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The source code and pre-trained models will be made publicly available for further research.1

In this supplementary material, we share more details that are not in our main paper, including:2

(a) Mathematical model of CASSI in Sec. 13

(b) More visual results in Sec. 24

(c) Limitation of our work in Sec. 35

(d) Broader impact in Sec. 46

(e) Code submission and reproducibility in Sec. 57

1 Mathematical Model of CASSI8

The mathematical model of coded aperture snapshot spectral imaging (CASSI) is illustrated in Fig. 1.9

The 3D HSI cube is denoted as F ∈ RH×W×Nλ , where H , W , and Nλ refer to the height, width,10

and total number of the wavelengths, respectively.11

Firstly, F is modulated along the channel dimension by a pre-defined coded aperture (i.e., a physical12

mask) M∗ ∈ RH×W , which can be formulated as13

F′(:, :, nλ) = F(:, :, nλ)⊙M∗, (1)

where F′ ∈ RH×W×Nλ indicates the modulated HSIs, nλ ∈ [1, . . . , Nλ] indexes the spectral14

wavelengths, and ⊙ denotes the element-wise multiplication.15

Secondly, the modulated cube passes through the disperser that scatters the light to different spatial16

locations according to the wavelengths. This process makes F′ change its shape and become tilted.17

Therefore, F′ could be considered as sheared along the y-axis. The tilted HSI cube is represented as18

F′′ ∈ RH×(W+d(Nλ−1))×Nλ , where d denotes the step of spatial shifting. We assume that λc implies19

the reference wavelength and F′′[:, :, nλc ] is the anchor image without being sheared along the y-axis.20

Subsequently, the dispersion process can be formulated as21

F′′(u, v, nλ) = F′(x, y + d(λn − λc), nλ), (2)

where (u, v) represents the coordinate system on the detector array, λn implies the wavelength of the22

nλ-th spectral channel, and d(λn − λc) denotes the spatial shifting offset of the nλ-th channel on F′′.23

Thirdly, the 3D data cube is compressed into a 2D measurement by integrating the spectral signals24

across all the wavelengths. Suppose that the sensor integrates the whole light ranging from λmin to25

λmax. Then the compressed measurement y(u, v) can be formulated as26

y(u, v) =

∫ λmax

λmin

f ′′(u, v, nλ)dλ, (3)

where f ′′ indicates the continuous representation of F′′. Furthermore, to discretize Eq. (3), we denote27

the 2D compressed measurement as Y ∈ RH×(W+d(Nλ−1)). Then Eq. (3) can be reformulated as28

Y =
∑Nλ

nλ=1
F′′(:, :, nλ) +E, (4)

where E ∈ RH×(W+d(Nλ−1)) implies the random imaging noise generated by the detector.29
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Figure 1: The schematic diagram of coded aperture snapshot spectral imaging (CASSI).

For the simplicity of model description, we denote M ∈ RH×(W+d(Nλ−1))×Nλ as the shifted30

version of the mask M∗ corresponding to distinct wavelengths. Similarly, we define F̃ ∈31

RH×(W+d(Nλ−1))×Nλ as the shifted version of original HSI signal F. Consequently, we have32

M(u, v, nλ) = M∗(x, y + d(λn − λc)),

F̃(u, v, nλ) = F(x, y + d(λn − λc), nλ).
(5)

Following this, we can reformulate the measurement Y in Eq. (4) as33

Y =
∑Nλ

nλ=1
F̃(:, :, nλ)⊙M(:, :, nλ) +E. (6)

Vectorization. To vectorize the matrices Y and E, we set y = vec(Y) and e = vec(E) ∈ Rn, where34

n = H(W +d(Nλ−1)) and vec(·) indicates the operation of concatenating all columns of the matrix35

as a single vector. Define x̃(nλ) = vec(X̃(:, :, nλ)), thus the vector x = vec([x̃(1), . . . , x̃(Nλ)]) ∈36

RnNλ . Similarly, the sensing matrix is defined as37

Φ = [D1, . . . ,DNλ
] ∈ Rn×nNλ , (7)

where Dnλ
= diag(vec(M(:, :, nλ))) is a diagonal matrix, of which the diagonal elements are38

vec(M(:, :, nλ)). Following this, we can reformulate Eq. (6) into a vectorized version as39

y = Φx+ e. (8)

Eq. (8) is similar to the compressive sensing [1, 2] task since Φ is a fat matrix, which means there40

are more columns than rows in Φ. It is noticed that Φ is highly sparse, with at most nNλ nonzero41

elements. Although most existing compressive sensing theories can hardly work for our application42

due to the very special structure of Φ as in Eq. (7), it has been proved that the HSI signal can still be43

reconstructed even if Nλ > 1 [3, 4, 5, 6].44

For a given compressed measurement y captured by the camera and pre-designed sensing matrix Φ,45

one practical task of CASSI is to solve x, which is also the core research problem of our work.46

2 More Visual Results47

Fig. 2 depicts the reconstructed HSIs with 5 out of 28 wavelengths of seven SOTA BNN-based48

methods (including BiConnect [7], BNN [8], Bi-Real [9], IRNet [10], ReActNet [11], BTM [12], and49

BBCU [13]) and our BiSRNet on simulation Scene 9, 6, 8, 3, and real Scene 1 from top to bottom. In50

simulation HSI restoration, other methods fail to restore high-frequency HSI contents. They tend to51

produce over-smoothed results sacrificing fine-grained details and structural textures, or introducing52

unpleasant artifacts. In contrast, our BiSRNet is more effective in producing perceptually-pleasing53
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Figure 2: Reconstructed HSI results of 7 SOTA BNN-based algorithms and our BiSRNet with 5 out of 28
spectral wavelengths on simulation Scene 9, 6, 8, 3, and real Scene 1 from top to bottom. BiSRNet reconstructs
more detailed contents and suppresses more real noise. Please zoom in for better visualization performance.

and sharp images, and maintaining the spatial smoothness of the homogeneous regions without54

introducing artifacts. Besides, in real HSI reconstruction, our BiSRNet is superior to other methods55

in fine-grained content reconstruction, spectral density responses, and real noise suppression. These56

results demonstrate the effectiveness, robustness, and generalization ability of our BiSRNet.57

3 Limitation58

The limitation of our work is that the model binarization sacrifices the HSI reconstruction performance.59

More specifically, compared to the full-precision counterpart, our BiSRNet is 4.35 (34.11 - 29.76)60

dB lower in PSNR and 0.099 (0.936 - 0.837) lower in SSIM. The PSNR and SSIM are reduced by61

12.8% and 10.6%, respectively. However, this performance drop is smaller than that of other model62

binarization methods. To handle this issue, we will study how to preserve more performance while63

reducing the memory and computational complexity as much as possible in model binarization.64

4 Broader Impact65

HSI reconstruction is one of the core tasks in snapshot compressive imaging (SCI) and has been66

studied for decades. Compared with normal RGB images, HSIs have more spectral bands to store67

richer information of the desired scenes. Hence, HSIs are widely applied in many computer vision68

related tasks, such as medical imaging [14, 15, 16, 17], object tracking [18, 19, 20, 21], remote69

sensing [22, 23, 24, 25], and so on. Nowadays, billions of 3D HSIs are compressed by SCI systems.70

Therefore, how to reconstruct the original 3D HSI signal from the 2D compressed measurement is71

worth studying. Our BiSRNet is capable of reconstructing HSIs more efficiently and accurately than72

all existing SOTA BNN-based methods, showing great value in practical applications.73

Until now, HSI reconstruction techniques have no negative social impact yet. Our proposed BiSRNet74

does not present any negative foreseeable societal consequences, either.75

5 Code Submission and Reproducibility76

We provide the source code and pre-trained models to reproduce the main results in Table 1,77

Figure 5, and Figure 5 of our paper. Please refer to the folder ‘code’ and read the file ‘README.md’78

for detailed instructions. The source code and pre-trained models will be released to the public.79

3



References80

[1] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, 2006.81

[2] C. Emmanuel, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruc-82

tion from highly incomplete frequency information,” IEEE Transactions on Information Theory,83

2006.84

[3] S. Jalali and X. Yuan, “Compressive imaging via one-shot measurements,” in IEEE International85

Symposium on Information Theory (ISIT), 2018.86

[4] S. Jalali and X. Yuan, “Snapshot compressed sensing: Performance bounds and algorithms,”87

IEEE Transactions on Information Theory, 2019.88

[5] Z. Meng, J. Ma, and X. Yuan, “End-to-end low cost compressive spectral imaging with spatial-89

spectral self-attention,” in ECCV, 2020.90

[6] T. Huang, W. Dong, X. Yuan, J. Wu, and G. Shi, “Deep gaussian scale mixture prior for spectral91

compressive imaging,” in CVPR, 2021.92

[7] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep neural networks93

with binary weights during propagations,” in NeurIPS, 2015.94

[8] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural networks,”95

in NeurIPS, 2016.96

[9] Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu, and K.-T. Cheng, “Bi-real net: Enhancing the97

performance of 1-bit cnns with improved representational capability and advanced training98

algorithm,” in ECCV, 2018.99

[10] H. Qin, R. Gong, X. Liu, M. Shen, Z. Wei, F. Yu, and J. Song, “Forward and backward100

information retention for accurate binary neural networks,” in CVPR, 2020.101

[11] Z. Liu, Z. Shen, M. Savvides, and K.-T. Cheng, “Reactnet: Towards precise binary neural102

network with generalized activation functions,” in ECCV, 2020.103

[12] X. Jiang, N. Wang, J. Xin, K. Li, X. Yang, and X. Gao, “Training binary neural network without104

batch normalization for image super-resolution,” in AAAI, 2021.105

[13] B. Xia, Y. Zhang, Y. Wang, Y. Tian, W. Yang, R. Timofte, and L. V. Gool, “Basic binary106

convolution unit for binarized image restoration network,” in ICLR, 2023.107

[14] V. Backman, M. B. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Muller, Q. Zhang, G. Zonios,108

E. Kline, and T. McGillican, “Detection of preinvasive cancer cells,” Nature, 2000.109

[15] G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” Journal of Biomedical Optics,110

2014.111

[16] Z. Meng, M. Qiao, J. Ma, Z. Yu, K. Xu, and X. Yuan, “Snapshot multispectral endomicroscopy,”112

Optics Letters, 2020.113

[17] W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral114

imaging in ophthalmology,” Journal of biomedical optics, 2007.115

[18] M. H. Kim, T. A. Harvey, D. S. Kittle, H. Rushmeier, J. Dorsey, R. O. Prum, and D. J. Brady,116

“3d imaging spectroscopy for measuring hyperspectral patterns on solid objects,” TOG, 2012.117

[19] Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face recognition in hyperspectral images,”118

TPAMI, 2003.119

[20] H. V. Nguyen, A. Banerjee, and R. Chellappa, “Tracking via object reflectance using a hyper-120

spectral video camera,” in CVPRW, 2010.121

[21] H. Jin, P. Favaro, and R. Cipolla, “Visual tracking in the presence of motion blur,” in CVPR,122

2005.123

[22] M. Borengasser, W. S. Hungate, and R. Watkins, “Hyperspectral remote sensing: principles and124

applications,” CRC press, 2007.125

[23] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sensing images with126

support vector machines,” IEEE Transactions on Geoscience and Remote Sensing, 2004.127

[24] Y. Yuan, X. Zheng, and X. Lu, “Hyperspectral image superresolution by transfer learning,”128

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017.129

[25] A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for earth130

remote sensing,” Science, 1985.131

4


