt{\nu_t^i}} \odot m_t \right] + \mathbb{E} \left[(G_t - G_{t-1}, \frac{1}{\sqrt{\nu_t^i}} \odot \beta_1 m_{t-1}) \right] + \mathbb{E} \left[G_t, \frac{1}{\sqrt{\nu_t^i}} \odot m_{t-1} \right] \right] \right]

As \(v_t^i\) is measurable w.r.t. \(F_t\), we can then disentangle the stochasticity in \(g_t\) and \(\nu_t\), and the term \(\mathbb{E} \left[G_t, \frac{1}{\sqrt{\nu_t^i}} \odot (1 - \beta_1) g_t \right]\) equals to \(\mathbb{E} \left[(G_t, \frac{1}{\sqrt{\nu_t^i}} \odot (1 - \beta_1) G_t) \right]\), which is desired. The term \(\mathbb{E} \left[(G_t - G_{t-1}, \frac{1}{\sqrt{\nu_t^i}} \odot \beta_1 m_{t-1}) \right] \right] \right]

due to L-smooth condition. The term \(\mathbb{E} \left[(G_t, \frac{1}{\sqrt{\nu_t^i}} \odot \beta_1 m_{t-1}) \right] \right] \right]

resembles \(\mathbb{E} \left[(G_t, \frac{1}{\sqrt{\nu_t^j}} \odot m_t) \right] \right] \right]

due to peeling-off strategy, and we can apply the methodology recursively to get \(\mathbb{E} \left[(G_t - G_{t-1}, \frac{1}{\sqrt{\nu_t^i}} \odot \beta_1 m_{t-2}) \right] \right] \right]

\(\mathbb{E} \left[(G_t, \frac{1}{\sqrt{\nu_t^i}} \odot \beta_1 m_{t-3}) \right] \right] \right]

and so on. All in all, the above methodology can be summarized as the following lemma.

Lemma 1. Let all conditions in Theorem 1 hold. Denote \(F_t^i \triangleq \mathbb{E} \left[G_{t-i}, \frac{1}{\sqrt{\nu_t^i}} \odot m_{t-i} \right]\). Set \(G_0 \triangleq G_1\) Then, \(\forall t \geq 1\) and \(i \in [0, t-1]\),

\[
F_t^i \geq \frac{1}{2} \mathbb{E} \left[\left(\frac{1}{\sqrt{\nu_t^i}} \odot G_{t-i} \right) \right] - \beta_1 L \mathbb{E} \left[\left\| w_{t-i} - w_{t-i-1} \right\| \frac{1}{\sqrt{\nu_t^i}} \odot m_{t-i-1} \right] \\
- \left(\frac{1}{1 - \beta_1} \frac{L^2 \eta^2 (1 - \beta_1)}{(1 - \beta_2)^2 (1 - \beta_2) \beta_2} \right) \mathbb{E} \left[\left\| \frac{1}{\sqrt{\nu_t^i}} \odot m_{t-i} \right\|^2 \right].
\]
The proof is deferred to Appendix C.1. We highlight here that despite the simple methodology above, the proof itself is highly non-trivial and technical. The core difficulty lies in handling the error introduced by approximating \tilde{v}_t with \tilde{v}_{t+1}, where we need to bound the gap both between g_{t-i} and G_{t-i}, and between G_{t-i} and G_{t+1}.

Remark 1. Our surrogate conditioners \tilde{v}_t are novel. Previously, there are other surrogate conditioners in Défossez et al. [10], Zou et al. [27] which help to disentangle the stochasticity in g_t and v_t. However, none of them can be applied in our setting because the bounded gradient assumption is required to use them, which is missed in our setting. Therefore, our surrogate conditioners may also shed light on the other analysis of Adam where no bounded gradient is assumed.

Based on Lemma 1, we can estimate the "First-Order" term recursively. Combining the estimate of the "First-Order" term back to the descent lemma (Eq. (3)) and summing the descent lemma over t from 1 to T, we obtain

$$\sum_{t=1}^{T} \frac{(1-\beta_1)\eta}{2} \mathbb{E}\left[\left\|\frac{1}{\sqrt{\nu_t}} \odot G_t\right\|^2\right] \leq f(w_1) - \mathbb{E}f(w_{T+1}) + \sum_{t=1}^{d} C_1 \left(\mathbb{E}\ln\left(\frac{\nu_{T,t}}{v_{0,t}}\right) - T\ln\beta_2\right). \quad (4)$$

We then encounter the second challenge.

Challenge II: Convert Eq. (4) to a bound of gradient norm. Although we have bounded the sum of $\mathbb{E}\left[\frac{1}{\sqrt{\nu_t}} \odot G_t\right]^2$, we need to convert it into a bound of $\mathbb{E}\|G_t\|^2$. In existing works [27, 10, 14] which assumes bounded gradient, such a conversion is straightforward because (their version of) \tilde{v}_t is upper bounded. However, we do not assume bounded gradient and \tilde{v}_t can be arbitrarily large, making $\mathbb{E}\|\frac{1}{\sqrt{\nu_t}} \odot G_t\|^2$ arbitrarily small than $\mathbb{E}\|G_t\|^2$.

Solution to Challenge II. As this part involves coordinate-wise analysis, we define $g_{t,l}$, $G_{t,l}$, $\nu_{t,l}$, and $\tilde{v}_{t,l}$ respectively as the l-th coordinate of g_t, G_t, ν_t, and \tilde{v}_t. To begin with, note that due to Cauchy’s inequality and Hölder’s inequality,

$$\left(\mathbb{E} \sum_{t=1}^{T} \|G_t\|^2\right)^2 \leq \left(\sum_{t=1}^{T} \mathbb{E}\left[\left\|\frac{1}{\sqrt{\nu_t}} \odot G_t\right\|^2\right]\right) \left(\sum_{t=1}^{T} \mathbb{E}\left[\left\|\sqrt{\nu_t}\right\|^2\right]\right). \quad (5)$$

Therefore, we only need to derive an upper bound of $\sum_{t=1}^{T} \mathbb{E}\|\sqrt{\nu_t}\|^2$, which is achieved by the following divide-and-conque methodology. Firstly, when $|G_{t,l}| \geq \sigma$, we can show $2\mathbb{E}|G_{t,l}|^2 \geq 2|G_{t,l}|^2 \geq \mathbb{E}|G_{t,l}|^2$. Then, by the concavity of $f(x) = \frac{x}{\sqrt{a+x}} (a > 0)$ and through a massive calculation, we obtain that

$$\mathbb{E}\left[\frac{|G_{t,l}|^2}{\sqrt{\nu_{t,l}}} \chi_{|G_{t,l}| \geq \sigma}\right] \geq \frac{2}{3(1-\beta_2)} \mathbb{E}\left(\sqrt{\nu_{t,l} + (1-\beta_2)\sigma^2} - \sqrt{2(\nu_{t-1,l} + (1-\beta_2)\sigma^2)}\right) \chi_{|G_{t,l}| \geq \sigma},$$

and thus

$$\sum_{t=1}^{T} \mathbb{E}\left[\frac{|G_{t,l}|^2}{\sqrt{\nu_{t,l}}} \chi_{|G_{t,l}| \geq \sigma}\right] \geq \sum_{t=1}^{T} \frac{1}{3(1-\beta_2)} \mathbb{E}\left(\sqrt{\nu_{t,l} + (1-\beta_2)\sigma^2} - \sqrt{2(\nu_{t-1,l} + (1-\beta_2)\sigma^2)}\right) \chi_{|G_{t,l}| \geq \sigma}.$$

Secondly, when $|G_{t,l}| < \sigma$, define $\tilde{G}_{t,l}$ as $\tilde{G}_{t,l} = \nu_{t,l} - \tilde{v}_{t-1,l} + |G_{t,l}|^2 \chi_{|G_{t,l}| < \sigma}$. One can easily observe that $\tilde{G}_{t,l} \leq \nu_{t,l}$, and thus

$$\sum_{t=1}^{T} \mathbb{E}\left(\sqrt{\nu_{t,l} + (1-\beta_2)\sigma^2} - \sqrt{2(\nu_{t-1,l} + (1-\beta_2)\sigma^2)}\right) \chi_{|G_{t,l}| \geq \sigma} \leq \sum_{t=1}^{T} \mathbb{E}\left(\sqrt{\tilde{G}_{t,l} + (1-\beta_2)\sigma^2} - \sqrt{2(\tilde{G}_{t-1,l} + (1-\beta_2)\sigma^2)}\right),$$

and

$$= \mathbb{E}\sqrt{\tilde{G}_{T,l} + (1-\beta_2)\sigma^2} + (1-\sqrt{\beta_2}) \sum_{t=1}^{T-1} \mathbb{E}\sqrt{\tilde{G}_{t,l} + (1-\beta_2)\sigma^2} - \mathbb{E}\sqrt{2(\tilde{G}_{0,l} + (1-\beta_2)\sigma^2)}. \quad (6)$$
Putting the above two estimations together, we derive that
\[
\sum_{t=1}^{T} \sum_{l=1}^{d} \mathbb{E} \sqrt{\nu_{t,l} + (1 - \beta_2)\sigma^2} \leq 3(1 + \sqrt{\beta_2}) \sum_{t=1}^{T} \sum_{l=1}^{d} \mathbb{E} \left[\frac{|G_{t,l}|^2}{\sqrt{\nu_{t,l}}} \right] + T \sum_{l=1}^{d} \sqrt{\nu_{0,l} + (3 - \beta_2)\sigma^2}.
\]

The above methodology can be summarized as the following lemma.

Lemma 2. Let all conditions in Theorem 1 hold. Then,
\[
\sum_{t=1}^{T} \sum_{l=1}^{d} \mathbb{E} \sqrt{\nu_{t,l} + (1 - \beta_2)\sigma^2} \leq 2T \sum_{l=1}^{d} \sqrt{\nu_{0,l} + (3 - \beta_2)\sigma^2} + 4dC_1 \ln dC_1 + 12C_2.
\]

Based on Lemma 2, we can derive the estimation of \(\sum_{t=1}^{T} \mathbb{E} [\sqrt{\nu_{t,l}}^2] \) since \(\nu_t \) is close to \(\nu_t \). The proof is then completed by combining the estimation of \(\sum_{t=1}^{T} \mathbb{E} [\sqrt{\nu_{t,l}}^2] \) and Eq. (5).

5 Gap-closing upper bound on the iteration complexity of Adam

In this section, based on a refined proof of Stage II of Theorem 1 (see Appendix C) under the specific case \(\eta = \Theta(1/\sqrt{T}) \) and \(\beta_2 = 1 - \Theta(1/T) \), we show that the logarithmic factor in Theorem 1 can be removed and the lower bound can be achieved. Specifically, we have the following theorem.

Theorem 2. Let Assumption 1 and Assumption 2 hold. Then, select the hyperparameters of Adam as \(\eta = \frac{a}{T}, \beta_2 = 1 - \frac{b}{T} \) and \(\beta_1 = c\beta_2 \), where \(a, b > 0 \) and \(0 \leq c < 1 \) are independent of \(T \). Then, let \(\mathbf{w}_T \) be the output of Adam in Algorithm 1, and we have
\[
\mathbb{E} \|\nabla f(\mathbf{w}_T)\| \leq \frac{1}{\sqrt{\eta T}} \left(\sum_{t=1}^{T} \frac{1}{\sqrt{T}} \left(D_1 + 2D_2 \ln \left(\frac{2\sqrt{b}}{\sqrt{T}} D_1 + 4b T D_2^2 + \sum_{l=1}^{d} \sqrt{\nu_{0,l} + 3b\sigma^2} \right) \right) \right)
\times \left[\frac{2\sqrt{b}}{\sqrt{T}} D_1 + \frac{4b T D_2^2 + \sum_{l=1}^{d} \nu_{0,l} + 3b\sigma^2}{\sqrt{T}} + \frac{2}{T} \left(D_1 + 2D_2 \ln \left(\frac{2\sqrt{b}}{\sqrt{T}} D_1 + 4b T D_2^2 + \sum_{l=1}^{d} \sqrt{\nu_{0,l} + 3b\sigma^2} \right) \right) \right],
\]
where
\[
D_1 \triangleq \frac{4\sqrt{b}}{a(1-c)^2} f(\mathbf{w}_1) + \sum_{t=1}^{d} \frac{2}{ab\sqrt{b}} \left(L a^2 + 4 \frac{a\sqrt{b}\sigma}{(1-c)^2} + 2 \frac{a^2 c}{1-c} + 2 \frac{L^2 c a^3 d}{b(1-c)^5 \sigma} \right) \left(- \ln(\nu_{0,l}) + b \right),
\]
\[
D_2 \triangleq \frac{2}{ab^2 \sqrt{b}} \left(L a^2 + 4 \frac{a\sqrt{b}\sigma}{(1-c)^2} + 2 \frac{a^2 c}{1-c} + 4 \frac{L^2 c a^3 d}{b(1-c)^5 \sigma} \right).
\]

As a result, let \(\mathbf{A} \) be Adam in Algorithm 1, we have \(C_e(A, \Delta, L, \sigma^2) = O(\frac{1}{\sqrt{T}}) \).

The proof of Theorem 2 is based on a refined solution of Challenge II in the proof of Theorem 1 under the specific hyperparameter settings, and we defer the concrete proof to Appendix D. Below we discuss on Theorem 2, comparing it with practice, with Theorem 1 and existing convergence rate of Adam, and with the convergence rate of AdaGrad.

Alignment with the practical hyperparameter choice
The hyperparameter setting in Theorem 2 indicates that to achieve the lower bound of iteration complexity, we need to select small \(\eta \) and close-to-1 \(\beta_2 \), with less requirement over \(\beta_1 \). This agrees with the hyperparameter setting in deep learning libraries, for example, \(\eta = 10^{-3}, \beta_2 = 0.999 \), and \(\beta_1 = 0.9 \) in PyTorch.

Comparison with Theorem 1 and existing works
To our best knowledge, Theorem 2 is the first to derive the iteration complexity \(O(\frac{1}{\sqrt{T}}) \). Previously, the state-of-art iteration complexity is \(O(\log \frac{1}{\tau}) \) [10] where they additionally assume bounded gradient. Theorem 2 is also tight than Theorem 1 (while Theorem 1 holds for more general hyperparameter settings). As discussed in Section 4.1, if applying the hyperparameter setting in Theorem 2 (i.e., \(\eta = \frac{a}{T}, \beta_2 = 1 - \frac{b}{T} \) and \(\beta_1 = c\beta_2 \)) to Theorem 1, we will obtain that \(\mathbb{E} \|\nabla f(\mathbf{w}_T)\| \leq O(\text{poly}(\log T)/\sqrt{T}) \) and \(C_e(A, \Delta, L, \sigma^2) = O(\log \frac{1}{\delta}) \), which
is worse than the upper bound in Theorem 2 and the lower bound in Proposition 1 by a logarithmic factor.

Comparison with AdaGrad. AdaGrad [12] is another popular adaptive optimizer. Under Assumptions 1 and 2, the state-of-art iteration complexity of AdaGrad is $O\left(\frac{\log^{1/2} T}{\epsilon} \right)$ [13], which is worse than Adam by a logarithmic factor. Here we show that such a gap may be not due to the limitation of analysis, and can be explained by analogizing AdaGrad to Adam without momentum as SGD with diminishing learning rate to SGD with constant learning rate. To start with, the update rule of AdaGrad is given as

$$\nu_t = \nu_{t-1} + g_t^{\otimes 2}, \quad w_{t+1} = w_t - \eta \frac{1}{\sqrt{\nu_t}} \odot g_t.$$ \hspace{1cm} (6)

We first show that in Algorithm 1, if we allow the hyperparameters to be dynamical, i.e.,

$$\nu_t = \beta_{2,t}\nu_{t-1} + (1 - \beta_{2,t})g_t^{\otimes 2}, \quad m_t = \beta_{1,t}m_{t-1} + (1 - \beta_{1,t})g_t, \quad w_{t+1} = w_t - \eta_t \frac{1}{\sqrt{\nu_t}} \odot m_t.$$ \hspace{1cm} (7)

then Adam is equivalent to AdaGrad by setting $\eta_t = \frac{\eta}{\sqrt{t}}$, $\beta_{1,t} = 0$, and $\beta_{2,t} = 1 - \frac{1}{t}$. Specifically, by setting $\mu_t = \nu_t$ in Eq. (7), we have Eq. (7) is equivalent to with Eq. (6) (by replacing ν_t by μ_t in Eq. (6)). Comparing the above hyperparameter setting with that in Theorem 2, we see that the above hyperparameter setting can be obtained by changing T to t and setting $c = 0$ in Theorem 2. This is similar to the relationship between SGD with diminishing learning rate $\Theta(1/\sqrt{T})$ and SGD with diminishing learning rate $\Theta(1/\sqrt{T})$. Moreover, the iteration complexity of SGD with diminishing learning rate $\Theta(1/\sqrt{T})$ also has an additional logarithmic factor than SGD with constant learning rate, which may explain the gap between AdaGrad and Adam.

6 Limitations

Despite that our work provide the first result closing the upper bound and lower bound of the iteration complexity of Adam, there are several limitations listed as follows:

Dependence over the dimension d. The bounds in Theorem 1 and Theorem 2 is monotonously increasing with respect to d. This is undesired since the upper bound of iteration complexity of SGD is invariant with respect to d. Nevertheless, removing such an dependence over d is technically hard since we need to deal with every coordinate separately due to coordinate-wise learning rate, while the descent lemma does not hold for a single coordinate but combines all coordinates together. To our best knowledge, all existing works on the convergenc of Adam also suffers from the same problem. We leave removing the dependence over d as an important future work.

No better result with momentum. It can be observed that in Theorem 1 and Theorem 2, the tightest bound is achieved when $\beta_1 = 0$ (i.e., no momentum is applied). This contradicts with the common wisdom that momentum helps to accelerate. Although the benefit of momentum is not very clear for simple optimizer SGD with momentum, we view this as a limitation of our work and defer proving the benefit of momentum in Adam as a future work.

7 Related works

Section 3 has provided a detailed discussion over existing convergence analysis of Adam. In this section, we briefly review other related works. Adam is proposed with a convergence analysis in online optimization [16]. The proof, however, is latter shown to be flawed in Reddi et al. [20] as it requires the adaptive learning rate of Adam to be non-increasing. This motivates a line of works modifying Adam to ensure convergence. The modifications include enforcing the adaptive learning rate to be non-increasing [20, 5], imposing upper bound and lower bound of the adaptive learning rate [18], and using different approach to estimate second-order momentum [26, 7]. Recently, Chen et al. [6] discover a new optimizer Lion through Symbolic Discovery, which uses sign operation to replace the adaptive learning rate in Adam, achieving comparable performance of Adam with less memory costs.
References

A Related Works

B Auxiliary Lemmas

The following two lemmas are useful when bounding the second-order term.

Lemma 3. Assume we have $0 < \beta_2 < 1$ and a sequence of real numbers $(a_n)_{n=1}^{\infty}$. Let $b_0 > 0$ and $b_n = \beta_2 b_{n-1} + (1 - \beta_2) a_n^2$. Then, we have

$$\sum_{n=1}^{T} \frac{a_n^2}{b_n} \leq \frac{1}{1 - \beta_2} \left(\ln \left(\frac{b_T}{b_0} \right) - T \ln \beta_2 \right).$$

** Lemma 4.** Assume we have $0 < \beta_1^2 < \beta_2 < 1$ and a sequence of real numbers $(a_n)_{n=1}^{\infty}$. Let $b_0 > 0$, $b_n = \beta_2 b_{n-1} + (1 - \beta_2) a_n^2$, $c_0 = 0$, and $c_n = \beta_1 c_{n-1} + (1 - \beta_1) a_n$. Then, we have

$$\sum_{n=1}^{T} \frac{|c_n|^2}{b_n} \leq \frac{(1 - \beta_1)^2}{(1 - \beta_2^2)^2 (1 - \beta_2)} \left(\ln \left(\frac{b_T}{b_0} \right) - T \ln \beta_2 \right).$$

Proof. To begin with,

$$\sum_{n=1}^{T} \frac{|c_n|^2}{b_n} \leq (1 - \beta_1) \sum_{n=1}^{T} \frac{\beta_1^{n-1} |a_n|^2}{b_n} \leq (1 - \beta_1) \sum_{n=1}^{T} \frac{\beta_1^{n-1} |a_n|^2}{\sqrt{b_n}} \leq (1 - \beta_1) \left(\sum_{n=1}^{T} \frac{\beta_1^{n-1} |a_n|^2}{\sqrt{b_n}} \right) \leq \frac{(1 - \beta_1)^2}{1 - \beta_2} \left(\sum_{i=0}^{T} \frac{\beta_1^i}{\sqrt{b_n}} \right).$$

Applying Cauchy’s inequality, we obtain

$$\frac{|c_n|^2}{b_n} \leq (1 - \beta_1)^2 \left(\sum_{i=1}^{n} \frac{\beta_1^i}{\sqrt{b_n}} \right)^2 \leq (1 - \beta_1)^2 \left(\sum_{i=1}^{n} \frac{\beta_1^i}{\sqrt{b_n}} \right) \leq \frac{(1 - \beta_1)^2}{1 - \beta_2^2} \left(\sum_{i=1}^{n} \frac{1}{\sqrt{b_n}} \right) \leq (1 - \beta_1)^2 \left(\sum_{i=1}^{n} \frac{\beta_1^i}{\sqrt{b_n}} \right).$$

Summing the above inequality over n from 1 to T then leads to

$$\sum_{n=1}^{T} \frac{|c_n|^2}{b_n} \leq (1 - \beta_1)^2 \left(\sum_{i=1}^{T} \frac{\beta_1^i}{\sqrt{b_n}} \right) \leq (1 - \beta_1)^2 \left(\sum_{i=1}^{T} \frac{\beta_1^i}{\sqrt{b_n}} \right) \leq \frac{(1 - \beta_1)^2}{1 - \beta_2^2} \left(\sum_{i=1}^{T} \frac{1}{\sqrt{b_n}} \right).$$

The proof is completed.

The following lemma bound the update norm of Adam.

Lemma 5. We have $\forall t \geq 1, |w_{t+1,i} - w_{t,i}| \leq \eta \frac{1 - \beta_1}{\sqrt{1 - \beta_2^2}}.$

Proof. We have that

$$|w_{t+1,i} - w_{t,i}| = \eta \frac{m_{t,i}}{\sqrt{v_{t,i}}} \leq \eta \frac{\sum_{i=0}^{t-1} (1 - \beta_1) \beta_1^i |g_{t-i,i}|}{\sqrt{\sum_{i=0}^{t-1} (1 - \beta_2) \beta_1^i |g_{t-i,i}|^2 + \beta_2^i \nu_{0,t}}} \leq \eta \frac{1 - \beta_1}{\sqrt{1 - \beta_2^2}} \frac{\sum_{i=0}^{t-1} \beta_1^i |g_{t-i,i}|^2}{\sqrt{\sum_{i=0}^{t-1} \beta_2^i |g_{t-i,i}|^2}} \leq \eta \frac{1 - \beta_1}{\sqrt{1 - \beta_2^2}} \frac{1 - \beta_2}{\sqrt{1 - \beta_2^2}}.$$

Here the second inequality is due to Cauchy’s inequality. The proof is completed.
C Proof of Theorem 1

C.1 Proof of Lemma 1 and Lemma 2

Proof of Lemma 1. \(\forall i \in [0, t - 1] \), we have the following decomposition:

\[
F_t^i = \mathbb{E}\left[\left\langle G_{t-1}, \frac{1}{\sqrt{\nu_t^{i+1}}} \otimes m_{t-1} \right\rangle \right] + \mathbb{E}\left[\left\langle G_{t-1}, \left(\frac{1}{\sqrt{\nu_t^i}} - \frac{1}{\sqrt{\nu_t^{i+1}}} \right) \otimes m_{t-1} \right\rangle \right].
\]

As for (i)\(_t^i\), according to the definition of \(m_{t-1} \), it can be lower bounded as

\[
\mathbb{E}\left[\left\langle G_{t-1}, \frac{1}{\sqrt{\nu_t^{i+1}}} \otimes m_{t-1} \right\rangle \right] = \mathbb{E}\left[\left(1 - \beta_i \right) \frac{1}{\sqrt{\nu_t^i}} \otimes m_{t-1} \right] + \mathbb{E}\left[\left(1 - \beta_i \right) \frac{1}{\sqrt{\nu_t^{i+1}}} \otimes m_{t-1} \right] + \mathbb{E}\left[\left(1 - \beta_i \right) \frac{1}{\sqrt{\nu_t^i}} \otimes m_{t-1} \right] - \beta_i \mathbb{E}\left[\left\| w_{t-1} - w_{t-1} \right\| \left\| m_{t-1} \right\| \right].
\]

where the last inequality is due to Assumption 1. As for (ii)\(_t^i\), if \(i = 0 \), we have

\[
\begin{align*}
\mathbb{E}_{\mathcal{F}_t}[G_{i,i} \left(\frac{1}{\sqrt{\nu_t^i}} - \frac{1}{\sqrt{\nu_t^{i+1}}} \right) \otimes m_t] & \leq \sum_{i=1}^d |G_{i,i}| \mathbb{E}_{\mathcal{F}_t}[m_{i,i} \left| \frac{1}{\sqrt{\nu_t^i}} - \frac{1}{\sqrt{\nu_t^{i+1}}} \right|] \\
& = \sum_{i=1}^d |G_{i,i}| \mathbb{E}_{\mathcal{F}_t}[m_{i,i} \left(1 - \beta_2 \right) \frac{|G_{i,i}|^2 - |g_{i,i}|^2 + (1 - \beta_2)\sigma^2}{\nu_{i,i}^{1/2} \nu_t^{1/2} (\sqrt{\nu_{i,i}^{1/2} + \nu_t^{1/2}})}] \\
& \leq \sum_{i=1}^d \left| G_{i,i} \right| \mathbb{E}_{\mathcal{F}_t}[m_{i,i} \left(1 - \beta_2 \right) \frac{1 - \beta_2}{\nu_{i,i}^{1/2} (\sqrt{\nu_{i,i}^{1/2} + \nu_t^{1/2}})}] \\
& \leq \sum_{i=1}^d \left| G_{i,i} \right| \mathbb{E}_{\mathcal{F}_t}[m_{i,i} \left(1 - \beta_2 \right) \frac{1 - \beta_2}{\nu_{i,i}^{1/2} (\sqrt{\nu_{i,i}^{1/2} + \nu_t^{1/2}})}] \\
& \leq \sum_{i=1}^d \left(1 - \beta_2 \right) \left| G_{i,i} \right| \mathbb{E}_{\mathcal{F}_t}[m_{i,i}^2] + \sum_{i=1}^d \left(1 - \beta_2 \right) \frac{1 - \beta_2}{\nu_{i,i}^{1/2} (\sqrt{\nu_{i,i}^{1/2} + \nu_t^{1/2}})} \right]
\end{align*}
\]

where inequality (**) is due to the triangle inequality, and inequality (**) is due to the mean-value inequality, and the last inequality is due to Assumption 2.
Applying Cauchy's inequality, we obtain the RHS of the above inequality is smaller than

\[\sum_{t=1}^{d} |G_{t-i,l}| \left[\left(\frac{1}{\sqrt{\nu^i_t}} - \frac{1}{\sqrt{\nu^{i+1}_t}} \right) \circ m_{t-i,l} \right] \]

\[\leq \sum_{t=1}^{d} |G_{t-i,l}| \left[|m_{t-i,l}| \left(\frac{1}{\sqrt{\nu^i_t}} - \frac{1}{\sqrt{\nu^{i+1}_t}} \right) \right] \]

\[\leq \sum_{t=1}^{d} |G_{t-i,l}| \left[|m_{t-i,l}| \left(1 - \beta_2 \right) \left(|G_{t-i,l}|^2 - |G_{t-i+1,l}|^2 \right) \right] \]

\[\leq \sum_{t=1}^{d} |G_{t-i,l}| \left[|m_{t-i,l}| \left(\sum_{j=0}^{i-1} \beta_2 (1 - \beta_2) \right) \left(|G_{t-i,l}|^2 - |G_{t-i+1,l}|^2 \right) \right] \]

\[\leq \sum_{t=1}^{d} |G_{t-i,l}| \left[\sqrt{\sum_{j=0}^{i-1} \beta_2 (1 - \beta_2) \left(|G_{t-i,l}|^2 - |G_{t-i+1,l}|^2 \right)} \right] \]

\[\leq \sum_{t=1}^{d} |G_{t-i,l}| \left[\sqrt{\sum_{j=0}^{i-1} \beta_2 (1 - \beta_2) \left(|G_{t-i,l}|^2 - |G_{t-i+1,l}|^2 \right)} \right] \]

Here inequality (a) is due to the mean-value inequality, and inequality (c) is due to Lemma 5. Putting the estimation of (i) \[i \] and (ii) \[i \] together completes the proof. \[\square \]

Proof of Lemma 2. To begin with, we have that

\[\sum_{t=1}^{T} \mathbb{E} \left[\frac{G_{t,i,l}}{\sqrt{\nu^i_t}} 1_{|G_{t,i,l}| \geq \sigma} \right] \leq \sum_{t=1}^{T} \mathbb{E} \left[\frac{|G_{t,i,l}|^2}{\nu^i_t} 1_{|G_{t,i,l}| \geq \sigma} \right]. \]

(8)

On the other hand, we have that

\[\frac{|G_{t,i,l}|^2}{\sqrt{\nu^i_t}} 1_{|G_{t,i,l}| \geq \sigma} \geq \frac{2}{3} \mathbb{E} |g_{t,i,l}|^2 + \frac{1}{3} \sigma^2 1_{|G_{t,i,l}| \geq \sigma} \geq \frac{2}{3} \mathbb{E} |g_{t,i,l}|^2 + \frac{1}{3} \sigma^2 1_{|G_{t,i,l}| \geq \sigma} \]

\[\geq \frac{2}{3} \mathbb{E} |g_{t,i,l}|^2 + \frac{1}{3} \sigma^2 1_{|G_{t,i,l}| \geq \sigma} \]

\[\geq \mathbb{E} |g_{t,i,l}|^2 + \frac{1}{3} \sigma^2 1_{|G_{t,i,l}| \geq \sigma}. \]
Here the last inequality is due to the concavity of $\frac{g}{\sqrt{\beta_2\sigma^2}}$ with respect to x. As a conclusion,
\[
\sum_{t=1}^{T} \mathbb{E} \left[\frac{|G_{t,l}|^2}{\sqrt{\nu_{t,l}}} 1_{|G_{t,l}| \geq \sigma} \right] \geq \sum_{t=1}^{T} \mathbb{E} \left[\frac{\left(\frac{1}{2} |g_{t,l}|^2 + \frac{1-\beta_2}{4} \sigma^2\right)}{\sqrt{\beta_2
\nu_{t-1,l} + (1-\beta_2)|g_{t,l}|^2 + (1-\beta_2)\sigma^2}} 1_{|G_{t,l}| \geq \sigma} \right]
\]
\[
\geq \frac{1}{3(1-\beta_2)} \sum_{t=1}^{T} \mathbb{E} \left(\sqrt{\nu_{t,l} + (1-\beta_2)\sigma^2} - \sqrt{\beta_2(\nu_{t-1,l} + (1-\beta_2)\sigma^2)} \right) 1_{|G_{t,l}| \geq \sigma}.
\]

On the other hand, as stated in Section 4.2, we define $\{\tilde{v}_{t,l}\}_{t=0}^{\infty}$ as $\tilde{v}_{0,l} = \nu_{0,l}$, $\tilde{v}_{t,l} = \tilde{v}_{t-1,l} + g_{t,l}^T \nu_{t-1,l}^{\frac{1}{2}}$ for $\nu_{t,l} = \nu_{t-1,l} + \beta_2 \nu_{t-1,l}^{\frac{1}{2}} \nu_{t-1,l}^{\frac{1}{2}}$, and thus
\[
\sum_{t=1}^{T} \mathbb{E} \left(\sqrt{\nu_{t,l} + (1-\beta_2)\sigma^2} - \sqrt{\beta_2(\nu_{t-1,l} + (1-\beta_2)\sigma^2)} \right) 1_{|G_{t,l}| < \sigma}
\]
\[
= \sum_{t=1}^{T} \mathbb{E} \left(\sqrt{\beta_2\nu_{t-1,l} + (1-\beta_2)|g_{t,l}|^2 + (1-\beta_2)\sigma^2} - \sqrt{\beta_2(\nu_{t-1,l} + (1-\beta_2)\sigma^2)} \right) 1_{|G_{t,l}| < \sigma}
\]
\[
\leq \sum_{t=1}^{T} \mathbb{E} \left(\sqrt{\beta_2\tilde{v}_{t-1,l} + (1-\beta_2)|g_{t,l}|^2 + (1-\beta_2)\sigma^2} - \sqrt{\beta_2(\tilde{v}_{t-1,l} + (1-\beta_2)\sigma^2)} \right) 1_{|G_{t,l}| < \sigma}
\]
\[
\leq \sum_{t=1}^{T} \mathbb{E}(\sqrt{\tilde{v}_{t,l} - (1-\beta_2)|g_{t,l}|^2} 1_{|G_{t,l}| < \sigma} + (1-\beta_2)\sigma^2) - \sqrt{\beta_2(\tilde{v}_{t-1,l} + (1-\beta_2)\sigma^2)})
\]
\[
= \sum_{t=1}^{T} \mathbb{E}(\sqrt{\tilde{v}_{t,l} + (1-\beta_2)\sigma^2} - \sqrt{\beta_2(\tilde{v}_{t-1,l} + (1-\beta_2)\sigma^2)})
\]
\[
= \mathbb{E}\sqrt{\tilde{v}_{T,l} + (1-\beta_2)\sigma^2} + (1 - \sqrt{\beta_2}) \sum_{t=1}^{T-1} \mathbb{E}\sqrt{\tilde{v}_{t,l} + (1-\beta_2)\sigma^2} - \mathbb{E}\sqrt{\beta_2(\tilde{v}_{0,l} + (1-\beta_2)\sigma^2}).
\]

All in all, summing the above two inequalities together, we obtain that
\[
\mathbb{E}\sqrt{\nu_{T,l} + (1-\beta_2)\sigma^2} + (1 - \sqrt{\beta_2}) \sum_{t=1}^{T-1} \mathbb{E}\sqrt{\nu_{t,l} + (1-\beta_2)\sigma^2} - \mathbb{E}\sqrt{\beta_2(\nu_{0,l} + (1-\beta_2)\sigma^2)}
\]
\[
= \sum_{t=1}^{T} \mathbb{E}(\sqrt{\nu_{t,l} + (1-\beta_2)\sigma^2} - \sqrt{\nu_{t-1,l} + (1-\beta_2)\sigma^2})
\]
\[
\leq \sum_{t=1}^{T} \mathbb{E}(\sqrt{\nu_{t,l} + (1-\beta_2)\sigma^2} - \sqrt{\nu_{t-1,l} + (1-\beta_2)\sigma^2}) 1_{|G_{t,l}| \geq \sigma}
\]
\[
+ \sum_{t=1}^{T} \mathbb{E}(\sqrt{\nu_{t,l} + (1-\beta_2)\sigma^2} - \sqrt{\nu_{t-1,l} + (1-\beta_2)\sigma^2}) 1_{|G_{t,l}| < \sigma}
\]
\[
= 3(1-\beta_2) \sum_{t=1}^{T} \mathbb{E} \left[\frac{|G_{t,l}|^2}{\sqrt{\nu_{t,l}}} \right] + \mathbb{E}\sqrt{\nu_{T,l} + (1-\beta_2)\sigma^2} + (1 - \sqrt{\beta_2}) \sum_{t=1}^{T-1} \mathbb{E}\sqrt{\nu_{t,l} + (1-\beta_2)\sigma^2} - \mathbb{E}\sqrt{\beta_2(\nu_{0,l} + (1-\beta_2)\sigma^2)}.
\]

As \(\mathbb{E}\sqrt{\nu_{T,l} + (1-\beta_2)\sigma^2} \geq \mathbb{E}\sqrt{\tilde{v}_{T,l} + (1-\beta_2)\sigma^2} \) and \(\mathbb{E}\sqrt{\nu_{0,l} + (1-\beta_2)\sigma^2} = \)
\[
\mathbb{E}\sqrt{\tilde{v}_{0,l} + (1-\beta_2)\sigma^2}, \]
we obtain that
\[
(1 - \sqrt{\beta_2}) T \sum_{t=1}^{T} \mathbb{E}\sqrt{\nu_{t,l} + (1-\beta_2)\sigma^2} \leq 3(1-\beta_2) T \sum_{t=1}^{T} \mathbb{E} \left[\frac{|G_{t,l}|^2}{\sqrt{\nu_{t,l}}} \right] + (1 - \sqrt{\beta_2}) T \sum_{t=1}^{T} \mathbb{E}\sqrt{\nu_{t,l} + (1-\beta_2)\sigma^2}
\]
\[
\leq 3(1-\beta_2) T \sum_{t=1}^{T} \mathbb{E} \left[\frac{|G_{t,l}|^2}{\sqrt{\nu_{t,l}}} \right] + (1 - \sqrt{\beta_2}) T \sum_{t=1}^{T} \sqrt{\mathbb{E}\nu_{t,l} + (1-\beta_2)\sigma^2}
\]
\[
\leq 3(1-\beta_2) T \sum_{t=1}^{T} \mathbb{E} \left[\frac{|G_{t,l}|^2}{\sqrt{\nu_{t,l}}} \right] + (1 - \sqrt{\beta_2}) T \sum_{t=1}^{T} \sqrt{\mathbb{E}\nu_{0,l} + (3-\beta_2)\sigma^2}.
\]
\[
(9)
\]
Leveraging Eq. (4), we then obtain that

\[
\sum_{t=1}^{T} \sum_{l=1}^{d} \mathbb{E} \nu_{t,l} + (1 - \beta_2) \sigma^2
\]

\[
\leq 3(1 + \sqrt{\beta_2}) \sum_{t=1}^{T} \mathbb{E} \left[\frac{|G_{t,l}|^2}{\nu_{t,l}} \right] + \sum_{t=1}^{T} \sum_{l=1}^{d} \mathbb{E} \nu_{t,l} + (3 - \beta_2) \sigma^2
\]

where in the last inequality we use the concavity of \(h(x) = \ln x \). Solving the above inequality with respect to \(\sum_{t=1}^{T} \sum_{l=1}^{d} \mathbb{E} \nu_{t,l} + (1 - \beta_2) \sigma^2 \) then gives

\[
\sum_{t=1}^{T} \sum_{l=1}^{d} \mathbb{E} \nu_{t,l} + (1 - \beta_2) \sigma^2 \leq 2T \sum_{l=1}^{d} \mathbb{E} \nu_{0,l} + (3 - \beta_2) \sigma^2 + 4dC_1 \ln dC_1
\]

The proof is then completed.

\[
\square
\]

C.2 Proof of Theorem 1

Proof of Theorem 1. As stated in Section 4.2, the proof involves solving two key challenges. We respectively divide the proof into two stages according to the challenges.

Stage I. Based on Lemma 1, we can estimate \(\mathbb{E} (G_t, \frac{1}{\sqrt{\nu_t}} \odot m_t) = F_t^0 \) recursively. Specifically, we have

\[
F_t^0 \geq \sum_{i=0}^{t-1} \beta_i \left(\frac{1 - \beta_1}{2} \right) \mathbb{E} \left[\left\| \frac{1}{\sqrt{\nu_{t+1}}} \odot G_{t-i} \right\|^2 \right] - \beta_t \mathbb{E} \left[\left\| w_{t-i} - w_{t-i-1} \right\| \left\| \frac{1}{\sqrt{\nu_{t+1}}} \odot m_{t-i-1} \right\| \right]
\]

\[
- \left(2 \sqrt{1 - \beta_2} \sigma + L^2 \frac{\eta^2 (1 - \beta_1)}{(1 - \beta_2) \frac{\sigma}{2} (1 - \beta_2) \frac{i}{2}} \right) \mathbb{E} \left[\left\| \frac{1}{\sqrt{\nu_{t-i}}} \odot m_{t-i} \right\|^2 \right]
\]

\[
\geq \frac{(1 - \beta_1)}{2} \mathbb{E} \left[\left\| \frac{1}{\sqrt{\nu_{t}}} \odot G_{t} \right\|^2 \right] - \sum_{i=0}^{t-1} \beta_i \left(\beta_t \mathbb{E} \left[\left\| w_{t-i} - w_{t-i-1} \right\| \left\| \frac{1}{\sqrt{\nu_{t+1}}} \odot m_{t-i-1} \right\| \right] \right.
\]

\[
+ \left(2 \sqrt{1 - \beta_2} \sigma + L^2 \frac{\eta^2 (1 - \beta_1)}{(1 - \beta_2) \frac{\sigma}{2} (1 - \beta_2) \frac{i}{2}} \right) \mathbb{E} \left[\left\| \frac{1}{\sqrt{\nu_{t-i}}} \odot m_{t-i} \right\|^2 \right]
\]
Applying the above inequality back to Eq. (3) then gives
\[
\mathbb{E}f(w_{t+1})
\leq \mathbb{E}f(w_t) - \frac{(1 - \beta_1)\eta}{2} \left\| \frac{1}{\sqrt{\nu_t}} \odot G_t \right\|^2 + \frac{L^2}{2} \eta^2 \left\| \frac{1}{\sqrt{\nu_t}} \odot m_t \right\|^2 + (t - 1) \sum_{i=0}^{t-1} \beta_i^2 \left(\left\| w_{t-i} - w_{t-i-1} \right\| \right).
\]

Summing the above inequality with respect to \(t \) then gives
\[
\mathbb{E}f(w_{T+1})
\leq \mathbb{E}f(w_1) - \frac{(1 - \beta_1)\eta}{2} \left\| \frac{1}{\sqrt{\nu_1}} \odot G_1 \right\|^2 + \frac{L^2}{2} \eta^2 \left\| \frac{1}{\sqrt{\nu_1}} \odot m_1 \right\|^2 + \sum_{i=1}^{T} \beta_i^2 \left(\left\| w_{T-i} - w_{T-i-1} \right\| \right).
\]

Here the inequality is due to
\[
2 \sqrt{1 - \frac{\beta_2}{1 - \beta_1}} \eta \sum_{i=1}^{T} \beta_i^2 \mathbb{E} \left\| \frac{1}{\sqrt{\nu_{i+1}}} \odot m_{i+1} \right\|^2 = 2 \sqrt{1 - \frac{\beta_2}{1 - \beta_1}} \eta \sum_{i=1}^{T} \beta_i^2 \left(\left\| \frac{1}{\sqrt{\nu_{i+1}}} \odot m_{i+1} \right\|^2 \right)
\]
\[
\leq 2 \sqrt{1 - \frac{\beta_2}{1 - \beta_1}} \eta \sum_{i=1}^{T} \beta_i^2 \left(\left\| \frac{1}{\sqrt{\nu_{i+1}}} \odot m_{i+1} \right\|^2 \right).
\]

Applying Lemma 4, we obtain that
\[
\mathbb{E}f(w_{T+1})
\leq \mathbb{E}f(w_1) + \sum_{i=1}^{T} \left(\frac{L^2}{2} \eta^2 + 2 \sqrt{1 - \frac{\beta_2}{1 - \beta_1}} \eta \sigma + \frac{\eta^2 \beta_1}{\sqrt{\beta_2(1 - \beta_2)(1 - \frac{\beta_1}{\beta_2})}} \right) \left(\left\| \frac{1}{\sqrt{\nu_{i+1}}} \odot m_{i+1} \right\|^2 \right).
\]
Applying the definition of \(E \), The proof of Stage I is completed.

\textbf{Stage II.} According to Cauchy’s inequality, we have

\[
\left(E \sum_{t=1}^{T} \| G_t \|_1 \right)^2 \leq \left(\sum_{t=1}^{T} E \left[\left\| \frac{1}{\sqrt{v_t}} \otimes G_t \right\| \right] \right) \left(\sum_{t=1}^{T} E \left[\left\| \sqrt{v_t} \right\| \right] \right).
\]

(10)

Meanwhile, by Lemma 2, we have

\[
\sum_{t=1}^{T} E \left[\left\| \sqrt{v_t} \right\| \right] = E \left[\sum_{t=1}^{T} \sum_{l=1}^{d} \sqrt{\beta_2 v_{t-1,l}} + (1 - \beta_2) |G_{t,l}|^2 + (1 - \beta_2) \sigma^2 \right] \\
\leq E \left[\sum_{t=1}^{T} \sum_{l=1}^{d} \left(\sqrt{\beta_2 v_{t-1,l}} + (1 - \beta_2) \sigma^2 + \sqrt{1 - \beta_2} |G_{t,l}| \right) \right] \\
= E \left[\sum_{t=1}^{T} \sum_{l=1}^{d} \sqrt{\beta_2 v_{t-1,l}} + (1 - \beta_2) \sigma^2 + \sum_{l=1}^{T} \sqrt{1 - \beta_2} |G_{t,l}| \right] \\
\leq E \left[\sum_{t=1}^{T} \sqrt{1 - \beta_2} |G_{t,1}| \right] + 2T \sqrt{\nu_{0,l} + (3 - \beta_2) \sigma^2 + 4dC_1 \ln dC_1} \\
+ \frac{24}{(1 - \beta_1)\eta} \left(f(w_1) + 2 \sum_{l=1}^{d} C_1 \left(\ln \left(\frac{1}{\nu_{0,l}} \right) - T \ln \beta_2 \right) \right).
\]

Combining the above inequality and Eq. (10) gives

\[
\left(E \sum_{t=1}^{T} \| G_t \|_1 \right)^2 \leq \frac{2}{(1 - \beta_1)\eta} \left(f(w_1) + \sum_{l=1}^{d} C_1 \left(\left(\ln \left(\frac{\nu_{T,l}}{\nu_{0,l}} \right) - T \ln \beta_2 \right) \right) \right) \\
\times \left(E \left[\sum_{t=1}^{T} \sqrt{1 - \beta_2} |G_{t,1}| \right] + 2T \sqrt{\nu_{0,l} + (3 - \beta_2) \sigma^2 + 4dC_1 \ln dC_1} \\
+ \frac{24}{(1 - \beta_1)\eta} \left(f(w_1) + 2 \sum_{l=1}^{d} C_1 \left(\ln \left(\frac{1}{\nu_{0,l}} \right) - T \ln \beta_2 \right) \right) \right).
\]

Solving the above quadratic inequality with respect to \(E \sum_{t=1}^{T} \| G_t \|_1 \) then completes the proof.

\[\square\]

\textbf{D Proof of Theorem 2}

\textit{Proof.} According to Stage I in the proof of Theorem 1, we obtain

\[
E f(w_{T+1}) \leq f(w_1) + \sum_{l=1}^{d} \left(\frac{L}{2} \eta^2 + 2 \frac{\sqrt{1 - \beta_2}}{(1 - \beta_1)\eta^2} \frac{\eta^2 \beta_1}{\sqrt{\beta_2(1 - \beta_2)}} + \frac{L}{2} \frac{\beta_1 \eta^2 (1 - \beta_1)}{(1 - \beta_2)^2} \frac{d}{\sigma (1 - \beta_2)^2} \right) \frac{1}{1 - \beta_2} \\
\times \left(\ln \left(\frac{\nu_{T,l}}{\nu_{0,l}} \right) - T \ln \beta_2 \right) - \sum_{l=1}^{T} \frac{(1 - \beta_1)\eta}{2} E \left[\left\| \frac{1}{\sqrt{\nu_t}} \otimes G_t \right\| \right]^2.
\]

Applying the definition of \(\eta, \beta_1, \) and \(\beta_2, \) we obtain that

\[
\sum_{t=1}^{T} E \left[\left\| \frac{1}{\sqrt{\nu_t}} \otimes G_t \right\| \right]^2 \leq \frac{2\sqrt{T}}{\sqrt{b}} \left(D_1 + \frac{D_2}{d} \sum_{l=1}^{d} E \ln \nu_{T,l} \right).
\]

(11)
Meanwhile, we have that

\[
\frac{|G_{t,l}|^2}{\sqrt{\nu_{t,l}}} \mathbf{1}_{|G_{t,l}| \geq \sigma} \geq \frac{1}{2} \mathbb{E}[F_t | g_{t,l}|^2] \mathbf{1}_{|G_{t,l}| \geq \sigma} = \frac{1}{2} \mathbb{E}[F_t | g_{t,l}|^2]
\]

where the last inequality is due to that

\[
\beta_2 \nu_{t-1,l} + (1 - \beta_2) |g_{t,l}|^2 = (1 - \beta_2) \sum_{s=1}^{T} \beta_{s-1}^2 |g_{s,l}|^2 + \beta_{T}^2 \nu_{0,l}
\]

\[
\leq (1 - \beta_2) \sum_{s=1}^{T} |g_{s,l}|^2 + \nu_{0,l}.
\] (12)

Furthermore, we have

\[
\frac{\sigma^2 + \nu_{0,l}}{1 - \beta_2} + \sum_{t=1}^{T} \mathbb{E} \left[\frac{|g_{t,l}|^2}{\sqrt{\nu_{t,l}}} \right] \mathbf{1}_{|G_{t,l}| < \sigma} \leq \frac{\nu_{0,l}}{1 - \beta_2} + \sum_{s=1}^{T} |g_{s,l}|^2 \mathbf{1}_{|G_{s,l}| < \sigma} + \sigma^2 \leq \sqrt{\frac{\nu_{0,l}}{1 - \beta_2} + \sum_{s=1}^{T} |g_{s,l}|^2 \mathbf{1}_{|G_{s,l}| < \sigma} + \sigma^2}
\]

\[
\leq \sqrt{\frac{\nu_{0,l}}{1 - \beta_2} + 2\sigma^2 T + \sigma^2}.
\]

Conclusively, we obtain

\[
\mathbb{E} \left[\frac{\nu_{0,l}}{1 - \beta_2} + \sum_{s=1}^{T} |g_{s,l}|^2 + \sigma^2 \right] = \frac{\sigma^2 + \nu_{0,l}}{1 - \beta_2} + \sum_{t=1}^{T} \mathbb{E} \left[\frac{|g_{t,l}|^2}{\sqrt{\nu_{t,l}}} \right] \mathbf{1}_{|G_{t,l}| < \sigma} + \sum_{s=1}^{T} |g_{s,l}|^2 \mathbf{1}_{|G_{s,l}| < \sigma} + \sigma^2
\]

\[
+ \sum_{t=1}^{T} \mathbb{E} \left[\frac{|g_{t,l}|^2}{\sqrt{\nu_{t,l}}} \right] \mathbf{1}_{|G_{t,l}| \geq \sigma} \leq \sqrt{\frac{\nu_{0,l}}{1 - \beta_2} + 2\sigma^2 T + \sigma^2} + 2\sqrt{1 - \beta_2} \sum_{t=1}^{T} \frac{|G_{t,l}|^2}{\sqrt{\nu_{t,l}}} \mathbf{1}_{|G_{t,l}| \geq \sigma}.
\]
Summing the above inequality with respect to l then gives

$$\sum_{l=1}^{d} \mathbf{E} \left[\frac{\nu_{0,l}}{1 - \beta_2} + \sum_{s=1}^{T} |g_{s,l}|^2 + \sigma^2 \right] \leq \sum_{l=1}^{d} \sqrt{\frac{\nu_{0,l}}{1 - \beta_2} + 2\sigma^2 T + \sigma^2} + 2\sqrt{1 - \beta_2} \sum_{l=1}^{d} \sum_{l=1}^{T} \frac{|G_{l,l}|^2}{\sqrt{\nu_{l,l}}}$$

$$\sum_{l=1}^{d} \sqrt{\frac{\nu_{0,l}}{1 - \beta_2} + 2\sigma^2 T + \sigma^2} \leq \sum_{l=1}^{d} \sqrt{\frac{\nu_{0,l}}{1 - \beta_2} + 2\sigma^2 T + \sigma^2} + 4\sqrt{\frac{\nu_{0,l}}{1 - \beta_2}} \frac{d}{\sqrt{ab}} \left(L a^2 + 4 \frac{\alpha \sqrt{b} \sigma}{(1-c)^2} + 2 \frac{a^2 c}{1-c} + 2 \frac{L^2 c a^3 d}{\sqrt{b(1-c)^5} \sigma} \right) \left(\mathbf{E} \ln \left(\frac{\nu_{T,l}}{\nu_{0,l}} \right) + b \right)$$

$$= \sum_{l=1}^{d} \sqrt{\frac{\nu_{0,l}}{1 - \beta_2} + 2\sigma^2 T + \sigma^2} + 4\sqrt{\frac{\nu_{0,l}}{1 - \beta_2}} \frac{d}{\sqrt{ab}} \left(L a^2 + 4 \frac{\alpha \sqrt{b} \sigma}{(1-c)^2} + 2 \frac{a^2 c}{1-c} + 2 \frac{L^2 c a^3 d}{\sqrt{b(1-c)^5} \sigma} \right) \left(- \mathbf{E} \ln \left(\nu_{0,l} \right) + b \right)$$

$$\leq \sum_{l=1}^{d} \sqrt{\frac{\nu_{0,l}}{1 - \beta_2} + 2\sigma^2 T + \sigma^2} + 4\sqrt{\frac{\nu_{0,l}}{1 - \beta_2}} \frac{d}{\sqrt{ab}} \left(L a^2 + 4 \frac{\alpha \sqrt{b} \sigma}{(1-c)^2} + 2 \frac{a^2 c}{1-c} + 2 \frac{L^2 c a^3 d}{\sqrt{b(1-c)^5} \sigma} \right) \left(\mathbf{E} \sum_{l=1}^{d} \sqrt{1 - \beta_2} \frac{\nu_{0,l}}{1 - \beta_2} + \sum_{s=1}^{T} |g_{s,l}|^2 + \sigma^2 \right)$$

where the second inequality is due to Eq. (11), the second-to-last inequality is due to Eq. (12), and the last inequality is due to Jensen’s inequality. Solving the above inequality with respect to $

\sqrt{1 - \beta_2} \sum_{l=1}^{d} \mathbf{E} \sqrt{\frac{\nu_{0,l}}{1 - \beta_2} + \sum_{s=1}^{T} |g_{s,l}|^2 + \sigma^2}$ then gives

$$\sqrt{1 - \beta_2} \sum_{l=1}^{d} \mathbf{E} \sqrt{\frac{\nu_{0,l}}{1 - \beta_2} + \sum_{s=1}^{T} |g_{s,l}|^2 + \sigma^2} \leq 2\sqrt{1 - \beta_2} D_1 + 4\sqrt{1 - \beta_2} D_2 \ln(1 + \sqrt{1 - \beta_2} D_2)$$

$$+ \sum_{l=1}^{d} \sqrt{\nu_{0,l} + 3\sigma^2}.$$

Therefore, by Cauchy’s inequality, we have

$$\mathbf{E} \left[\sum_{l=1}^{T} \| G_l \|_1 \right]^2 \leq \left(\sum_{l=1}^{T} \mathbf{E} \left[\left\| \frac{1}{\sqrt{\nu_{l,l}}} \odot G_l \right\|^2 \right] \right) \left(\sum_{l=1}^{T} \sum_{l=1}^{d} \mathbf{E} \sqrt{\nu_{l,l}} \right).$$
Since
\[
\sum_{t=1}^{T} \sum_{l=1}^{d} \sqrt{\nu_{t,l}^1} \leq \sum_{t=1}^{T} \sum_{l=1}^{d} \left(\sqrt{\beta_2 \nu_{t-1,l} + (1 - \beta_2) \sigma^2 + \sqrt{(1 - \beta_2)} |G_{t,l}|} \right)
\]

\[
\leq T \sum_{t=1}^{d} \sqrt{1 - \beta_2^2} \sqrt{\frac{\nu_{0,t,l}}{1 - \beta_2} + \sum_{s=1}^{T} g_{s,t}^2 + \sigma^2 + \sum_{t=1}^{T} \sum_{l=1}^{d} \sqrt{(1 - \beta_2)} |G_{t,l}|}
\]

\[
\leq T \left(2 \sqrt{1 - \beta_2} D_1 + 4 \sqrt{1 - \beta_2} D_2 \ln(1 + \sqrt{1 - \beta_2} D_2) + \sum_{l=1}^{d} \sqrt{\nu_{0,l} + 3 b \sigma^2} \right) + \sum_{l=1}^{T} \sqrt{(1 - \beta_2)} ||G_t||_1.
\]

we have
\[
E \left[\sum_{t=1}^{T} ||G_t||_1 \right]^2
\]

\[
\leq \left(T \left(2 \sqrt{1 - \beta_2} D_1 + 4 \sqrt{1 - \beta_2} D_2 \ln(1 + \sqrt{1 - \beta_2} D_2) + \sum_{l=1}^{d} \sqrt{\nu_{0,l} + 3 b \sigma^2} \right) + \sum_{t=1}^{T} \sqrt{(1 - \beta_2)} E ||G_t||_1 \right)
\]

\[
\times \frac{2 \sqrt{T}}{\sqrt{b}} \left(D_1 + \frac{D_2}{d} \sum_{t=1}^{d} E \ln \nu_{t,l} \right).
\]

Solving the above inequality with respect to \(\sum_{t=1}^{T} E ||G_t||_1 \) completes the proof.