
A Appendix526

A.1 Proofs527

A.1.1 Explanation of Assumption 1528

Assumption 1: For i, j ∈ {0, 1}, the classifiers Ŷ = f(X) and Â = h(X) satisfy529

Ui

r̂i,j
≤ α̂i,j ≤ 1− Ui

r̂i,j
.

We now expand on the implications of this assumptions. Recall that Ui = P(Â = i, A ̸= i),530

r̂i,j = P(Â = i, Y = j), and α̂i,j = P(Ŷ = 1 | Â = i, Y = j). Thus Assumption 1 states,531

P(Â = i, A ̸= i) ≤ P(Ŷ = 1, Â = i, Y = j) ≤ P(Â = i, Y = j)− P(Â = i, A ̸= i). (10)

Immediately, it is clear that Eq. (10) implies532

P(Â = i, A ̸= i) ≤ P(Â = i, Y = j)− P(Â = i, A ̸= i) (11)

=⇒ P(Â = i, A ̸= i) ≤ 1

2
P(Â = i, Y = j) (12)

Now, the left inequality of Eq. (10) states533

P(Â = i, A ̸= i) ≤ P(Ŷ = 1, Â = i, Y = j) (13)

and the right inequality of Eq. (10) states534

P(Ŷ = 1, Â = i, Y = j) ≤ P(Â = i, Y = j)− P(Â = i, A ̸= i)

which implies535

P(Â = i, A ̸= i) ≤ P(Â = i, Y = j)− P(Ŷ = 1, Â = i, Y = j) (14)

= P(Ŷ = 0, Â = i, Y = j) (15)

If j = 1, then this implies536

P(Â = i, A ̸= i) ≤ P(Ŷ = 1, Â = i, Y = 1) (16)

P(Â = i, A ̸= i) ≤ P(Ŷ = 0, Â = i, Y = 1) (17)

and if j = 0,537

P(Â = i, A ̸= i) ≤ P(Ŷ = 1, Â = i, Y = 0) (18)

P(Â = i, A ̸= i) ≤ P(Ŷ = 0, Â = i, Y = 0) (19)

Any reasonable classifier Ŷ would have the properties538

P(Ŷ = 0, Â = i, Y = 1) ≤ P(Ŷ = 1, Â = i, Y = 1) (20)

P(Ŷ = 1, Â = i, Y = 0) ≤ P(Ŷ = 0, Â = i, Y = 0) (21)

Thus, Assumption 1 is met when539

P(Â = i, A ̸= i) ≤ P(Ŷ = j, Â = i, Y ̸= j) (22)
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A.1.2 Proof of Theorem 1540

We only prove the result for |∆TPR(f)| as the proof for |∆FPR(f)| is completely analogous.541

Proof. The rules of conditional probability and the law of total probability allow us to decompose542

α1,1 and α0,1 in the following manner,543

α1,1 = P(Ŷ = 1 | A = 1, Y = 1) (23)

=
P(Ŷ = 1, A = 1, Y = 1)

P(A = 1, Y = 1)
(24)

=

∑
i∈{0,1} P(Ŷ = 1, A = 1, Y = 1, Â = i)∑

j∈{0,1}
∑

i∈{0,1} P(Ŷ = j, A = 1, Y = 1, Â = i)
(25)

=

∑
i∈{0,1} P(Ŷ = 1, A = 1, Y = 1 | Â = i) · P(Â = i)∑

j∈{0,1}
∑

i∈{0,1} P(Ŷ = j, A = 1, Y = 1 | Â = i) · P(Â = i)
(26)

and544

α0,1 = P(Ŷ = 1 | A = 0, Y = 1) (27)

=
P(Ŷ = 1, A = 0, Y = 1)

P(A = 0, Y = 1)
(28)

=
P(Ŷ = 1, Y = 1)− P(Ŷ = 1, A = 1, Y = 1)

P(Y = 1)− P(A = 1, Y = 1)
(29)

=
P(Ŷ = 1, Y = 1)−

[∑
i∈{0,1} P(Ŷ = 1, A = 1, Y = 1 | Â = i) · P(Â = i)

]
P(Y = 1)−

[∑
j∈{0,1}

∑
i∈{0,1} P(Ŷ = j, A = 1, Y = 1 | Â = i) · P(Â = i)

] (30)

Therefore, ∆TPR(f) = α1,1 − α0,1 is a function of the four probabilities given by545

P(Ŷ = j, A = 1, Y = 1 | Â = i) (31)

which are unidentifiable in a demographically scarce regime and therefore not computable.546

547

The Fréchet inequalities tell us that for i, j ∈ {0, 1}548

P(Ŷ = j, A = 1, Y = 1 | Â = i) ≥ max{P(Ŷ = j, Y = 1 | Â = i)− P(A = 0 | Â = i), 0}
(32)

P(Ŷ = j, A = 1, Y = 1 | Â = i) ≤ min{P(Ŷ = j, Y = 1 | Â = i),P(A = 1 | Â = i)}. (33)

Observe that, ∆TPR(f) is an increasing function with respect to the two probabilities549

P(Ŷ = 1, A = 1, Y = 1 | Â = i) (34)

and a decreasing one with respect to the two probabilities,550

P(Ŷ = 0, A = 1, Y = 1 | Â = i). (35)

As a result, ∆TPR(f) is maximal when P(Ŷ = 1, A = 1, Y = 1 | Â = i) achieve their maximum551

values and P(Ŷ = 0, A = 1, Y = 1 | Â = i) achieve their minimum values. On the other hand,552

∆TPR(f) is minimal when P(Ŷ = 1, A = 1, Y = 1 | Â = i) achieve their minimum values and553

P(Ŷ = 0, A = 1, Y = 1, | Â = i) achieve their maximum values. With these facts, we now provide554

the upper bound. Recall from Appendix A.1.1 that Assumption 1 implies555

P(Â = i, A ̸= i) ≤ 1

2
P(Â = i, Y = j) (36)

P(Â = i, A ̸= i) ≤ P(Ŷ = j, Â = i, Y ̸= j) ≤ P(Ŷ = j, Â = i, Y = j) (37)
(38)
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With Assumption 1 we first provide the values of min [P(Ŷ = 0, A = 1, Y = 1, | Â = i)]. First,556

P(Ŷ = 0, Y = 1, | Â = 1)− P(A = 0 | Â = 1) =
P(Ŷ = 0, Â = 1, Y = 1)

P (Â = 1)
− U1

P(Â = 1)
(39)

≥ 0 (40)

because P(Ŷ = 0, Â = 1, Y = 1)− U1 ≥ 0. Second,557

P(Ŷ = 0, Y = 1, | Â = 0)− P(A = 0 | Â = 0) =
P(Ŷ = 0, Â = 0, Y = 1)

P (Â = 0)
− P(A = 0, Â = 0)

P(Â = 0)
(41)

=
P(Ŷ = 0, Â = 0, Y = 1)

P (Â = 0)
− P(Â = 0)− U0

P(Â = 0)
(42)

=
P(Ŷ = 0, Â = 0, Y = 1)

P (Â = 0)
− P(Â = 0)− U0

P(Â = 0)
(43)

=
P(Ŷ = 0, Â = 0, Y = 1)

P (Â = 0)
+

U0

P(Â = 0)
− 1

(44)
Now note that,558

P(Ŷ = 0, Â = 0, Y = 1) = P(Â = 0, Y = 1)− P(Ŷ = 1, Â = 0, Y = 1) (45)

≤ P(Â = 0, Y = 1)− U0 (46)
where the second equality is due to Assumption 1. As a result559

P(Ŷ = 0, Â = 0, Y = 1)

P (Â = 0)
+

U0

P(Â = 0)
− 1 ≤ P(Â = 0, Y = 1)− U0

P (Â = 0)
+

U0

P(Â = 0)
− 1 (47)

=
P(Â = 0, Y = 1)

P (Â = 0)
− 1 ≤ 0 (48)

Therefore,560

min [P(Ŷ = 0, A = 1, Y = 1 | Â = 1)] = P(Ŷ = 0, Y = 1, | Â = 1)− P(A = 0 | Â = 1) (49)

min [P(Ŷ = 0, A = 1, Y = 1 | Â = 0)] = 0 (50)

Now we provide the values of max [P(Ŷ = 1, A = 1, Y = 1, | Â = i)]. First,561

P(A = 1 | Â = 1) =
P(A = 1, Â = 1)

P(Â = 1)
(51)

=
P(Â = 1)− U1

P(Â = 1)
(52)

≥ P(Â = 1, Y = 1)− U1

P(Â = 1)
(53)

≥ P(Â = 1, Y = 1)− P(Ŷ = 0, Â = 1, Y = 1)

P(Â = 1)
(54)

=
P(Ŷ = 1, Â = 1, Y = 1)

P(Â = 1)
= P(Ŷ = 1, Y = 1 | Â = 1) (55)

Second,562

P(A = 1 | Â = 0) =
P(A = 1, Â = 0)

P(Â = 0)
(56)

≤ P(Ŷ = 1, Â = 0, Y = 1)

P(Â = 0)
= P(Ŷ = 1, Y = 1 | Â = 0) (57)
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Therefore,563

max [P(Ŷ = 1, A = 1, Y = 1 | Â = 1)] = P(Ŷ = 1, Y = 1 | Â = 1) (58)

max [P(Ŷ = 1, A = 1, Y = 1 | Â = 0)] = P(A = 1 | Â = 0) (59)

Plugging these 4 values into ∆TPR will yield the upper bound,564

B1 + C0,1 =
r̂1,1

r̂1,1 +∆U
α̂1,1 −

r̂0,1
r̂0,1 −∆U

α̂0,1 + U0

(
1

r̂1,1 +∆U
+

1

r̂0,1 −∆U

)
(60)

One can similarly use the assumptions to derive the lower bound,565

B1 − C1,1 =
r̂1,1

r̂1,1 +∆U
α̂1,1 −

r̂0,1
r̂0,1 −∆U

α̂0,1 − U1

(
1

r̂1,1 +∆U
+

1

r̂0,1 −∆U

)
(61)

and thus |∆TPR| ≤ max{|B1 +C0,1|, |B1 −C1,1|}. One can use same arguments to derive the upper566

bound for |∆FPR|.567
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A.1.3 Proof of Theorem 2568

We prove the result for |∆TPR(f)|. We first start by proving the existence part of the theorem.569

570

Let Â = h(X) be a sensitive attribute classifier with errors U0 and U1 that produces rates r̂i,j =571

P(Â = i, Y = j). Let F be the set of classifiers for Y such that ∀f ∈ F , f and h satisfy572

Assumption 1. Consider any f ∈ F with group conditional probabilities, α̂i,j = P(Ŷ = 1 | Â =573

i, Y = j). Since we are only proving the result for |∆TPR(f)|, set j = 1. Consider the xy plane, with574

the x-axis being α̂0,1 and the y-axis being α̂1,1. We know,575

Ui

r̂i,1
≤ α̂i,1 ≤ 1− Ui

r̂i,1
(62)

which implies576

Ui

r̂i,1
≤ 1

2
. (63)

The two equations above define a rectangular region in the xy plane with a center ( 12 ,
1
2 ), meaning577

any classifier f ∈ F , has α̂i,j that are in this region.578

579

Now, denote F̄ to be a the set of classifiers for Y , with group conditional probabilities α̂i,1, that580

satisfy the condition,581

r̂0,1
r̂0,1 −∆U

α̂0,1 −
r̂1,1

r̂1,1 +∆U
α̂1,1 =

∆U

2

(
1

r̂1,1 +∆U
+

1

r̂0,1 −∆U

)
. (64)

This condition defines a line in the xy plane meaning any classifier in F̄ has α̂i,1 that are on this line.582

Now observe that the classifier f̄ ∈ F̄ with α̂i,1 = 1
2 , satisfy the above condition because,583

r̂0,1
r̂0,1 −∆U

(
1

2

)
− r̂1,1

r̂1,1 +∆U

(
1

2

)
=

1

2

(
r̂0,1

r̂0,1 −∆U
− r̂1,1

r̂1,1 +∆U

)
(65)

=
1

2

(
r̂0,1 −∆U +∆U

r̂0,1 −∆U
− r̂1,1 +∆U −∆U

r̂1,1 +∆U

)
(66)

=
1

2

(
1 +

∆U

r̂0,1 −∆U
− 1 +

∆U

r̂1,1 +∆U

)
(67)

=
∆U

2

(
1

r̂1,1 +∆U
+

1

r̂0,1 −∆U

)
(68)

This implies that the line defined by Eq. (64) intersects the rectangular region that Assumption 1584

defines. As a result, F ∩ F̄ is not empty, meaning there exists a classifier f̄ ∈ F with group585

conditional probabilities α̂i,1 that also satisfies the condition,586

r̂0,1
r̂0,1 −∆U

α̂0,1 −
r̂1,1

r̂1,1 +∆U
α̂1,1 =

∆U

2

(
1

r̂1,1 +∆U
+

1

r̂0,1 −∆U

)
. (69)

Now we prove that such a classifier has minimal bounds. Theorem 1 tells us that for f ∈ F587

|∆TPR(f)| ≤ BTPR(f)
∆
= max{|B1 + C0,1|, |B1 − C1,1|}

Note that B1 is linear in α̂1,1 and α̂0,1 and that C0,1 and C1,1 are constants such that B1 + C0,1 ≥588

B1−C1,1 simply because B1+C0,1 is the upper bound for ∆TPR and B1−C0,1 is the lower bound.589

Since these bounds are affine functions shifted by a constant, then minmax{|B1+C0,1|, |B1−C1,1|}590

necessarily occurs when591

B1 + C0,1 = −B1 − C1,1 (70)
meaning592

2B1 = −(C1,1 + C0,1) (71)
have minimal upper bounds on |∆TPR|. After rearranging terms, this condition is precisely593

r̂0,1
r̂0,1 −∆U

α̂0,1 −
r̂1,1

r̂1,1 +∆U
α̂1,1 =

∆U

2

(
1

r̂1,1 +∆U
+

1

r̂0,1 −∆U

)
. (72)
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