
A Proof of Theorem 1454

We first prove that if there is an L2D probability estimator η̂ for Lϕ, then we can reconstruct a455

probability estimator η̃ for multiclass classification with ϕ if η is in ∆̃K+1, which is the collection of456

all the elements β ∈ ∆K+1 with βK+1 ≤ 1
2 . Then we show that according to the symmetry of ϕ, we457

can extend this estimator to ∆K+1, and then construct an unbounded L2D probability estimator for458

Lϕ.459

Proof. Denote by RLϕ(u,η(x),Pr(M = Y |X = x)) =
∑K
y=1 η(x)yϕ(u, y) + Pr(M = Y |X =460

x)ϕ(u,K+1) the conditional risk for L2D. Denote by η̂ a probability estimator for Lϕ that η̂(u∗) =461

[η(x); Pr(M = Y |X = x)] for all u∗ ∈ argminuRLϕ(u,η(x),Pr(M = Y |X = x)), we can462

learn that ∆K × [0, 1] is in the range of η̂. Then it is easy to verify that η̃(u) = η̂(u)
1+η̂K+1(u) ∈ ∆̃K+1463

is a valid probability estimator for K + 1-class multiclass classification with ϕ if the posterior464

probabilities [p(y|x)]K+1
y=1 is in ∆̃K+1.465

Then we construct a valid estimator for ∆K+1 based on η̃. Denote by P a permutation matrix that
exchanges the value of a vector’s first and last dimension, then we have the following estimator η̃′:

η̃′(u) =

{
η̃(u), uK+1 ̸= maxy uy,

P η̃(Pu), else.

We then prove that it is a valid estimator. Denote by ∆K+1
+ the set of all the β ∈ ∆K+1 that466

βK+1 ̸= maxy βy, we can learn that ∆K+1
+ ∈ ∆̃K+1. Then for any β ∈ ∆K+1

+ , denote by u∗467

the minimizer of conditional risk w.r.t. β and ϕ, we can learn that u∗K+1 ̸= maxy u
∗
y due to the468

consistency of ϕ and thus η̃′(u∗) = η̃(u∗) = β.469

For any β ̸∈ ∆K+1
+ , we can learn that Pβ ∈ ∆K+1

+ . Denote by u∗ the minimizer of conditional470

risk w.r.t. β and ϕ, then we can learn that Pu∗ must be the minimizer of Pβ according to the471

symmetry of ϕ. Then we have that η̃(Pu∗) = Pβ. Furthermore, notice that PPβ = β, then we472

have η̃′(u∗) = P η̃(Pu∗) = PPβ = β.473

Combining the two paragraphs above, we can learn that η̃′ is a valid multiclass probability estimator474

for ϕ. Then we can construct an unbounded L2D estimator as in (3), which indicates the existence of475

an unbounded probability estimator. Furthermore, since the loss function is unchanged, the collection476

of all the minimizers of RLϕ(u,η(x),Pr(M = Y |X = x)) are also unchanged, and thus the all the477

values should have the same value on U .478

B Proof of Proposition 1479

Proof. The boundedness of the first K dimensions is straightforward. The K + 1th dimension’s
boundedness can also be directly proved by reformulating it as

exp(uK+1)

exp(uK+1)+
∑K
y′=1

exp(uy′ )−maxy′∈{1,··· ,K} exp(uy′ )
.

Then we begin to prove its maxima-preserving. Denote by y1 = argmaxy∈{1,··· ,K} uy . It is easy to
verify that ψ̃y1(u) > ψ̃y(u) for any y ∈ {1, · · · ,K}/{y1} due to the property of softmax function.
Then we focus on the relation between ψ̃y1(u) and ψ̃K+1(u). We can learn that:

exp(uK+1)

exp(uK+1)+
∑K
y′=1

exp(uy′ )−exp(uy1 )
= 1

1+

∑K
y′=1

exp(u
y′ )−exp(uy1

)

exp(uK+1)

,

exp(uy1 )∑K
y′=1

exp(uy′ )
= 1

1+

∑K
y′=1

exp(u
y′ )−exp(uy1

)

exp(uy1
)

.

When uK+1 > uy1 , we can learn that
∑K
y′=1

exp(uy′ )−exp(uy1 )

exp(uK+1)
<

∑K
y′=1

exp(uy′ )−exp(uy1 )

exp(uy1)
, then480

ψ̃K+1(u) > ψ̃y1(u). Based on the formulations above, it is also easy to verify the cases when481

uy1 ≥ uK+1. Combining the discussions above and we can conclude the proof.482
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C Proof of Theorem 2483

Proof. The consistency can be directly obtained by recovering the class probability and expert484

accuracy according to the maxima-preserving, then we first focus on how our proposed estimator485

recovers the posterior probabilities.486

According to the property of log loss, it is easy to learn that ψ̃y(g∗(x)) = p(y|x) for y ∈ {1, · · · ,K}.487

When y = K + 1, we can learn from the range of our estimator and the property of binary log loss488

that ψ̃y(g∗(x)) = Pr(M = Y |X = x). Then we can conclude that ψ̃(g∗(x)) = η(x)× Pr(M =489

Y |X = x).490

Then we begin to prove that there is no unbounded probability estimator by contradiction. Suppose491

there exists an unbounded estimator ψ. For any g, it must be the solution of a distribution and expert492

whose posterior probability is ψ̃(g(x)) for each point x. However, for a g that there exists x that493

ψ(g(x)) ̸∈ ∆K × [0, 1], we can learn that it cannot be the solution of any distribution and expert494

according to the definition of probability estimator. We can learn from this contradiction that ψ is not495

a probability estimator as long as its range is not ∆K × [0, 1].496

D Proof of Corollary 1497

Proof. We can set the multi-class loss to ϕψ̃ to get our proposed loss:

ϕψ̃ (u, y) =


− log

(
exp(uy)∑K′−1

y′=1
exp(uy′ )

)
, y ̸= K ′,

− log

(
exp(uK′ )∑K′

y′=1
exp(uy′ )−maxy′∈{1,··· ,K′−1} expu

y′

)
, else.

A similar result can be deduced for the OvA-based surrogate by considering the following consistent
multi-class loss with a strictly proper binary composite loss ξ:

ϕOvA (u, y) =

{
ξ(uy) +

∑
y′ ̸=y,K′ ξ(−uy′), y ̸= K ′,

ξ(uK′)− ξ(−uk′), else.

We then begin to prove their consistency. It is easy to verify that ϕψ̃ is minimized when ψ̃(g(x)) =498

p(y|x)
1−p(K′|x) , and we can conclude its consistency using the maxima-preserving property of ψ̃.499

For ϕOvA, denote by ψOvA the inverse link of ξ. We can learn that g∗(x) = ψOvA(
p(y|x)

1−p(K′|x) ), and500

we can learn the consistency since ξ is strictly proper and thus ψOvA is increasing.501

E Proof of Theorem 3502

Proof. We first apply Pinsker’s inequality. We can learn that:

RLψ̃ (g)−R∗
Lψ̃

≥ Ep(x)
[
1

2
∥ψ̃1:K(g(x))− η(x)∥21 + 2(ψ̃K+1(g(x)− Pr(M = Y |X = x))2

]
.

We can learn that RLψ̃ (g)− R∗
Lψ̃

≥ Ep(x)
[
1
2∥ψ̃1:K(g(x))− η(x)∥21

]
immediately and learn that503

the bound for R01 following the analysis of cross-entropy loss in ordinary classification. Then we504

move to analyze the 0-1-deferral risk. We can further learn that :505

RLψ̃ (g)−R∗
Lψ̃

≥ Ep(x)
[
1

2
∥ψ̃1:K(g(x))− η(x)∥21 + 2(ψ̃K+1(g(x))− Pr(M = Y |X = x))2

]
≥ 1

2
Ep(x)

[
∥ψ̃1:K(g(x))− η(x)∥21 + (ψ̃K+1(g(x))− Pr(M = Y |X = x))2

]
For any x, when g(x) can induce the Bayes optimal solution for it, the excess risk is zero and the506

bound holds naturally. When it is not optimal, denote by ηK+1(x) = Pr(M = Y |X = x). y′ is the507
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dimension with the largest value of g(x) and that of η(x) is y′′. Then we can learn that:508

1

2

(
∥ψ̃1:K(g(x))− η(x)∥21 + (ψ̃K+1(g(x))− Pr(M = Y |X = x))2

)
≥ 1

2

(
ψ̃y′(g(x))− ηy′(x)− ψ̃y′′(g(x)) + ηy′′(x)

)2

≥ 1

2
(ηy′(x)− ηy′′(x))

2

The last step is obtained according to the maxima-preserving property. Further generalizing y′ and
y′′ to be instance-dependent (y′(x) and y′′(x)), we can learn the following inequality using Jensen’s
inequality:

RLψ̃ (g)−R∗
Lψ̃

≥ 1

2
(Ep(x)[|ηy′(x)− ηy′′(x)|])2,

which concludes the proof since the second expectation term is R⊥
01(g)−R⊥∗

01509

F Details of Experiments510

Details of Model and Optimizer: For all the methods on different datasets, we use the 28-layer511

WideResNet that is the same as those used in Mozannar and Sontag [28], Charusaie et al. [9]. The512

optimizer is SGD with cosine annealing, where the learning rate is 1e-1 and weight decay is 5e-4.513

We conduct the experiments on 8 NVIDIA GeForce 3090 GPUs and the batch size is 1024 (128 on514

each GPU). The training epoch on CIFAR100 is set to 200 and 400 on CIFAR10H, respectively.515

Details of Evaluation Metrics: The reported Error is the sample mean of ℓ⊥01, and Coverage is the
ratio of undeferred samples. The ECE of expert accuracy is defined below:

ECE =

N∑
i=1

bi|pi − ci|,

where bi is the ratio of predictions whose confidences fall into the ith bin. pi is the average confidence516

and ci is the average accuracy in this bin. We set the bin number to 15. The budgeted error is517

calculated as below: if the coverage is lower than 1 − x%, we will use the classifier’s prediction518

instead of the expert’s for those samples whose estimated expert accuracy is lower to make the519

coverage equal to 1− x%.520

G Limitations and Broader Impact521

Limitations: This work is designed for L2D without extra constraints on the number of expert522

queries. We believe that combining it with selective learning, i.e., adding explicit constraints on the523

ratio of deferred samples, can be a promising future direction.524

Broader Impact: When applied in real-world applications, the frequency of expert queries may525

be imbalanced due to the performance differences of the expert among samples. This is a common526

impact shared by all the L2D methods. We believe that introducing fairness targets into L2D can be527

another promising direction.528
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