
Greedy Poisson Rejection Sampling

Anonymous Author(s)
Affiliation
Address
email

Abstract

One-shot channel simulation is a fundamental data compression problem concerned1

with encoding a single sample from a target distribution Q using a coding distribu-2

tion P using as few bits as possible on average. Algorithms that solve this problem3

find applications in neural data compression and differential privacy and can serve4

as a more efficient and natural alternative to quantization-based methods. Unfor-5

tunately, existing solutions are too slow or have limited applicability, preventing6

their widespread adoption. In this paper, we conclusively solve one-shot channel7

simulation for one-dimensional problems where the target-proposal density ratio8

is unimodal by describing an algorithm with optimal runtime. We achieve this by9

constructing a rejection sampling procedure equivalent to greedily searching over10

the points of a Poisson process. Hence, we call our algorithm greedy Poisson rejec-11

tion sampling (GPRS) and analyze the correctness and time complexity of several12

of its variants. Finally, we empirically verify our theorems, demonstrating that13

GPRS significantly outperforms the current state-of-the-art method, A* coding.14

1 Introduction15

It is a common misconception that quantization is essential to lossy data compression; it is merely16

a way to discard information deterministically. In this paper, we consider the alternative, that is, to17

discard information stochastically using one-shot channel simulation. To illustrate the main idea,18

take lossy image compression as an example. Assume we have a generative model given by a joint19

distribution Px,y over images y and latent variables x, e.g. we might have trained a variational20

autoencoder (VAE; Kingma & Welling, 2014) on a dataset of images. To compress a new image21

y, we encode a single sample from its posterior x ∼ Px|y as its stochastic lossy representation.22

The decoder can obtain a lossy reconstruction of y by decoding x and drawing a sample ŷ ∼ Py|x23

(though in practice, for a VAE we normally just take the mean predicted by the generative network).24

Abstracting away from our example, in this paper we will be entirely focused on channel simulation25

for a pair of correlated random variables x,y ∼ Px,y: given a source symbol y ∼ Py we wish to26

encode a single sample x ∼ Px|y. A simple way to achieve this is to encode x with entropy coding27

using the marginal Px, whose average coding cost is approximately the entropy H[x]. Surprisingly,28

however, we can do much better by using a channel simulation protocol, whose average coding cost29

is approximately the mutual information I[x;y] (Li & El Gamal, 2018). This is remarkable, since not30

only I[x;y] ≤ H[x], but in many cases I[x;y] might be finite even though H[x] is infinite, such as31

when x is continuous. Sadly, most existing protocols place heavy restrictions on Px,y or their runtime32

scales much worse than O(I[x;y]), limiting their practical applicability (Agustsson & Theis, 2020).33

In this paper, we propose a family of channel simulation protocols based on a new rejection sampling34

algorithm, which we can apply to simulate samples from a target distribution Q using a proposal35

distribution P over an arbitrary probability space. The inspiration for our construction comes from an36

exciting recent line of work which recasts random variate simulation as a search problem over a set37

of randomly placed points, specifically a Poisson process (Maddison, 2016). The most well-known38

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Note to reviewers: We managed to thighten Theorems 3.5 and 3.6 after the main text submission deadline.
Hence, we also include the updated main text in the supplementary material.

Furthermore, we also updated the left middle panel in Figure 2 with a more precise estimate of the codelength
for the methods. We suspect that split-on-sample GPRS's slight divergence from the predicted average is due
to a numerical issue in our implementation, which we did not manage to fix before the supplementary material
submission deadline.

−1 0 1

0

5

10

15

X

T

−1 0 1

X

−1 0 1

X

Figure 1: Illustration of three GPRS procedures for a Gaussian target Q = N (1, 0.252) and Gaussian
proposal distribution P = N (0, 1), with the time axis truncated to the first 17 units. All three variants
find the first arrival of a (1, P)-Poisson process Π under the graph of φ = σ ◦ r indicated by the
thick dashed black line in each plot. Here, r = dQ/dP is the target-proposal density ratio, and σ
is given by Equation (3). Left: Algorithm 3 sequentially searching through the points of Π. The
green circle () shows the first point of Π that falls under φ, and is accepted. All other points are
rejected, as indicated by red crosses (✕). In practice, Algorithm 3 does not simulate points of Π
that arrive after the accepted arrival. Middle: Parallelized GPRS (Algorithm 4) searching through
two independent (1/2, P)-Poisson processes Π1 and Π2 in parallel. Blue points are arrivals in Π1

and orange points are arrivals in Π2. Crosses (✕) indicate rejected, and circles () indicate accepted
points by each thread. In the end, the algorithm accepts the earliest arrival across all processes, which
in this case is marked by the blue circle (). Right: GPRS with binary search (Algorithm 5), when φ
is unimodal. The shaded red areas are never searched or simulated by the algorithm since, given the
first two rejections, we know points in those regions cannot fall under φ.

examples are the Gumbel-Max trick and A* sampling (Maddison et al., 2014). Our algorithm, which39

we call greedy Poisson rejection sampling (GPRS), differs significantly from all previous approaches40

in terms of what it is searching for, which we can succinctly summarise as: “GPRS searches for the41

first arrival of a Poisson process Π under the graph of an appropriately defined function φ”. The42

first and simplest variant of GPRS is equivalent to an exhaustive search over all points of Π in time43

order. Next, we show that the linear search is embarrassingly parallelizable, leading to a parallelized44

variant of GPRS. Finally, when the underlying probability space has more structure, we develop45

branch-and-bound variants of GPRS that perform a binary search over the points of Π. See Figure 146

for an illustration of these three variants.47

While GPRS is an interesting sampling algorithm on its own, we also show that each of its variants48

induces a new one-shot channel simulation protocol. That is, after we receive y ∼ Py, we can set49

Q ← Px|y and P ← Px and use GPRS to encode a sample x ∼ Px|y at an average bitrate of a50

little more than the mutual information I[x;y]. In particular, on one-dimensional channel simulation51

problems where the density ratio dPx|y/dPx is unimodal for all y, the binary search variant of GPRS52

leads to a protocol with an average runtime of O(I[x;y]), which is optimal. This is a considerable53

improvement over A* coding (Flamich et al., 2022), the current state-of-the-art method.54

In summary, our contributions are as follows:55

• We construct a new rejection sampling algorithm called greedy Poisson rejection sampling,56

which we can construe as a greedy search over the points of a Poisson process (Algorithm 3).57

We propose a parallelized (Algorithm 4) and a branch-and-bound variant (Algorithms 558

and 6) of GPRS. We analyze the correctness and runtime of these algorithms.59

• We show that each variant of GPRS induces a one-shot channel simulation protocol for60

correlated random variables x,y ∼ Px,y, achieving the optimal average codelength of61

I[x;y] + log2(I[x;y] + 1) +O(1) bits.62

• We prove that when x is a R-valued random variable and the density ratio dPx|y/dPx is63

always unimodal, the channel simulation protocol based on the binary search variant of64

GPRS achieves O(I[x;y]) runtime, which is optimal.65

• We conduct toy experiments on one-dimensional problems and show that GPRS compares66

favourably against A* coding, the current state-of-the-art channel simulation protocol.67

2

2 Background68

The sampling algorithms we construct in this paper are search procedures on randomly placed points69

in space whose distribution is given by a Poisson process Π. Thus, in this section, we first review70

the necessary theoretical background for Poisson processes and how we can simulate them on a71

computer. Then, we formulate standard rejection sampling as a search procedure over the points of a72

Poisson process to serve as a prototype for our algorithm in the next section. Up to this point, our73

exposition loosely follows Sections 2, 3 and 5.1 of the excellent work of Maddison (2016), peppered74

with a few additional results that will be useful for analyzing our algorithm later. Finally, we describe75

the channel simulation problem, using rejection sampling as a rudimentary solution and describe its76

shortcomings. This motivates the development of greedy Poisson rejection sampling in Section 3.77

2.1 Poisson Processes78

A Poisson process Π is a countable collection of random points in some mathematical space Ω. In79

the main text, we will always assume that Π is defined over Ω = R+ × Rd and that all objects80

involved are measure-theoretically well-behaved for simplicity. For this choice of Ω, the positive81

reals represent time, and the unit interval represents space. However, most results generalize to82

settings when the spatial domain Rd is replaced with some more general space, and we give a general83

measure-theoretic construction in Appendix A, where the spatial domain is an arbitrary Polish space.84

Basic properties of Π: For a set A ⊆ Ω, let N(A)
def
= |Π ∩ A| denote the number of points of Π85

falling in the set A, where |·| denotes the cardinality of a set. Then, Π is characterized by the following86

two fundamental properties (Kingman, 1992). First, for two disjoint sets A,B ⊆ Ω, A ∩ B = ∅,87

the number of points of Π that fall in either set are independent random variables: N(A) ⊥ N(B).88

Second, N(A) is Poisson distributed with mean measure µ(A)
def
= E[N(A)].89

Time-ordering the points of Π: Since we assume that Ω = R+ × Rd has a product space structure,90

we may write the points of Π as a pair of time-space coordinates: Π = {(Tn, Xn)}∞n=1. Furthermore,91

we can order the points in Π with respect to their time coordinates and index them accordingly, i.e.92

for i < j we have Ti < Tj . Hence, we refer to (Tn, Xn) as the nth arrival of the process.93

As a slight abuse of notation, we define N(t)
def
= N([0, t) × Rd) and µ(t)

def
= E[N(t)],94

i.e. these quantities measure the number and average number of points of Π that arrive95

before time t, respectively. In this paper, we assume µ(t) has derivative µ′(t), and as-96

sume for each t ≥ 0 there is a conditional probability distribution PX|T=t with density97

p(x | t), such that we can write the mean measure as µ(A) =
∫
A
p(x | t)µ′(t) dx dt.98

Algorithm 1: Generating a
(λ, PX|T)-Poisson process.

Input :Time rate λ,
Spatial distribution PX|T

T0 ← 0
for n = 1, 2, . . . do

∆n ∼ Exp(λ)
Tn ← Tn−1 +∆n

Xn ∼ PX|T=Tn

yield (Tn, Xn)
end

99

Simulating Π: A simple method to simulate Π on a com-100

puter is to realize it in time order, i.e. at step n, simulate101

Tn and then use it to simulate Xn ∼ PX|T=Tn
. We can102

find out the distribution of Π’s first arrival by noting that103

by its definition, no point of Π can come before it, hence104

P[T1 ≥ t] = P[N(t) = 0] = exp(−µ(t)), where the sec-105

ond equality follows from the fact that N(t) is Poisson dis-106

tributed. A particularly important case is when Π is time-107

homogeneous, i.e. µ(t) = λt for some λ > 0, in which case108

T1 ∼ Exp(λ) is an exponential random variable with rate λ.109

In fact, all of Π’s inter-arrival times ∆n = Tn − Tn−1 for110

n ≥ 1 share this simple distribution, where we set T0 = 0.111

To see this, note that112

P[∆n ≥ t | Tn−1] = P
[
N
(
[Tn−1, Tn−1 + t)× Rd

)
= 0 | Tn−1

]
= exp(−λt),

i.e. all ∆n | Tn−1 ∼ Exp(λ). Therefore, we can use the above procedure to simulate time-113

homogeneous Poisson processes, described in Algorithm 1. We will refer to a time-homogeneous114

Poisson process with time rate λ and spatial distribution PX|T as a (λ, PX|T)-Poisson process.115

Rejection sampling using Π: Rejection sampling is a technique to simulate samples from a target116

distribution Q using a proposal distribution P , assuming we can find an upper bound M > 0 for117

their density ratio r = dQ/dP (technically, the Radon-Nikodym derivative). We can formulate this118

3

Algorithm 2: Standard rejection sampling.
Input :Proposal distribution P ,

Density ratio r = dQ/dP ,
Upper bound M for r.

Output :Sample X ∼ Q and its index N .
// Generator for a (1, P)-Poisson

process using Algorithm 1.
Π← SimulatePP(1, P)
for n = 1, 2, . . . do

(Tn, Xn)← next(Π)
Un ∼ Unif(0, 1)
if Un < r(Xn)/M then

return Xn, n
end

end

Algorithm 3: Greedy Poisson rejection sampling.
Input :Proposal distribution P ,

Density ratio r = dQ/dP ,
Stretch function σ.

Output :Sample X ∼ Q and its index N .
// Generator for a (1, P)-Poisson

process using Algorithm 1.
Π← SimulatePP(1, P)
for n = 1, 2, . . . do

(Tn, Xn)← next(Π)
if Tn < σ (r(Xn)) then

return Xn, n
end

end

procedure using a Poisson process: we simulate the arrivals (Tn, Xn) of a (1, P)-Poisson process119

Π, but we only keep them with probability r(Xn)/M , otherwise, we delete them. This algorithm is120

described in Algorithm 2; its correctness is guaranteed by the thinning theorem (Maddison, 2016).121

Rejection sampling is suboptimal: Using Poisson processes to formulate rejection sampling122

highlights a subtle but crucial inefficiency: it does not make use of Π’s temporal structure and only123

uses the spatial coordinates. GPRS fixes this by using a rejection criterion that does depend on the124

time variable. As we show, this significantly speeds up sampling for certain classes of distributions.125

2.2 Channel Simulation126

The main motivation for our work is to develop a one-shot channel simulation protocol using the127

sampling algorithm we derive in Section 3. Channel simulation is of significant theoretical and128

practical interest. Recent works used it to compress neural network weights, achieving state-of-the-art129

performance (Havasi et al., 2018); to perform image compression using variational autoencoders130

(Flamich et al., 2020) and diffusion models with perfect realism (Theis et al., 2022); and to perform131

differentially private federated learning by compressing noisy gradients (Shah et al., 2022).132

One-shot channel simulation is a communication problem between two parties, Alice and Bob,133

sharing a joint distribution Px,y over two correlated random variables x and y, where we assume134

that Alice and Bob can simulate samples from the marginal Px. In a single round of communication,135

Alice receives a sample y ∼ Py from the marginal distribution over y. Then, she needs to send the136

minimum number of bits to Bob such that he can simulate a single sample from the conditional137

distribution x ∼ Px|y. Note that Bob does not want to learn Px|y; he just wants to simulate a single138

sample from it. Surprisingly, when Alice and Bob have access to shared randomness, e.g. by sharing139

the seed of their random number generator before communication, they can solve channel simulation140

very efficiently. Mathematically, in this paper we will always model this shared randomness by some141

time-homogeneous Poisson process (or processes) Π, since given a shared random seed, Alice and142

Bob can always simulate the same process e.g. using Algorithm 1. Then, the average coding cost143

of x given Π is its conditional entropy H[x | Π] and, surprisingly, it is always upper bounded by144

H[x | Π] ≤ I[x;y] + log2 I[x;y] +O(1), where I[x;y] is the mutual information between x and145

y (Li & El Gamal, 2018). This is an especially curious result, given that in many cases H[x] is146

infinite while I[x;y] is finite, e.g. when x is a continuous variable. In essence, this result means that147

given the additional structure Px,y, channel simulation protocols can “offload” an infinite amount of148

information into the shared randomness, and only communicate the finitely many “necessary” bits.149

An example channel simulation protocol with rejection sampling: Given Π and y ∼ Py, Alice150

sets Q← Px|y as the target and P ← Px as the proposal distribution with density ratio r = dQ/dP ,151

and run the rejection sampler in Algorithm 2 to find the first point of Π that was not deleted. She152

counts the number of samples N she had to simulate before acceptance and sends this number to Bob.153

He decodes a sample x ∼ Px|y by selecting the spatial coordinate of the N th arrival of Π.154

Unfortunately, this simple protocol is suboptimal. To see this, let D∞[Q∥P]
def
= supx∈Ω{log2 r(x)}155

denote Rényi∞-divergence from Q to P , and recall two standard facts: (1) the best possible upper156

4

bound Alice can use for rejection sampling is Mopt = exp2 (D∞[Q∥P]), where exp2(x) = 2x, and157

(2), the number of samples N drawn until acceptance is a geometric random variable with mean158

Mopt (Maddison, 2016). We now state the two issues with rejection sampling that GPRS solves.159

Problem 1: Codelength: However, by using the formula for the entropy of a geometric random160

variable and assuming Alice uses the best possible bound Mopt in the protocol, we find that161

H[x | Π] = Ey∼Py [H[N | y]] ≥ Ey∼Py [D∞[Px|y∥Px]]
(a)

≥ I[x;y],

see Appendix I for the derivation. Unfortunately, inequality (a) can be arbitrarily loose, hence the162

average codelength scales with the expected∞-divergence instead of I[x;y], as would be optimal.163

Problem 2: Slow runtime: We are interested in classifying the time complexity of our protocol. As164

we saw, for a target Q and proposal P , Algorithm 2 draws Mopt = exp2 (D∞[Q∥P]) samples on165

average. Unfortunately, under the computational hardness assumption RP ̸= NP, Agustsson & Theis166

(2020) showed that without any further assumptions, there is no sampler that scales polynomially in167

DKL[Q∥P]. However, with further assumptions, we can do much better, as we show in Section 3.1.168

3 Greedy Poisson Rejection Sampling169

We now describe GPRS; its pseudo-code is shown in Algorithm 3. This section assumes that Q and170

P are the target and proposal distributions, respectively, and r = dQ/dP is their density ratio. Let Π171

be a (1, P)-Poisson process. Our proposed rejection criterion is now embarrassingly simple: for an172

appropriately defined invertible function σ : R+ → R+, accept the first arrival of Π that falls under173

the graph of the composite function φ = σ ◦ r, as illustrated in the left plot in Figure 1. We refer to σ174

as the stretch function for r, as its purpose is to stretch the density ratio along the time-axis of Π.175

Deriving the stretch function (sketch): Let φ = σ ◦ r, where for now σ is an arbitrary invertible176

function on R+, let U = {(t, x) ∈ Ω | t ≤ φ(x)} be the set of points under the graph of φ and let177

Π̃ = Π ∩ U . By the restriction theorem (Kingman, 1992), Π̃ is also a Poisson process with mean178

measure µ̃(A) = µ(A ∩ U). Let (T̃ , X̃) be the first arrival of Π̃, i.e. the first arrival of Π under φ and179

let Qσ be the distribution of X̃ . Then, the density ratio dQσ/dP obeys the identity (see Appendix A):180

dQσ

dP
(x) =

∫ φ(x)

0

P[T̃ ≥ t] dt. (1)

Now we pick σ such that Qσ = Q, for which we need to ensure that dQσ/dP = r. Substituting181

τ = φ(x) into Equation (1), and differentiating, we get
(
σ−1

)′
(τ) = P[T̃ ≥ t]. Since (T̃ , X̃) falls182

under the graph of φ by definition, we find that P[T̃ ≥ t] = P[T̃ ≥ t, r(X̃) ≥ σ−1(t)]. By expanding183

the definition of the right-hand side, in Appendix A we obtain a time-invariant ODE for σ−1:184 (
σ−1

)′
(τ) = wQ

(
σ−1(t)

)
− σ−1(t) · wP

(
σ−1(t)

)
, with σ−1(0) = 0 (2)

where we define wP (h)
def
= PZ∼P [r(Z) ≥ h] and define wQ analogously. In Appendix G, we185

provide the analytic form of wP and wQ for discrete, uniform, triangular, Gaussian, and Laplace186

distributions. Finally, we use the inverse function theorem and integrate both sides to obtain187

σ(h) =

∫ h

0

1

wQ(η)− η · wP (η)
dη. (3)

Remember that picking σ according to Equation (3) ensures that GPRS is correct by construction. To188

complete the picture, in Appendix A we prove that (T̃ , X̃) always exists and Algorithm 3 terminates189

with probability 1. Unfortunately, computing the integral in Equation (3) analytically is usually not190

possible. Moreover, we can show that solving it numerically is unstable as σ is unbounded. Instead,191

we numerically solve for σ−1 using Equation (2) in practice, which fortunately turns out to be stable.192

We now turn our attention to analyzing the runtime of Algorithm 3 and find the following surprising193

result: the expected runtime of GPRS matches that of standard rejection sampling.194

Theorem 3.1 (Expected Runtime). Let Q and P be the target and proposal distributions for Al-195

gorithm 3, respectively, and r = dQ/dP their density ratio. Let N denote the number of samples196

simulated by the algorithm before it terminates. Then,197

E[N] = exp2 (D∞[Q∥P]) and V[N] ≥ exp2 (D∞[Q∥P]) . (4)

5

Algorithm 4: Parallel GPRS with J available
threads.
Input :Proposal distribution P ,

Density ratio r = dQ/dP ,
Stretch function σ,
Number of parallel threads J .

Output :Sample X ∼ Q and its code (j∗, Nj∗).
T ∗, X∗, j∗, Nj∗ ←∞, nil, nil, nil
in parallel for j = 1, . . . , J do

Πj ← SimulatePP(1/J, P)
for nj = 1, 2, . . . do(

T
(j)
nj , X

(j)
nj

)
← next(Πj)

if T ∗ < T
(j)
nj then

terminate thread j.
end
if T (j)

nj < σ
(
r
(
X

(j)
nj

))
then

T ∗, X∗, j∗, Nj∗ ← T
(j)
nj , X

(j)
nj , j, nj

terminate thread j.
end

end
end
return X∗, (j∗, Nj∗)

Algorithm 5: Branch-and-bound GPRS
on R with unimodal r
Input :Proposal distribution P ,

Density ratio r = dQ/dP ,
Stretch function σ,
Location x∗ of the mode of r.

Output :Sample X ∼ Q and its heap
index H .

T0, H,B ← (0, 1,R)
for d = 1, 2, . . . do

Xd ∼ P |B
∆d ∼ Exp (P (B))
Td ← Td−1 +∆d

if Td < σ(r(Xd)) then
return Xd, H

end
if Xd ≥ x∗ then

B ← B ∩ (−∞, Xd)
H ← 2H

else
B ← B ∩ (Xd,∞)
H ← 2H + 1

end
end

GPRS induces a channel simulation protocol similar to the standard rejection sampling-based one in198

Section 2.2: The encoder simulates the arrivals of Π using shared randomness and encodes the index199

of their accepted sample. The next theorem shows that this protocol is optimally efficient.200

Theorem 3.2 (Expected Codelength). Let Px,y be a joint distribution over correlated random201

variables x and y, and let Π be the (1, P)-Poisson process used by Algorithm 3. Then, the algorithm202

induces a channel simulation protocol, such that203

H[x | Π] ≤ I[x;y] + log2 (I[x;y] + 1) + 6. (5)

See Appendix B.2 and Appendix B.3 for proofs. This result is analogous to the Poisson functional204

representation (Li & El Gamal, 2018), and thus it can be used to provide an alternative proof of the205

strong functional representation lemma (Theorem 1; Li & El Gamal, 2018).206

GPRS as greedy search: We contrast GPRS with the well-known A∗ sampling algorithm (Maddison207

et al., 2014), which also searches through the points of Π but uses a different criterion. The defining208

feature of GPRS is that its acceptance criterion at each step is local, since if at step n the arrival209

(Tn, Xn) in Π falls under φ, we will immediately accept it. Thus it is greedy search procedure.210

On the other hand, the A∗ acceptance criterion is global, as the acceptance of a particular arrival211

(Tn, Xn) depends on all other points of Π in the general case. Surprisingly, this difference between212

the search criteria does not make a difference in the average runtimes and codelengths in the general213

case. However, as shown in the next section, GPRS can be much faster in special cases.214

3.1 Speeding up the greedy search215

This section discusses two ways to improve the runtime of GPRS. First, we show how we can utilize216

available parallel computing power to speed up Algorithm 3. Second, we propose an advanced217

search strategy when the spatial domain Ω has more structure and show that we can obtain a super-218

exponential improvement in the runtime from exp2 (D∞[Q∥P]) to O(DKL[Q∥P]) in certain cases.219

Parallel GPRS: The basis for parallelizing GPRS is the superposition theorem (Kingman, 1992):220

Let Π1, . . .ΠJ all be (1/J, P)-Poisson processes; then, Π =
⋃J

j=1 Πj is a (1, P)-Poisson process.221

This result makes parallelizing GPRS very simple, as shown in Algorithm 4, assuming we have J222

parallel threads: First, we independently look for the first arrivals of Π1, . . . ,ΠJ under the graph223

of φ, yielding
(
T

(1)
N1

, X
(1)
N1

)
, . . . ,

(
T

(J)
NJ

, X
(J)
NJ

)
, respectively, where the Nj corresponds to the224

6

index of Πj’s first arrival under φ. Then, we select the candidate with the earliest arrival time, i.e.225

j∗ = argminj∈{1,...,J} T
(j)
Nj

. Now, by the superposition theorem,
(
T

(j∗)
Nj∗

, X
(j∗)
Nj∗

)
is the first arrival226

of Π under φ, and hence X
(j∗)
Nj∗
∼ Q. Finally, Alice encodes the sample via the tuple (j∗, Nj∗), i.e.227

which of the J processes the first arrival occurred in, and the index of the arrival in Πj∗ . See the228

middle plot in Figure 1 for an example case with J = 2.229

Our next result shows that parallelizing GPRS results in a linear reduction in both the expectation230

and variance of its runtime and a more favourable codelength guarantee for channel simulation.231

Theorem 3.3 (Expected runtime of parallelized GPRS). Let Q,P and r be defined as above, and232

let νj denote the random variable corresponding to the number of samples simulated by thread j in233

Algorithm 4 using J threads. Then, for all j,234

E[νj] = (exp2 (D∞[Q∥P])− 1)
/
J + 1 and V[νj] ≥ (exp2 (D∞[Q∥P])− 1)

/
J + 1. (6)

Theorem 3.4 (Expected codelength of parallelized GPRS). Let Px,y be a joint distribution over235

correlated random variables x and y, and let Π1, . . . ,ΠJ be (1/J, Px)-Poisson processes. Then,236

assuming log2 J ≤ I[x;y], parallelized GPRS induces a channel simulation protocol such that237

H[x | Π1, . . . ,ΠJ] ≤ I[x;y] + log2 (I[x;y]− log2 J + 1) + 8. (7)

See Appendix C for the proofs. Note that we can use the same parallelisation argument with the238

appropriate modifications to speed up A∗ sampling / coding too.239

Branch-and-bound GPRS on R: We briefly restrict our attention to problems on R when the density240

ratio r is unimodal, as we can exploit this additional structure to more efficiently search for Π’s first241

arrival under φ. Consider the example in the right plot in Figure 1: we simulate the first arrival242

(T1, X1), and reject it, since T1 > φ(X1). Since φ is unimodal by assumption, for x < X1 we243

must have φ(x) < φ(X1), while the arrival time of any of the later arrivals will be larger than T1.244

Therefore, none of the arrivals to the left of X1 will fall under φ either! Hence, it is enough to simulate245

Π to the right of X1. Repeating this argument for later arrivals, we obtain an efficient binary search246

procedure to find Π’s first arrival under φ, described in Algorithm 5: We simulate the next arrival247

(TB , XB) of Π within some bounds B, starting with the first arrival in B = Ω. If TB ≤ φ(XB) we248

accept; otherwise, we truncate the bound to B ← B ∩ (−∞, XB), or B ← B ∩ (XB ,∞) based on249

where XB falls relative to φ’s mode. We repeat these two steps until we find the first arrival.250

Since Algorithm 5 does not simulate every point of Π, we cannot use the index N of the accepted251

arrival to obtain a channel simulation protocol as before. Instead, we encode the search path, i.e.252

whether we chose the left or the right side of our current sample at each step. Similarly to A* coding,253

we encode the path using its heap index (Flamich et al., 2022): the root has index Hroot = 1, and for254

a node with index H , its left child is assigned index 2H and its right child 2H + 1. As the following255

theorems show, this version of GPRS is, in fact, optimally efficient.256

Theorem 3.5 (Expected Runtime of GPRS with binary search). Let Q,P and r be defined as above,257

and let D denote the number of samples simulated by Algorithm 5. Then,258

E[D] = DKL[Q∥P] + 3. (8)

Theorem 3.6 (Expected Codelength of GPRS with binary search). Let Px,y be a joint distribution259

over correlated random variables x and y, and let Π be a (1, Px)-Poisson process. Then, GPRS with260

binary search induces a channel simulation protocol such that261

H[x | Π] ≤ I[x;y] + log2 (I[x;y] + 1) + 8 (9)

See Appendix E for details and proofs of the theorems.262

Branch-and-bound GPRS with splitting functions: With some additional machinery, Algorithm 5263

can be extended to much more general settings, such as RD and cases where r is not unimodal, by264

introducing the notion of a splitting function. For a region of space, B ⊆ Ω, a splitting function265

split simply returns a binary partition of the set, i.e. {L,R} = split(B), such that L ∩ R = ∅266

and L ∪ R = B. In this case, we can perform a similar tree search to Algorithm 5, captured in267

Algorithm 6. Starting with the whole space B = Ω, we simulate the next arrival (T,X) of Π in B at268

each step. If we reject it, we partition B into two parts, L and R, using split. Then, with probability269

P[X̃ ∈ R | X̃ ∈ B, T̃ ≥ T], we continue searching through the arrivals of Π in R only, and in L only270

7

Algorithm 6: Branch-and-bound
GPRS with splitting function.
Input :Proposal distribution P ,

Density ratio r = dQ/dP ,
Stretch function σ,
Splitting function split.

Output :Sample X ∼ Q and its
heap index H

T0, H,B ← (0, 1,R)
for d = 1, 2, . . . do

Xd ∼ P |B
∆d ∼ Exp (P (B))
Td ← Td−1 +∆d

if Td < σ(r(Xd)) then
return Xd, H

else
B0, B1 ← split(B)
ρ←
P[X̃ ∈ B1 | X̃ ∈ B, T̃ ≥ Td]

β ← Bernoulli(ρ)
H ← 2H + β
B ← Bβ

end
end

0

10

20

30

40

#
of

st
ep

s

GPRS
PFR
AS*

sGPRS
dGPRS
I[x;µ]

UB

2 4 6 8 10
0

5

10

15

I[x;µ]

C
od

el
en

gt
h

10 15 20 25
0

10

20

30

D∞[Q∥P]

#
of

st
ep

s
sGPRS

AS*
DKL

D∞

Figure 2: Left: Binary search GPRS with arbitrary splitting function. Right: Performance comparison
of different channel simulation protocols. In each plot, dashed lines indicate the mean, solid lines the
median and the shaded areas the 25 - 75 percentile region of the relevant performance metric. We
computed the statistics over 1000 runs for each setting. Top right: Runtime comparison on a 1D
Gaussian channel simulation problem Px,µ, plotted against increasing mutual information I[x;µ].
Alice receives µ ∼ N (0, σ2) and encodes a sample x | µ ∼ N (µ, 1) to Bob. The abbreviations in
the legend are: GPRS – Algorithm 3; PFR – Poisson functional representation / Global-bound A*
coding (Li & El Gamal, 2018; Flamich et al., 2022), AS* – Split-on-sample A* coding (Flamich
et al., 2022); sGPRS – split-on-sample GPRS (Algorithm 5); dGPRS – GPRS with dyadic split
(Algorithm 6). Middle right: Average codelength comparison of our proposed algorithms on the
same channel simulation problem as above. UB in the legend corresponds to an upper bound of
I[x;µ] + log2(I[x;µ] + 1) + 2 bits. We estimate the algorithms’ expected codelengths by encoding
the indices returned by GPRS using a Zeta distribution ζ(n | λ) ∝ n−λ with λ = 1 + 1/I[x;y]
in each case, which is the optimal maximum entropy distribution for this problem setting (Li &
El Gamal, 2018). Bottom right: One-shot runtime comparison of sGPRS with AS* coding. Alice
encodes samples from a target Q = N (m, s2) using P = N (0, 1) as the proposal. We computed m
and s2 such that DKL[Q∥P] = 2 bits for each problem, but D∞[Q∥P] increases. GPRS’ runtime
stays fixed as it scales with DKL[Q∥P], while the runtime of A* keeps increasing.

otherwise. We show the correctness of this procedure in Appendix F, where we also derive how the271

quantities P[X̃ ∈ R | X̃ ∈ B, T̃ ≥ T] and σ can be computed in practice. This splitting procedure is272

analogous to the general version of A* sampling/coding (Maddison et al., 2014; Flamich et al., 2022),273

which is parameterized by the same splitting functions. Note that Algorithm 5 is a special case of274

Algorithm 6, where the underlying space is Ω = R, r is unimodal, and at each step for an interval275

bound B = (a, b) and sample X ∈ (a, b) we split B into {(a,X), (X, b)}.276

4 Experiments277

We compare the average and one-shot case efficiency of our proposed variants of GPRS and a couple278

of other channel simulation protocols in Figure 2. See the figure’s caption and Appendix H for details279

of our experimental setup. The top two plots in Figure 2 demonstrate that our methods’ expected280

runtimes and codelengths align very well with our theorems’ predictions and compare favourably to281

other methods. Furthermore, we find that the mean performance is a robust statistic for the binary282

8

search-based variants of GPRS in that it lines up closely with the median, and the interquartile range283

is quite narrow. On the other hand, the bottom plot in Figure 2 demonstrates the most salient property284

of the binary search variant of GPRS: unlike all previous methods, its runtime scales with DKL[Q∥P]285

and not D∞[Q∥P]. Thus, we can apply it to a larger family of channel simulation problems both286

in theory and practice where DKL[Q∥P] is finite, but D∞[Q∥P] is very large or even infinite in287

expectation, and other methods would not terminate.288

5 Related Work289

Poisson processes for channel simulation: Poisson processes were introduced to the channel290

simulation literature by Li & El Gamal (2018) via their construction of the Poisson functional291

representation (PFR) in their proof of the Strong Functional Representation Lemma. Flamich et al.292

(2022) observed that the PFR construction is equivalent to a certain variant of A* sampling (Maddison293

et al., 2014; Maddison, 2016). Thus, they proposed an optimized version of the PFR called A* coding,294

which achieves O(D∞[Q∥P]) runtime for one-dimensional unimodal distributions. GPRS was295

mainly inspired by A* coding, and they are dual constructions to each other in the following sense:296

Depth-limited A* coding can be thought of as an importance sampler, i.e. a Monte Carlo algorithm297

that returns an approximate sample in fixed time. On the other hand, GPRS is a rejection sampler, i.e.298

a Las Vegas algorithm that returns an exact sample in random time.299

Channel simulation with dithered quantization: Dithered quantization (DQ; Ziv, 1985) is an300

alternative to rejection and importance sampling-based approaches to channel simulation. DQ exploits301

that for any c ∈ R and U,U ′ ∼ Unif(−1/2, 1/2), the quantities ⌊c−U⌉+U and c+U ′ are equal in302

distribution. While DQ has been around for decades as a tool to model and analyze quantization error,303

Agustsson & Theis (2020) reinterpreted it as a channel simulation protocol and used it to develop a304

VAE-based neural image compression algorithm. Unfortunately, basic DQ only allows uniform target305

distributions, limiting its applicability. As a partial remedy, Theis & Yosri (2022) showed DQ could306

be combined with other channel simulation protocols to speed them up and thus called their approach307

hybrid coding (HQ). Originally, HQ required that the target distribution be compactly supported,308

which was lifted by Flamich & Theis (2023), who developed an adaptive rejection sampler using HQ.309

In a different vein, Hegazy & Li (2022) generalize and analyze a method proposed in the appendix of310

Agustsson & Theis (2020) and show that DQ can be used to realize channel simulation protocols for311

one-dimensional symmetric, unimodal distributions.312

Greedy Rejection Coding: Concurrently, Anonymous (2023) generalize Harsha et al. (2007)’s313

rejection sampling algorithm to arbitrary probability spaces, which they call greedy rejection coding314

(GRC). Furthermore, they also introduce a space-partitioning procedure to speed up the convergence315

of their sampler and prove that a variant of their sampler also achieves optimal runtime for one-316

dimensional problems where dQ/dP is unimodal. However, the construction of their method differs317

significantly from ours. GRC is a direct generalization of Harsha et al. (2007)’s algorithm and, thus,318

a more “conventional” rejection sampler, while we base our construction on Poisson processes. Thus,319

our proof techniques are also significantly different. It is an interesting research question whether320

GRC could be formulated using Poisson processes, akin to the formulation of standard rejection321

sampling in Algorithm 2, as this could be used to connect the two algorithms and improve both.322

6 Discussion and Future Work323

Using Poisson processes, we constructed greedy Poisson rejection sampling. We proved the correct-324

ness of the algorithm and analyzed its runtime, and showed that it could be used to obtain a channel325

simulation protocol. We then developed several variations on it, analyzed their runtimes, and showed326

that they could all be used to obtain channel simulation protocols. As the most significant result of327

the paper, we showed that using the binary search variant of GPRS we can achieve O(DKL[Q∥P])328

runtime for arbitrary one-dimensional, unimodal density ratios, significantly improving upon the329

previous best O(D∞[Q∥P]) bound by A* coding.330

There are several interesting directions for future work. From a practical perspective, the most331

pressing question is whether efficient channel simulation algorithms exist for multivariate problems;332

finding an efficient channel simulation protocol for multivariate Gaussians would already have333

far-reaching practical consequences.334

9

References335

Eirikur Agustsson and Lucas Theis. Universally quantized neural compression. Advances in Neural336

Information Processing Systems, 33, 2020.337

Anonymous. Faster relative entropy coding with greedy rejection coding. See the Supplementary338

Materials, 2023.339

Robert M Corless, Gaston H Gonnet, David EG Hare, David J Jeffrey, and Donald E Knuth. On the340

lambert w function. Advances in Computational mathematics, 5:329–359, 1996.341

Gergely Flamich and Lucas Theis. Adaptive greedy rejection sampling. arXiv preprint342

arXiv:2304.10407, 2023.343

Gergely Flamich, Marton Havasi, and José Miguel Hernández-Lobato. Compressing images by344

encoding their latent representations with relative entropy coding. Advances in Neural Information345

Processing Systems, 33, 2020.346

Gergely Flamich, Stratis Markou, and José Miguel Hernández-Lobato. Fast relative entropy coding347

with A* coding. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,348

and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,349

volume 162 of Proceedings of Machine Learning Research, pp. 6548–6577. PMLR, 17–23 Jul350

2022. URL https://proceedings.mlr.press/v162/flamich22a.html.351

Prahladh Harsha, Rahul Jain, David McAllester, and Jaikumar Radhakrishnan. The communica-352

tion complexity of correlation. In Twenty-Second Annual IEEE Conference on Computational353

Complexity (CCC’07), pp. 10–23. IEEE, 2007.354

Marton Havasi, Robert Peharz, and José Miguel Hernández-Lobato. Minimal random code learning:355

Getting bits back from compressed model parameters. In International Conference on Learning356

Representations, 2018.357

Mahmoud Hegazy and Cheuk Ting Li. Randomized quantization with exact error distribution. In358

2022 IEEE Information Theory Workshop (ITW), pp. 350–355. IEEE, 2022.359

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. International Conference360

on Learning Representations, 2014. URL https://arxiv.org/abs/1312.6114.361

J.F.C. Kingman. Poisson Processes. Oxford Studies in Probability. Clarendon Press, 1992. ISBN362

9780191591242. URL https://books.google.co.uk/books?id=VEiM-OtwDHkC.363

Cheuk Ting Li and Abbas El Gamal. Strong functional representation lemma and applications to364

coding theorems. IEEE Transactions on Information Theory, 64(11):6967–6978, 2018.365

CA Maddison. Poisson process model for Monte Carlo. Perturbation, Optimization, and Statistics,366

pp. 193–232, 2016.367

Chris J Maddison, Daniel Tarlow, and Tom Minka. A* sampling. Advances in Neural Information368

Processing Systems, 27:3086–3094, 2014.369

Pat Muldowney, Krzysztof Ostaszewski, and Wojciech Wojdowski. The Darth Vader rule. Tatra370

Mountains Mathematical Publications, 52(1):53–63, 2012.371

A. Shah, W.-N. Chen, J. Balle, P. Kairouz, and L. Theis. Optimal compression of locally differentially372

private mechanisms. In Artificial Intelligence and Statistics, 2022. URL https://arxiv.org/373

abs/2111.00092.374

L. Theis, T. Salimans, M. D. Hoffman, and F. Mentzer. Lossy compression with Gaussian diffusion.375

arXiv:2206.08889, 2022. URL https://arxiv.org/abs/2206.08889.376

Lucas Theis and Noureldin Yosri. Algorithms for the communication of samples. In International377

Conference on Machine Learning, 2022.378

Jacob Ziv. On universal quantization. IEEE Transactions on Information Theory, 31(3):344–347,379

1985.380

10

https://proceedings.mlr.press/v162/flamich22a.html
https://arxiv.org/abs/1312.6114
https://books.google.co.uk/books?id=VEiM-OtwDHkC
https://arxiv.org/abs/2111.00092
https://arxiv.org/abs/2111.00092
https://arxiv.org/abs/2111.00092
https://arxiv.org/abs/2206.08889

A Measure-theoretic Construction of Greedy Poisson Rejection Sampling381

In this section, we provide a construction of greedy Poisson rejection sampling (GPRS) in its greatest382

generality. However, we first establish the notation for the rest of the appendix.383

Notation: In what follows, we will always denote GPRS’s target distribution as Q and its proposal384

distribution as P . We assume that Q and P are Borel probability measures over some Polish space Ω385

with Radon-Nikodym derivative r
def
= dQ/dP . We denote the standard Lebesgue measure on Rn386

by λ. All logarithms are assumed to be to the base 2 denoted by log2. Similarly, we use the less387

common notation of exp2 to denote exponentiation with base 2, i.e. exp2(x) = 2x. The relative388

entropy from Q to P is defined as DKL[Q∥P]
def
=
∫
Ω
log2 r(x) dP (x) and the Rényi∞-divergence389

as D∞[Q∥P]
def
= ess supx∈Ω {log r(x)}, where the essential supremum is taken with respect to P .390

Restricting a Poisson process “under the graph of a function”: We first consider the class of391

functions “under which” we will be restricting our Poisson processes. Let φ : Ω → R+ be a392

measurable function, such that |φ(Ω)| = |r(Ω)|, i.e. the image of φ has the same cardinality as393

the image of r = dQ/dP . This implies that there exist bijections between r(Ω) and φ(Ω). Since394

both images are subsets of R+, both images have a linear order. Hence, a monotonically increasing395

bijection σ̃ exists such that φ = σ̃ ◦ r. Since σ̃ is monotonically increasing, we can extend it to a396

monotonically increasing continuous function σ : R+ → R+. This fact is significant, as it allows us397

to reduce questions about functions of interest from Ω to R+ to invertible functions on the positive398

reals. Since σ is continuous and monotonically increasing on the positive reals, it is invertible on the399

extended domain. We now consider restricting a Poisson process under the graph of φ, and work out400

the distribution of the spatial coordinate of the first arrival.401

Let Π = {(Tn, Xn)}∞n=1 be a Poisson process over R+ × Ω with mean measure µ = λ × P . Let402

U
def
= {(t, x) ∈ Ω | t ≤ φ(x)} be the set of points “under the graph” of φ. By the restriction theorem403

(Kingman, 1992), Π̃
def
= Π ∩ U is a Poisson process with mean measure µ̃(A) = µ(A ∩ U) for an404

arbitrary Borel set A. As a slight abuse of notation, we define the shorthand µ̃(t) = µ̃([0, t) × Ω)405

for the average number of points in Π̃ up to time t. Let NΠ̃ denote the counting measure of Π̃ and406

let (T̃ , X̃) be the first arrival of Π̃, i.e. the first point of the original process Π that falls under the407

graph of φ, assuming that it exists. To develop GPRS, we first work out the distribution of X̃ for an408

arbitrary φ.409

Remark: Note, that the construction below only holds if the first arrival is guaranteed to exist,410

otherwise the quantities below do not make sense. From a formal point of view, we would have411

to always condition on the event NΠ̃(∞)
def
= limt→∞ NΠ̃(t) > 0, e.g. we would need to write412

P[T̃ ≥ t | NΠ̃(∞) > 0]. However, we make a “leap of faith” instead and assume that our413

construction is valid to obtain our “guesses” for the functions σ and φ. Then, we show that for our414

specific guesses the derivation below is well-defined, i.e. namely that P[NΠ̃(∞) > 0] = 1, which415

then implies P[T̃ ≥ t | NΠ̃(∞) > 0] = P[T̃ ≥ t]. To do this, note that416

P[NΠ̃(∞) > 0] = 1− P[NΠ̃(∞) = 0] (10)

= 1− lim
t→∞

e−µ̃(t). (11)

Hence, for the well-definition of our construction it is enough to show that for our choice of σ,417

µ̃(t)→∞ as t→∞.418

Constructing σ: We wish to derive419

dP[X̃ = x]

dP
=

∫ ∞

0

dP[T̃ = t, X̃ = x]

d(λ× P)
dt. (12)

11

To do this, recall that we defined NΠ̃(t)
def
= NΠ̃([0, t)×Ω) and define NΠ̃(s, t)

def
= NΠ̃([s, t]×Ω).420

Similarly, let µ̃(t)
def
= E[NΠ̃(t)] and µ̃(s, t)

def
= E[NΠ̃(s, t)] = µ̃(t)− µ̃(s). Then,421

P[X̃ ∈ A, T̃ ∈ dt] = lim
s→t

P[X̃ ∈ A, T̃ ∈ [s, t]] (13)

= lim
s→t

P[X̃ ∈ A,NΠ̃(s, t) = 1,NΠ̃(s) = 0] (14)

= lim
s→t

P[X̃ ∈ A | NΠ̃(s, t) = 1]P[NΠ̃(s, t) = 1]P[NΠ̃(s) = 0], (15)

where the last equality holds, because NΠ̃(s) ⊥ NΠ̃(s, t), since [0, s)×Ω and [s, t]×Ω are disjoint.422

By Lemma 3 from Maddison (2016),423

P[X̃ ∈ A | NΠ̃(s, t) = 1] = P[(T̃ , X̃) ∈ [s, t]×A | NΠ̃(s, t) = 1] (16)

=
µ̃([s, t]×A)

µ̃(s, t)
. (17)

Substituting this back into Equation (15) and using the fact that NΠ̃ is Poisson, we find424

P[X̃ ∈ A, T̃ ∈ dt] = lim
s→t

(
µ̃([s, t]×A)

µ̃(s, t)
· µ̃(s, t)e−µ̃(s,t) · e−µ̃(s)

)/
(t− s) (18)

= lim
s→t

(
µ̃([s, t]×A) · e−(µ̃(t)−µ̃(s)) · e−µ̃(s)

)/
(t− s) (19)

= e−µ̃(t) · lim
s→t

µ̃([s, t]×A)

t− s
(20)

= e−µ̃(t) ·
∫
A

1[t ≤ φ(x)] dP (x), (21)

where the last equation holds by the definition of the derivative and the fundamental theorem of425

calculus. From this, by inspection we find426

dP[T̃ = t, X̃ = x]

d(λ× P)
= 1[t ≤ φ(x)]e−µ̃(t) = 1[t ≤ φ(x)]P[T̃ ≥ t]. (22)

Finally, by marginalizing out the first arrival time, we find that the spatial distribution is427

dP[X̃ = x]

dP
=

∫ ∞

0

dP[T̃ = t, X̃ = x]

d(λ× P)
dt (23)

=

∫ φ(x)

0

P[T̃ ≥ t] dt. (24)

Deriving φ by finding σ: Note that Equation (24) holds for any φ. However, to get a correct428

algorithm, we need to set it such that dP[X̃=x]
dP = dQ

dP = r. Since we can write φ = σ ◦ r by our429

earlier argument, this problem is reduced to finding an appropriate invertible continuous function430

σ : R+ → R+. Thus, we wish to find σ such that431

∀x ∈ Ω, r(x) =

∫ σ(r(x))

0

P[T̃ ≥ t] dt. (25)

Now, introduce τ = σ(r(x)), so that σ−1(τ) = r(x). Note that this substitution only makes sense for432

τ ∈ r(Ω). However, since we are free to extend σ−1 to R+ in any we like so long as it is monotone,433

we may require that this equation hold for all τ ∈ R+. Then, we find434

σ−1(τ) =

∫ τ

0

P[T̃ ≥ t] dt (26)

⇒
(
σ−1

)′
(τ) = P[T̃ ≥ τ] (27)

with σ−1(0) = 0. Before we solve for σ, we define435

wP (h)
def
= PY∼P [r(Y) ≥ h] (28)

wQ(h)
def
= PY∼Q[r(Y) ≥ h]. (29)

12

Note that wP and wQ are supported on [0, r∗), where r∗
def
= ess supx∈Ω{r(x)} = exp2(D∞[Q∥P]).436

Now, we can rewrite Equation (27) as437 (
σ−1

)′
(τ) = P[T̃ ≥ t] (30)

= P[T̃ ≥ t, φ(X̃) ≥ t] + P[T̃ ≥ t, φ(X̃) < t]︸ ︷︷ ︸
=0 due to mutual exclusivity

(31)

= P[T̃ ≥ 0, φ(X̃) ≥ t]︸ ︷︷ ︸
=P[φ(X̃)≥t], since T̃ ≥ 0 always

−P[φ(X̃) ≥ t ≥ T̃] (32)

= P[r(X̃) ≥ σ−1(t)]− P[r(X̃) ≥ σ−1(t) ≥ σ−1(T̃)] (33)

= wQ(σ
−1(t))− σ−1(t)wP (σ

−1(t)) (34)

where the second term in the last equation follows by noting that438

P[r(X̃) ≥ σ−1(t) ≥ σ−1(T̃)] =

∫
Ω

∫ t

0

1[r(x) ≥ σ−1(t)]1[r(x) ≥ σ−1(τ)]︸ ︷︷ ︸
=1[r(x)≥σ−1(t)], since τ<t

P[T̃ ≥ τ] dτ dP (x)

(35)

=

∫
Ω

1[r(x) ≥ σ−1(t)]

∫ t

0

P[T̃ ≥ τ] dτ︸ ︷︷ ︸
=σ−1(t),by eq. (26)

dP (x) (36)

= σ−1(t)wP (σ
−1(t)). (37)

Now, by the inverse function theorem, we get439

σ′(h) =
1

wQ(h)− h · wP (h)
, (38)

thus we finally find440

σ(h) =

∫ h

0

1

wQ(η)− η · wP (η)
dη. (39)

Thus, to recapitulate, setting φ = σ ◦ r, where σ is given by Equation (39) will ensure that the spatial441

distribution of the first arrival of Π under φ is the target distribution Q.442

Well-definition of GPRS and Algorithm 3 terminates with probability 1: To ensure that our443

construction is useful, we need to show that the first arrival under the graph T̃ exists and is almost444

surely finite, so that Algorithm 3 terminates with probability 1. First, note that for any t > 0, we445

have µ̃(t) ≤ µ(t) = t < ∞. Since P[NΠ̃(t) = 0] = e−µ̃(t), this implies that for any finite time t,446

P[NΠ̃(t) = 0] > 0. Second, note that for h ∈ [0, r∗],447

wQ(h)− h · wP (h) =

∫
Ω

1[r(x) ≥ h](r(x)− h) dP (x), (40)

from which448

wQ(r
∗)− r∗wP (r

∗) =

∫
Ω

1[r(x) ≥ r∗](r(x)− r∗) dP (x) (41)

=

∫
Ω

1[r(x) = r∗](r(x)− r∗) dP (x) (42)

= 0. (43)

Thus, in particular, we find that449

lim
h→r∗

e−µ̃(σ(h)) = lim
h→r∗

P[NΠ̃(σ(h)) = 0]
eq. (34)
= lim

h→r∗
(wQ(h)− h · wP (h)) = 0. (44)

By continuity, this can only hold if µ̃(σ(h))→∞ as h→ r∗. Since µ̃(t) is finite for all t > 0 and σ450

is monotonically increasing, this also implies that σ(h) → ∞ as h → r∗. Thus, we have shown a451

couple of facts:452

13

• σ(h) → ∞ as h → r∗, hence φ is always unbounded at points in Ω that achieve the453

supremum r∗. Furthermore, this implies that454

σ−1(t)→ r∗ as t→∞. (45)
Since σ−1 is increasing, this implies that it is bounded from above by r∗.455

• µ̃(t) < ∞ for all t > 0, but µ̃(t) → ∞ as t → ∞. Hence, by Equation (11) we have456

P[NΠ̃(∞) > 0] = 1. Thus, the first arrival of Π̃ exists almost surely, and our construction457

is well-defined. In particular, it is meaningful to write P[T̃ ≥ t].458

• P[T̃ ≥ t] = P[NΠ̃(t) = 0]→ 0 as t→∞, which shows that the first arrival time is finite459

with probability 1. In turn, this implies that Algorithm 3 will terminate with probability one,460

as desired.461

Note, that wP and wQ can be computed in many practically relevant cases, see Appendix G.462

B Analysis of Greedy Poisson Rejection Sampling463

Now that we constructed a correct sampling algorithm in Appendix A, we turn our attention to464

deriving the expected first arrival time T̃ in the restricted process Π̃, the expected number of samples465

N before Algorithm 3 terminates and bound on N ’s variance, and an upper bound on its coding466

cost. The proofs below showcase the true advantage of formulating the sampling algorithm using the467

language of Poisson processes: the proofs are all quite short and elegant.468

B.1 The Expected First Arrival Time469

At the end of the previous section, we showed that T̃ is finite with probability one, which implies470

that E[T̃] <∞. Now, we derive the value of this expectation exactly. Since T̃ is a positive random471

variable, by the Darth Vader rule (Muldowney et al., 2012), we may write its expectation as472

E
[
T̃
]
=

∫ ∞

0

P[T̃ ≥ t] dt
eq. (26)
= lim

t→∞
σ−1(t)

eq. (45)
= r∗. (46)

B.2 The Expectation and Variance of the Runtime473

Expectation of N : First, let Π̃C def
= Π \ Π̃ be the set of points in Π above the graph of φ. Since Π̃474

and Π̃C are defined on complementary sets, they are independent. Since by definition T̃ is the first475

arrival of Π̃ and the N th arrival of Π, it must mean that the first N − 1 arrivals of Π occurred in Π̃C .476

Thus, conditioned on T̃ , we have N −1 = |{(T,X) ∈ Π̃ | T < T̃}| is Poisson distributed with mean477

E
[
N − 1 | T̃

]
=

∫ T̃

0

∫
Ω

1[t ≥ φ(x)] dP (x) dt (47)

=

∫ T̃

0

∫
Ω

1− 1[t < φ(x)] dP (x) dt (48)

= T̃ − µ̃
(
T̃
)
. (49)

By the law of iterated expectations,478

E[N − 1] = ET̃

[
E
[
N − 1 | T̃

]]
(50)

= E
[
T̃
]
− E

[
µ̃
(
T̃
)]

. (51)

Focusing on the second term, we find479

E
[
µ̃
(
T̃
)]

=

∫ ∞

0

µ̃(t) · P[T̃ ∈ dt] dt (52)

=

∫ ∞

0

µ̃(t) · µ̃′(t)e−µ̃(t) dt (53)

=

∫ ∞

0

ue−u du = 1, (54)

14

where the third equality follows by substituting u = µ̃(t). Finally, plugging the above and Equa-480

tion (46) into Equation (51), we find481

E[N] = 1 + E[N − 1] = 1 + r∗ − 1 = r∗. (55)

Variance of N : We now show that the distribution of N is super-Poissonian, i.e. E[N] ≤ V[N].482

Similarly to the above, we begin with the law of iterated variances to find483

V[N] = V[N − 1] = ET̃ [V[N − 1 | T̃]] + VT̃ [E[N − 1 | T̃]] (56)

= E
[
T̃
]
− E

[
µ̃
(
T̃
)]

+ V
[
T̃
]
+ V

[
µ̃
(
T̃
)]

, (57)

where the second equality follows from the fact that the variance of N − 1 matches its mean484

conditioned on T̃ , since it is a Poisson random variable. Focussing on the last term, we find485

V
[
µ̃
(
T̃
)]

= E
[
µ̃
(
T̃
)2]
− E

[
µ̃
(
T̃
)]2

(58)

=

∫ ∞

0

µ̃(t)2 · P[T̃ ∈ dt] dt− 1 (59)

=

∫ ∞

0

u2e−u dt− 1 = 1, (60)

where the third equality follows from a similar u-substitution as in Equation (54). Thus, putting486

everything together, we find487

V[N] = r∗ − 1 + V
[
T̃
]
+ 1 = r∗ + V

[
T̃
]
≥ E[N]. (61)

B.3 The Codelength of the Index488

As discussed in Section 3, Alice and Bob can realize a one-shot channel simulation protocol using489

GPRS for a pair of correlated random variables x,y ∼ Px,y if they have access to shared randomness490

and can simulate samples from Px. In particular, after receiving y ∼ Py, Alice runs GPRS with491

proposal distribution Px and target Px|y, and the shared randomness to simulate the Poisson process492

Π. She then encodes the index N of the first arrival of Π under the graph of φ. Bob can decode Alice’s493

sample x ∼ Px|y by simulating the same N samples from Π using the shared randomness. The494

question is, how efficiently can Alice encode N? We answer this question by following the approach495

of Li & El Gamal (2018). Namely, we first bound the conditional expectation E[log2 N | y = y],496

after which we average over y to bound E[log2 N]. Then, we use the maximum entropy distribution497

subject to the constraint of fixed E[log2 N] to bound H[N]. Finally, noting that x is a function of Π498

and N , we get499

H[x, N | Π] = H[x | N,Π]︸ ︷︷ ︸
=0

+H[N | Π] (62)

= H[N | x,Π]︸ ︷︷ ︸
=0

+H[x | Π], (63)

from which500

H[N] ≥ H[N | Π] = H[x | Π] ≥ H[x | Π], (64)

which will finish the proof.501

Bound on the conditional expectation: Fix y and set Q = Px|y and P = Px as GPRS’s target502

and proposal distribution, respectively. Let (t, x) ∈ R+ × Ω be a point under the graph of φ, i.e.503

σ−1(t) ≤ r(x). Then,504

r(x) ≥ σ−1(t) (65)

eq. (27)
=

∫ t

0

P[T̃ ≥ τ] dτ (66)

≥ t · inf
τ∈[0,t]

{
P[T̃ ≥ τ]

}
(67)

= t · P[T̃ ≥ t]. (68)

15

From this, we get505

t+ 1 ≤ r(x)

P[T̃ ≥ t]
+ 1 ≤ r(x) + 1

P[T̃ ≥ t]
. (69)

Next, conditioning on the first arrival (T̃ , X̃) we get506

E[log2 N | T̃ = t, X̃ = x] ≤ log2

(
E[N − 1 | T̃ = t, X̃ = x] + 1

)
(70)

eq. (49)
= log2 (t− µ̃ (t) + 1) (71)
≤ log2 (t+ 1) (72)
eq. (69)
≤ log2 (r(x) + 1)− log2 P[T̃ ≥ t] (73)

= log2 (r(x) + 1) + µ̃ (t) · log2 e, (74)

where the first inequality follows by Jensen’s inequality.507

Now, by the law of iterated expectations, we find508

E[log2 N] = EX̃

[
ET̃ |X̃

[
E[log2 N | T̃ , X̃]

]]
(75)

eq. (74)
≤ EX̃

[
log2

(
r
(
X̃
)
+ 1
)]

+ ET̃

[
µ̃
(
T̃
)]

︸ ︷︷ ︸
=1 by eq. (54)

· log2 e (76)

= DKL[Q∥P] + EX̃

log2
1 +

1

r
(
X̃
)
+ log2 e (77)

≤ DKL[Q∥P] + EX̃

[
loge

(
e−r(X̃)

)]
· log2 e+ log2 e (78)

= DKL[Q∥P] + 2 · log2 e, (79)

where the second inequality follows from switching to the natural base and using a first-order Taylor509

approximation for e−x.510

Bound on the marginal expectation and entropy: Equation (79) is a one-shot bound, which yields511

E[log2 N | y] ≤ DKL[Px|y∥Px] + 2 · log2 e. (80)

Taking expectation over y ∼ Py, we get512

E[log2 N] ≤ I[x;y] + 2 · log2 e. (81)

Finally, following Proposition 4 in Li & El Gamal (2018), the maximum entropy distribution for N513

subject to a constraint on E[log2 N] obeys514

H[N] ≤ E[log2 N] + log (E[log2 N] + 1) + 1. (82)

Plugging in Equation (81) into the above, we get515

H[N] ≤ I[x;y] + log2(I[x;y] + 2 log2 e+ 1) + 2 log2 e+ 1 (83)
≤ I[x;y] + log2(I[x;y] + 1) + 2 log2 e+ 1 + log2(2 log2 e+ 1) (84)
< I[x;y] + log2(I[x;y] + 1) + 6. (85)

Similarly to Li & El Gamal (2018), we can encode N using a Zeta distribution ζ(n | s) ∝ n−s with516

s
def
=

1

I[x;y] + 2 log2 e
. (86)

With this choice of the coding distribution, the expected codelength of N is upper bounded by517

I[x;y] + log2(I[x;y] + 1) + 7 bits.518

16

C Analysis of Parallel GPRS519

Parallel GPRS (PGPRS) is a general technique to accelerate GPRS when parallel computing power520

is available and is presented in Section 3.1. Assuming that J parallel threads are available, for521

target distribution Q and proposal P , PGPRS simulates J Poisson processes Π1, . . . ,ΠJ in parallel,522

all of them with mean measure µi
def
= λ

J × P . Assuming
{(

T
(1)
N1

, X
(1)
N1

)
, . . . ,

(
T

(J)
NJ

, X
(J)
NJ

)}
are523

the first arrivals of Π1, . . . ,ΠJ under φ, respectively, PGPRS selects the arrival with the overall524

smallest arrival time J∗ = argminj∈{1,...,J}

{
T

(j)
Nj

}
. By the superposition theorem (Kingman,525

1992), ∪Jj=1Πj = Π is a Poisson process with mean measure µ = λ×P , hence
(
T

(J∗)
NJ∗ , X

(J∗)
NJ∗

)
will526

be the first arrival of Π under the graph of φ and the measure-theoretic construction in Appendix A527

therefore guarantees the correctness of PGPRS.528

Expected runtime: We will proceed similarly to the analysis in Appendix B.2. Concretely, let529

T̃ = T
(J∗)
NJ∗ be the first arrival time of Π under the graph of φ. Let530

νj
def
=
∣∣∣{(T,X) ∈ Πj | T < T̃ , T > φ(X)

}∣∣∣ (87)

be the number of points in Πj that are rejected before the global first arrival occurs. By an indepen-531

dence argument analogous to the one given in Appendix B.2, the ν1, . . . , νJ are independent Poisson532

random variables, each distributed with mean533

E
[
νj | T̃

]
=

1

J

(
T̃ − µ̃

(
T̃
))

. (88)

Hence, by the law of iterated expectations, we find that we get534

E [νj]
eq. (51)
=

r∗ − 1

J
(89)

rejections in each of the J threads on average before the global first arrival occurs. Now, a thread j535

terminates either when the global first arrival occurs in it or when the thread’s current arrival time536

T
(j)
nj provably exceeds the global first arrival time. Thus, on average, each thread will have one more537

rejection compared to Equation (89). Hence the average runtime of a thread is538

E[νj + 1] =
r∗ − 1

J
+ 1, (90)

and the average number of samples simulated by PGPRS across all its threads is539

J ·
(
r∗ − 1

J
+ 1

)
= r∗ + J − 1. (91)

Variance of Runtime: Once again, similarly to Appendix B.2, we find by the law of iterated variances540

that the variance of the runtime in each of the j threads is541

V[νj + 1] = V[νj] =
r∗ − 1

J
+

1

J2

(
V
[
T̃
]
+ 1
)
, (92)

meaning that we make an O(1/J) reduction in the variance of the runtime compared to regular542

GPRS.543

Codelength: PGPRS can also realize a one-shot channel simulation protocol for a pair of correlated544

random variables x,y ∼ Px,y. For a fixed y ∼ Py, Alice applies PGPRS to the target Q = Px|y and545

proposal P = Px, and encodes the two-part code (J∗, NJ∗). Bob can then simulate NJ∗ samples546

from ΠJ∗ and recover Alice’s sample.547

Encoding J∗: By the symmetry of the setup, the global first arrival will occur with equal probability548

in each subprocess Πj . Hence J∗ follows a uniform distribution on {1, . . . J}. Therefore, Alice can549

encode J∗ optimally using ⌈log2 J⌉ bits.550

Encoding NJ∗: We can develop a bound using an almost identical argument to the one in Ap-551

pendix B.3. In particular, by adapting the conditional bound in Equation (74) appropriately using552

Equation (90), we get553

E
[
log2 NJ∗ | T̃ = t, X̃ = x, J∗

]
≤ log2(r(x) + 1) + µ̃(t) · log2 e− log2 J. (93)

17

Then, using this conditional bound and adapting Equation (79), we find554

E [log2 NJ∗ | y, J∗] ≤ DKL[Px|y∥Px] + 2 · log2 e− log2 J (94)

to obtain a one-shot bound. Taking expectation over y ∼ Py, we get555

E [log2 NJ∗ | J∗] ≤ I[x;y] + 2 · log2 e− log2 J, (95)

hence, by adapting the maximum entropy bound in Equation (85), we find556

H[NJ∗ | J∗] < I[x;y]− log2 J + log(I[x;y]− log2 J + 1) + 6. (96)

Thus, we finally find that the entropy of the two-part code (J∗, NJ∗) is upper bounded by557

H[J∗, NJ∗] < I[x;y] + log(I[x;y]− log2 J + 1) + 7. (97)

Using a Zeta distribution ζ(n | s) ∝ n−s to encode NJ∗ | J∗ with558

s
def
=

1

I[x;y] + 2 · log2 e− log2 J
, (98)

we find that the expected codelength of the two-part code is upper bounded by559

H[J∗, NJ∗] < I[x;y] + log(I[x;y]− log2 J + 1) + 8 bits. (99)

D Simulating Poisson Processes Using Tree-Structured Partitions560

In this section, we examine an advanced simulation technique for Poisson processes, which is561

required to formulate the binary search-based variants of GPRS. We first recapitulate the tree-based562

simulation technique from (Flamich et al., 2022) and some important results from their work. Then,563

we present Algorithm 7, using which we can finally formulate the optimally efficient variant of564

GPRS in Appendix E. Note: For simplicity, we present the ideas for Poisson processes whose565

spatial measure P is non-atomic. These ideas can also be extended to atomic spatial measures with566

appropriate modifications.567

Splitting functions: Let Π be a spatiotemporal Poisson process on some space Ω with non-atomic568

spatial measure P . In this paragraph, we will not deal with Π itself yet, but the space on which it is569

defined and the measure P . Now, assume that there is a function split, which for any given Borel570

set B ⊆ Ω, produces a (possibly random) P -essential partition of B consisting of two Borel sets, i.e.571

split(B) = {L,R}, such that L ∩R = ∅ and P (L ∪R) = P (B). (100)

The last condition simply allows split to discard some points from B that will not be included in572

either the left or right split. For example, if we wish to design a splitting function for a subset of573

B ⊆ Rd to split B along some hyperplane, we do not need to include the points on the hyperplane in574

either set. The splitting function that always exists is the trivial splitting function, which just returns575

the original set and the empty set:576

splittrivial(B) = {B, ∅}. (101)

A more interesting example when Ω = R is the on-sample splitting function, where for a R-valued577

random variable X ∼ P |B it splits B as578

spliton-samp(B) = {(−∞, X) ∩B, (X,∞) ∩B}. (102)

This function is used by Algorithm 5 and AS* coding (Flamich et al., 2022). Another example is the579

dyadic splitting function operating on a bounded interval (a, b), splitting as580

splitdyad((a, b)) =

{(
a,

a+ b

2

)
,

(
a+ b

2
, b

)}
. (103)

We call this dyadic because when we apply this splitting function to (0, 1) and subsets pro-581

duced by applying it, we get the set of all intervals with dyadic endpoints on (0, 1), i.e.582

{(0, 1), (0, 1/2), (1/2, 1), (0, 1/4), . . .}. This splitting function is used by Algorithm 6 and AD*583

coding. As one might imagine, there might be many more possible splitting functions than the two584

examples we give above, all of which might be more or less useful in practice.585

18

Algorithm 7: Simulating a tree construction with another
Input :Proposal distribution P

Target splitting function splittarget,
Simulating splitting function splitsim,
Target heap index Htarget

Output :Arrival (T,X) with heap index Htarget in Ttarget, and heap index Hsim of the arrival in
Tsim.

P ← PriorityQueue
B ← Ω
K ← ⌊log2 Htarget⌋
X ∼ P
T ∼ Exp(1)
P.push(T,X,Ω, 1)
for k = 0, . . . ,K do

repeat
T,X,C,H ← P.pop()
L,R← splitsim(C)
if B ∩ L ̸= ∅ then

∆L ∼ Exp(P (L))
TL ← T +∆L

XL ∼ P |L
P.push(TL, XL, L, 2H)

end
if B ∩R ̸= ∅ then

∆R ∼ Exp(P (R))
TR ← T +∆R

XR ∼ P |R
P.push(TR, XR, R, 2H + 1)

end
until X ∈ B /* Exit loop when we find first arrival in B. */
if k < K then
{B0, B1} ← splittarget(B)

d←
⌈

Htarget

2K−k

⌉
mod 2

B ← Bd

end
end
return T,X,H

Split-induced binary space partitioning tree: Every splitting function on a space Ω induces an586

infinite set of subsets by repeatedly applying the splitting function to the splits it produces. These sets587

can be organised into an infinite binary space partitioning tree (BSP-tree), where each node in the588

tree is represented by a set produced by split and an unique index. Concretely, let the root of the589

tree be represented by the whole space Ω and the index Hroot = 1. Now we recursively construct the590

rest of the tree as follows: Let (B,H) be a node in the tree, with B a Borel set and H its index, and591

let {L,R} = split(B) the left end right splits of B. Then, we set (L, 2H) as the node’s left child592

and (R, 2H + 1) as its right child. We refer to the index associated with each node as its heap index.593

Heap-indexing the points in Π and a strict heap invariant: As we saw in Section 2.1, each point in594

Π can be uniquely identified by their time index N , i.e. if we time-order the points of Π, N represents595

the N th arrival in the ordered list. However, we can also uniquely index each point in Π using a596

splitting function-induced BSP-tree as follows.597

We extend each node in the BSP-tree with a point from Π, such that the extended tree satisfies a strict598

heap invariant: First, we extend the root node (Ω, 1) by adjoining Π’s first arrival (T1, X1) and the599

first arrival index 1 to get (T1, X1,Ω, 1, 1). Then, for every other extended node (T,X,B,H,N)600

with parent node (T ′, X ′, B′, ⌊H/2⌋,M) we require that (T,X) is the first arrival in the restricted601

process Π∩ ((T ′,∞)×B). This restriction enforces that we always have that T ′ < T and, therefore,602

19

M < N . Furthermore, it is strict because there are no other points of Π in B between those two603

arrival times.604

Notation for the tree structure: Let us denote the extended BSP tree T on Π induced by split.605

Each node ν ∈ T is a tuple ν = (T,X,B,H,N) consisting of the arrival time T , spatial coordinate606

X , its bounds B, split-induced heap index H and time index N . As a slight overload of notation,607

for a node ν, we use it as subscript to refer to its elements, e.g. Tν is the arrival time associated608

with node ν. We now prove the following important result, which ensures that we do not lose any609

information by using T to represent Π. An essentially equivalent statement was first proven by for610

Gumbel processes (Appendix, “Equivalence under partition” subsection; Maddison et al., 2014).611

Lemma D.1. Let Π, P , split and T be as defined above. Then, P -almost surely, T contains every612

point of Π.613

Proof. We give an inductive argument.614

Base case: the first arrival of Π is by definition contained in the root node of T .615

Inductive hypothesis: assume that the first N arrivals of Π are all contained in T .616

Case for N +1: We begin by observing that if the first N nodes are contained in T , they must form a617

connected subtree TN . To see this, assume the contrary, i.e. that the first N arrivals form a subgraph618

ΓN ⊆ T with multiple disconnected components. Let ν ∈ ΓN be a node contained in a component619

of ΓN that is disconnected from the component of ΓN containing the root node. Since T is a tree,620

there is a unique path π from the root node to ν in T , and since ν and the root are disconnected in621

ΓN , π must contain a node c ̸∈ ΓN . However, since c is an ancestor of ν, by the heap invariant of T622

we must have that the time index of c is Nc < Nν ≤ N hence c ∈ ΓN , a contradiction.623

Thus, let TN represent the subtree of T containing the first N arrivals of Π. Now, let FN represent624

the frontier of TN , i.e. the leaf nodes’ children:625

FN
def
= {ν ∈ T | ν ̸∈ TN ,parent(ν) ∈ TN} , (104)

where parent retrieves the parent of a node in T . Let626

Ω̄N
def
=

⋃
ν∈FN

Bν (105)

be the union of all the bounds of the nodes in the frontier. A simple inductive argument shows that for627

all N the nodes in FN provide a P -essential partition of Ω, from which P (Ω̄N) = 1. Let TN be the628

N th arrival time of Π. Now, by definition, the arrival time associated with every node in the frontier629

FN must be later than TN . Finally, consider the first arrival time across the nodes in the frontier:630

T ∗
N

def
= min

ν∈FN

Tν . (106)

Then, conditioned on TN , T ∗
N is the first arrival of Π restricted to (TN ,∞)× Ω̄, thus it is P -almost631

surely the N + 1st arrival in Π, as desired.632

A connection between the time index an heap index of a node: Now that we have two ways of633

uniquely identifying each point in Π it is natural to ask whether there is any relation between them.634

In the next paragraph we adapt an argument from Flamich et al. (2022) to show that under certain635

circumstances, the answer is yes.636

First, we need to define two concepts, the depth of a node in an extended BSP-tree and a contractive637

splitting function. Thus, let T be an extended BSP-tree over Π induced by split. Let ν ∈ T . Then,638

the depth D of ν in T is defined as the distance from ν to the root. A simple argument shows that the639

heap index Hν of every node ν at depth D in T is between 2D ≤ Hν < 2D+1. Thus, we can easily640

obtain the depth of a node ν from the heap index via the formula Dν = ⌊log2 Hν⌋. Next, we say that641

split is contractive if all the bounds it produces shrink on average. More formally, let ϵ < 1, and642

for a node ν ∈ T , let Aν denote the set of ancestor nodes of ν. Then, split is contractive if for643

every non-root node ν ∈ T we have644

ETAν |Dν
[P (Bν)] ≤ ϵDν , (107)

20

where TAν and denotes the subtree of T containing the arrivals of the ancestors of ν.645

Note that ϵ ≥ 1/2 for any split function. This is because if {L,R} = split(B) for some set646

B, then P (R) = P (B) − P (L). Thus, if P (R) = αP (B), then P (L) = (1 − α)P (B), and by647

definition ϵ = max{α, 1− α}, which is minimized when α = 1/2, from which ϵ = 1/2.648

For example, splitdyad is contractive with ϵ = 1/2, while splittrivial is not contractive. By Lemma649

1 from Flamich et al. (2022), spliton-samp is also contractive with ϵ = 3/4. We now strengthen this650

result using a simple argument, and show that spliton-samp is contractive with ϵ = 1/2.651

Lemma D.2. Let ν,D be defined as above, let P be a non-atomic probability measure over R with652

CDF FP . Let Π a (1, P)-Poisson process and T be the BSP-tree over Π induced by spliton-samp.653

Then,654

ETAν |Dν
[P (Bν)] = 2−Dν . (108)

Proof. Fix Dν = d, and let Nd = {n ∈ T | Dn = d} be the set of nodes in T whose depth is d.655

Note, that |Nd| = 2d. We will show that656

∀n,m ∈ Nd : P (Bn)
d
= P (Bm), (109)

i.e. that the distributions of the bound sizes are all the same. From this, we will immediately have657

E[P (Bn)] = E[P (Bν)] for every n ∈ Nd. Then, using the fact, that the nodes in Nd for a P -almost658

partition of Ω, we get:659

1 = E

[
P

(⋃
n∈Nd

Bn

)]
= E

[∑
n∈Nd

P (Bn)

]
=
∑
n∈Nd

E [P (Bn)] = |Nd| · E [P (Bν)] . (110)

Dividing the very left and very right by |Nd| = 2d yields the desired result.660

To complete the proof, we now show that by symmetry, Equation (109) holds. We begin by exposing661

the fundamental symmetry of spliton-samp: for a node ν with left child L and right child R, the left662

and right bound sizes are equal in distribution:663

P (BL)
d
= P (Br) | P (Bν). (111)

First, note that by definition, all involved bounds will be intervals. Namely, assume that Bν = (a, b)664

for some a < b and Xν is the sample associated with ν. Then, BL = (a,Xν) and BR = (Xν , b) and665

hence P (BL) = FP (Xν)−FP (a). Since Xν ∼ P |Bν
, by the probability integral transform, we have666

F (Xν) ∼ Unif(FP (a), FP (b)), from which P (BL) ∼ Unif(0, FP (b)−FP (a)) = Unif(0, P (Bν)).667

Since P (BR) = P (Bν)− P (BL), we similarly have P (BR) ∼ Unif(0, P (Bν)), which establishes668

our claim.669

Now, to show Equation (109), fix d and fix n ∈ Nd. Let An denote the ancestor nodes of n. As we670

saw in the paragraph above,671

P (Bn) | P (Bparent(n))
d
= P (Bparent(n)) · U, U ∼ Unif(0, 1), (112)

regardless of whether n is a left or a right child of its parent. We can apply this d times to the ancestors672

of n find the marginal:673

P (Bn)
d
=

d∏
i=1

Ui, Ui ∼ Unif(0, 1). (113)

Since the choice of n was arbitrary, all nodes in Nd have this distribution, which is what we wanted674

to show.675

Now, we have the following result.676

Lemma D.3. Let split be a contractive splitting function for some ϵ ∈ [1/2, 1). Then, for every677

node ν in T with time index Nν and depth Dν , we have678

EDν |Nν
[Dν] ≤ − logϵ Nν . (114)

21

Proof. Let us examine the case Nν = 1 first. In this case, ν is the root of T and has depth Dν = 0679

by definition. Thus, 0 ≤ − logϵ 1 holds trivially.680

Now, fix ν ∈ T with time index Nν = N > 1. Let TN−1 be the subtree of T containing the first681

N − 1 arrivals, FN−1 be the frontier of TN−1 and TN−1 the (N − 1)st arrival time. Then, as we saw682

in Lemma D.1, the N th arrival in Π occurs in one of the nodes in the frontier FN−1, after TN−1.683

In particular, conditioned on TN−1, the arrival times associated with each node f ∈ FN−1 will be684

shifted exponentials Tf = TN−1 + Exp(P (Bf)), and the N th arrival time in Π is the minimum of685

these: Tν = TN = minf∈FN−1
Tf . It is a standard fact (see e.g. Lemma 6 in Maddison (2016)) that686

the index of the minimum687

FN = argmin
f∈FN−1

Tf (115)

is independent of Tν = TFN
and P[FN = f | TN−1] = P (Bf). A simple inductive argument shows688

that the number of nodes on the frontier |FN−1| = N . Thus, we have a simple upper bound on the689

entropy of F :690

EFN |TN−1,Nν=N [− log2 P (Bν)] = H[FN | TN−1, Nν = N] ≤ log2 N. (116)

Thus, taking expectation over TN−1, we find691

log2 N
eq. (116)
≥ EFN ,TN−1|Nν=N [− log2 P (Bν)] (117)

= EDν |Nν=N

[
EFN ,TN−1|Dν ,Nν=N [− log2 P (Bν)]

]
(118)

≥ EDν |Nν=N

[
− log2 EFN ,TN−1|Dν ,Nν=N [P (Bν)]

]
(119)

eq. (107)
≥ EDν |Nν=N

[
− log2 ϵ

Dν
]

(120)

= (− log2 ϵ) · EDν |Nν=N [Dν]. (121)

The second inequality holds by Jensen’s inequality. In the third inequality, we apply Equation (107),692

and one might worry about conditioning on Nν here. However, this is not an issue because693

EFN ,TN−1|Dν=d,Nν=N [P (Bν)] (122)

= 1[d ≤ N − 1] ·
∑

f∈FN−1

ETAf
|FN=f,Dν=d[P (Bf)] · P[FN = f | Df = d]

(123)
eq. (107)
≤ 1[d ≤ N − 1] ·

∑
f∈FN−1

ϵd · P[FN = f | Df = d] (124)

= 1[d ≤ N − 1] · ϵd. (125)

Thus, we finally get694

(− log2 ϵ) · EDν |Nν=N [Dν] ≤ log2 N ⇒ EDν |Nν
[Dν] ≤ − logϵ Nν (126)

by dividing both sides by − log2 ϵ and we obtain the desired result.695

Converting between different heap indices: Assume now that we have two splitting functions,696

splittarget and splitsim, which induce their own BSP-ordering on Π, Ttarget and Tsim. Now, given697

a splittarget-induced heap index H , Algorithm 7 presents a method for simulating the appropriate698

node ν ∈ Ttarget by simulating nodes from Tsim. In other words, given a node with some heap index699

induced by a splitting function, Algorithm 7 lets us find the heap index of the same arrival induced by700

a different splitting function. The significance of Algorithm 7 is that it lets us develop convenient701

search methods using a given splitting function, but it might be more efficient to encode the heap702

index induced by another splitting function.703

Theorem D.4. Let Π, splittarget, splitsim, Ttarget and Tsim be as above. Let ν ∈ Ttarget with and let704

(Tsim, Xsim, Hsim) be the arrival and its heap index output by Algorithm 7 given the above as input as705

well as Hν as the target index. Then, Algorithm 7 is correct, in the sense that706

Tν
d
= Tsim and Xν

d
= Xsim, (127)

and Hsim is the heap index of (Tsim, Xsim) in Tsim.707

22

Proof. First, observe that when splittarget = splitsim, Algorithm 7 collapses onto just the extended708

BSP tree construction for Π and simply returns the arrival with the given heap index Htarget in Ttarget.709

In particular, the inner loop will always exit after one iteration, and every time one and only one of the710

conditional blocks will be executed. In other words, in this case, the algorithm becomes equivalent to711

Algorithm 2 in Flamich et al. (2022).712

Let us now consider the case when splittarget ̸= splitsim. Denote the depth of the required node by713

Dν = ⌊log2 Hν⌋. Now, we give an inductive argument for correctness.714

Base case: Consider Dν = 0. In this case, the target bounds B = Ω, and the first sample we draw715

X ∼ P is guaranteed to fall in Ω. Hence, for Dν = 0 the outer loop only runs for one iteration.716

Furthermore, during that iteration, the inner loop will also exit after one iteration, and Algorithm 7717

returns the sample (T,X) sampled before the outer loop with heap index 1. Since T ∼ Exp(1) and718

X ∼ P , this will be a correctly distributed output with the appropriate heap index.719

Inductive hypothesis: Assume Algorithm 7 is correct heap indices with depths up to Dν = d.720

Case Dν = d+1: Let ρ ∈ Ttarget be the parent node of ν with arrival (Tρ, Xρ). Then, Dρ = d, hence721

by the inductive hypothesis, Algorithm 7 will correctly simulate a branch Ttarget up to node ρ. At the722

end of the dth iteration of the outer loop Algorithm 7 sets the target bounds B ← Bν . Then, in the723

final, d+ 1st iteration, the inner loop simply realizes Tsim and accepts the first sample after X that724

falls inside Bν whose time index T > Tρ. Due to the priority queue, the loop simulates the nodes725

of Tsim in time order; hence the accepted sample will also be the one with the earliest arrival time.726

Furthermore, Algorithm 7 only ever considers nodes of Tsim whose bounds intersect the target bounds727

Bν , hence the inner loop is guaranteed to terminate, which finishes the proof.728

E GPRS with Binary Search729

We now utilise the machinery we developed in Appendix D to analyze Algorithm 5.730

Correcntess of Algorithm 5: Observe that Algorithm 5 constructs the extended BSP tree for the731

on-sample splitting function. Thus, we will now focus on performing a binary tree search using732

the extended BSP tree induced by the on-sample splitting function, which we denote by T . The733

first step of the algorithm matches GPRS’s first step (Algorithm 3). Hence it is correct for the first734

step. Now consider the algorithm in an arbitrary step k before termination, where the candidate735

sample (T,X) is rejected, i.e. T > φ(X). By assumption, the density ratio r is unimodal, and736

since σ is monotonically increasing, φ = σ ◦ r is unimodal too. Thus, let x∗ ∈ Ω be such that737

r(x∗) = r∗, where r∗ = exp2(D∞[Q∥P]). Assume for now that X < x∗, the case X > x∗ follows738

by a symmetric argument. By the unimodality assumption, since X < x∗, it must hold that for all739

y < X , we have φ(y) < φ(X). Consider now the arrival (TL, XL) of Π in the current node’s left740

child. Then, we will have T < TL and XL < X by construction. Thus, finally, we get741

φ(XL) < φ(X) < T < TL, (128)

meaning that the current node’s left child is also guaranteed to be rejected. This argument can742

be easily extended to show that any left-descendant of the current node will be rejected, and it is743

sufficient to search its right-descendants only. By a similar argument, when X > x∗, we find that it744

is sufficient only to check the current node’s left-descendants. Finally, since both algorithms simulate745

Π and search for its first arrival under φ, by the construction in Appendix A, the sample returned by746

both algorithms will follow the desired target distribution.747

Expected runtime and codelength: Since Algorithm 5 simulates a single branch of Ton-sample, its748

runtime is equal to the runtime of simulating that single branch. Assume that the accepted sample’s749

time index is N and its depth is D. Then, since Algorithm 5 draws one sample per depth, its runtime750

will be exactly D steps. Then, by putting together lemmas D.2 and D.3, we get751

ED|N [D] ≤ log2 N. (129)

Then, by taking expectation over N , by Equation (79) we get752

E[D] ≤ DKL[Q∥P] + 2 · log2 e < DKL[Q∥P] + 3, (130)

thus in the one-shot case, the runtime of Algorithm 5 is linear in the KL divergence, which establishes753

Theorem 3.5.754

23

For the codelength result, let x,y ∼ Px,y, fix y and set Q ← Px|y and P ← Px. Let H denote755

the heap index of the sample returned by Algorithm 5, and D its depth. Recall, that ⌊log2 H⌋ = D,756

hence by Equation (130), we get757

EH [log2 H] < EH [⌊log2 H⌋] + 1 = ED[D] + 1 ≤ DKL[Px|y∥Px] + 1 + 2 log2 e. (131)

Taking expectation over y, we get758

E[log2 H] ≤ I[x;y] + 1 + 2 log2 e. (132)

Therefore, using similar arguments to the ones in Appendix B.3, we use a Zeta distribution to encode759

H with760

λ = 1 +
1

I[x;y] + 1 + 2 log2 e
. (133)

This gives an upper bound of761

H[x | Π] ≤ H[H] (134)
≤ I[x;y] + log2(I[x;y] + 2 log2 e+ 2) + 2 log2 e+ 2 (135)
≤ I[x;y] + log2(I[x;y] + 1) + 2 log2 e+ 2 + log2(2 log2 e+ 2) (136)
≤ I[x;y] + log2(I[x;y] + 1) + 8 (137)

F General GPRS with Binary Search762

We finally present a generalized version of branch-and-bound GPRS (Algorithm 6) for more general763

spaces and remove the requirement that r be unimodal.764

Decomposing a Poisson process into a mixture of processes: Let Π be a process over R+ × Ω765

as before, with spatial measure P , and let Q be a target measure, φ = σ ◦ r and U = {(t, x) ∈766

R+ × Ω | t ≤ φ(x)} as before. Let Π̃ be Π = Π ∩ U restricted under φ and (T̃1, X̃1) its first767

arrival. Let {L,R} form an P -essential partiton of Ω, i.e. L ∩ R = ∅ and P (L ∪ R) = 1, and let768

ΠL = Π ∩ R+ × L and ΠR = Π ∩ R+ × R be the restriction of Π to L and R, respectively. Let769

Π̃L = ΠL ∩U and Π̃R = ΠR ∩U be the restrictions of the two processes under φ as well. Let µ̃L(t)770

and µ̃R(t) be the mean measures of these processes. Thus, the first arrival times in these processes771

have survival functions772

P[T̃L
1 ≥ t] = e−µ̃L(t) (138)

P[T̃R
1 ≥ t] = e−µ̃R(t). (139)

Note, that by the superposition theorem, ΠL ∪ ΠR = Π, hence the first arrival (T̃1, X̃1) occurs in773

either ΠL or ΠR. Assume now that we have already searched through the points of Π up to time τ774

without finding the first arrival. At this point, we can ask: will the first arrival occur in ΠL, given that775

T̃1 ≥ τ? Using Bayes’ rule, we find776

P[X̃1 ∈ L | T̃1 ≥ τ] =
P[X̃1 ∈ L, T̃1 ≥ τ]

P[T̃1 ≥ τ]
. (140)

More generally, assume that the first arrival of Π occurs in some set A ⊆ Ω, and we know that the777

first arrival time is larger than τ . Then, what is the probability that the first arrival occurs in some set778

B ⊆ A? Similarly to the above, we find779

P[X̃1 ∈ B | T̃1 ≥ τ, X̃1 ∈ A] =
P[X̃1 ∈ B, T̃1 ≥ τ, X̃1 ∈ A]

P[T̃1 ≥ τ, X̃1 ∈ A]
(141)

=
P[T̃1 ≥ τ, X̃1 ∈ B]

P[T̃1 ≥ τ, X̃1 ∈ A]
. (142)

Let (T̃L, X̃L) be the first arrival of ΠL. Then, the crucial observation is that780

(T̃L, X̃L)
d
= T̃1, X̃1 | X̃1 ∈ L. (143)

24

This enables us to search for the first arrival of Π under the graph of φ using an extended BSP tree781

construction. At each node, if we reject, we draw a Bernoulli random variable b with mean equal782

to the probability that the first arrival occurs within the bounds associated with the right child node.783

Then, if b = 1, we continue the search along the right branch. Otherwise, we search along the left784

branch.785

Note, however, that in a restricted process ΠA, the spatial measure no longer integrates to 1. Further-786

more, our target Radon-Nikodym derivative is r(x) · 1[x ∈ A]/Q(A). This means we need to change787

the graph φ to some new graph φA to ensure that the spatial distribution of the returned sample is788

still correct. Therefore, for a set A we define the restricted versions of previous quantities:789

µ̃A(t)
def
=

∫ t

0

∫
A

1[τ ≤ φA(x)] dP (x) dt (144)

wP (h | A)
def
=

∫
A

1[h ≤ r(x)] dP (x) (145)

Then, via analogous arguments to the ones in Appendix A, we find790

dP[T̃A = t, X̃A = x]

d(λ× P)
= 1[x ∈ A]1[t ≤ φA(x)]P[T̃A ≥ t] (146)

dP[X̃A = x]

dP
= 1[x ∈ A]

∫ φA(x)

0

P[T̃A ≥ t] dt (147)

φA = σA ◦ r. (148)

Similarly, setting dP[X̃A=x]
dP = 1[x ∈ A] · r(x)/Q(A), and setting τ = σA(r(x)), we get791

σ−1
A (τ) = Q(A)

∫ τ

0

P[T̃A ≥ t] dt (149)

⇒
(
σ−1
A

)′
(τ) = P[T̃A ≥ τ] (150)

= P[T̃ ≥ τ, X̃ ∈ A]. (151)
From this, again using similar arguments to the ones in Appendix A, we find792 (

σ−1
A

)′
(τ) = wQ(σ

−1
A (t) | A)− σ−1

A (t) · wP (σ
−1
A (t) | A). (152)

G Necessary Quantities for Implementing GPRS in Practice793

Ultimately, given a target-proposal pair (Q,P) with density ratio r, we would want an easy-to-794

evaluate expression for the appropriate stretch function σ or σ−1 to plug directly into our algorithms.795

Computing σ requires computing the integral in Equation (3) and finding σ−1 requires solving the796

non-linear ODE in Equation (2), neither of which is usually possible in practice. Hence, we usually797

resort to computing σ−1 numerically by using an ODE solver for Equation (2).798

In any case, we need to compute wP and wQ, which are analytically tractable in the practically799

relevant cases. Hence, in this section, we give closed-form expressions for wP and wQ for all the800

examples we consider and give closed-form expressions for σ and σ−1 for some of them. If we do801

not give a closed-form expression of σ, we use numerical integration to compute σ−1 instead.802

G.1 Uniform-Uniform Case803

Let P be the uniform distribution over an arbitrary space Ω and Q a uniform distribution supported804

on some subset X ⊂ Ω, with P (X) = C for some C ≤ 1 Then,805

r(x) =
1

C
· 1[x ∈ X] (153)

wP (h) = C (154)
wQ(h) = 1 (155)

σ(h) = − 1

C
log (1− C · h) (156)

σ−1(t) =
1

C
(1− exp(−C · h)) . (157)

25

Note that using GPRS in the uniform-uniform case is somewhat overkill, as in this case, it is simply806

equivalent to standard rejection sampling.807

G.2 Triangular-Uniform Case808

Let P = Unif(0, 1) and for some numbers 0 < a < c < b < 1, let Q be the triangular distribution,809

defined by the PDF810

q(x) =



0 if x < a
2(x−a)

(b−a)(c−a) if a ≤ x < c
2

b−a if x = c
2(b−x)

(b−a)(b−c) if c < x ≤ b

0 if b < x.

(158)

For convenience, let ℓ = b− a. Then,811

r(x) = q(x) (159)

wP (x) = ℓ− ℓ2

2
· h (160)

wQ(x) = 1− ℓ2

4
· h2 (161)

σ(h) =
2h

2− ℓ · h
(162)

σ−1(t) =
2t

2 + ℓ · t
(163)

G.3 Finite Discrete-Discrete / Piecewise Constant Case812

Without loss of generality, let Q be a discrete distribution over a finite set with K elements defined813

by the probability vector (r1 < r2 < . . . < rK) and P = Unif([1 : K]) the uniform distribution on814

K elements. Note that any discrete distribution pair can be rearranged into this setup. Now, we can815

embed this distribution into [0, 1] by mapping P to P̂ = Unif(0, 1) the uniform distribution over816

[0, 1] and mapping Q to Q̂ with density817

q̂(x) =

K∑
k=1

1 [⌊K · x⌋ = k − 1] ·K · rk. (164)

Then, we can draw a sample x from Q by simulating a sample x̂ ∼ Q̂ and computing818

x = K · ⌊x̂/K⌋+ 1. Hence, we can instead reduce the problem to sampling from a piecewise819

constant distribution. Thus, let us now instead present the more general case of arbitrary piecewise820

constant distributions over [0, 1], with Q̃ defined by probabilities (q1 < q2 < . . . < qK) and corre-821

sponding piece widths (w1 < w2 < . . . < wK). We require, that
∑

k=1 qk =
∑K

k=1 wk = 1. Then,822

the density is823

q̃(x) =

K∑
k=1

1

k−1∑
j=1

wj ≤ x ≤
k∑

j=1

wj

 · qk
wk

(165)

Define rk = qk/wk. Then,824

wP (h) =

K∑
k=1

1[h ≤ rk] · wk (166)

wQ(h) =

K∑
k=1

1[h ≤ rk] · wk · rk (167)

σ(h) =

K∑
k=1

1[h ≥ rk−1] ·
1

Bk
· log

(
Ak −Bkrk−1

Ak −Bk min{rk, h}

)
(168)

26

where we defined825

Ak =

K∑
j=k

wjrj =

K∑
j=k

qj (169)

Bk =

K∑
j=k

wj (170)

G.4 Diagonal Gaussian-Gaussian Case826

Without loss of generality, let Q = N (µ, σ2I) and P = N (0, I) be d-dimensional Gaussian827

distributions with diagonal covariance. As a slight abuse of notation, let N (x | µ, σ2I) denote the828

probability density function of a Gaussian random variable with mean µ and covariance σ2I evaluated829

at x. Then, when σ2 < 1, we have830

r(x) = Z · N
(
x | m, s2I

)
(171)

m =
µ

1− σ2
(172)

s2 =
σ2

1− σ2
(173)

Z =
(1− σ2)−d

N (µ | 0, (1− σ2)I)
(174)

wP (h) = P
[
χ2
(
d, ∥m∥2

)
≤ −2s2 lnh+ C

]
(175)

wQ(h) = P

[
χ2

(
d,

∥∥∥∥m− µ

s

∥∥∥∥2
)
≤ −2s2 lnh+ C

]
(176)

C = s2
(
2 lnZ − d ln(2πs2)

)
. (177)

Unfortunately, in this case, it is unlikely that we can solve for the stretch function analytically, so in831

our experiments, we solved for it numerically using Equation (2).832

H Experimental Details833

Comparing Algorithm 3 versus Global-bound A* coding: We use a setup similar to the one used834

by Theis & Yosri (2022). Concretely, we assume the following model for correlated random variables835

x, µ:836

Pµ = N (0, 1) (178)

Px|µ = N (µ, σ2). (179)

From this, we find that the marginal on x must be Px = N (0, σ2 + 1). The mutual information is837

I[x;µ] = 1
2 log2

(
1 + σ2

)
bits, which is what we plot as I[x;µ] in the top two panels in Figure 2.838

For the bottom panel in Figure 2, we fixed a standard Gaussian prior P = N (0, 1), fixed K =839

DKL[Q∥P] and linearly increased R = D∞[Q∥P]. To find a target that achieves the desired values840

for these given divergences, we set its mean and variances as841

σ2 = exp (W (A · exp(B))−B (180)

µ = 2K − σ2 + lnσ2 + 1 (181)
A = 2 lnR− 2K − 1 (182)
B = 2 lnR− 1, (183)

where W is the principal branch of the Lambert W -function (Corless et al., 1996).842

We can derive this formula by assuming we wish to find µ and σ2 such that for fixed numbers K and843

R, and q(x) = N (x | µ, σ2), p(x) = N (x | 0, 1). Then, we have that844

DKL[q∥p] = K and sup
x∈R

{
q(x)

p(x)

}
= R. (184)

27

We know that845

K = DKL[q∥p] =
1

2

[
µ2 + σ2 − log σ2 − 1

]
logR = log sup

x∈R

{
q(x)

p(x)

}
=

µ2

2(1− σ2)
− log σ.

(185)

From these, we get that846

µ2 = 2K − σ2 + log σ2 + 1

µ2 = 2(1− σ2)(logR+ log σ)
(186)

Setting these equal to each other847

2K − σ2 + log σ2 + 1 = 2 logR+ log σ2 − 2σ2 logR− σ2 log σ2

σ2 log σ2 − σ2 + 2σ2 logR = 2 logR− 2K − 1

σ2 log σ2 + σ2(2 logR− 1) = A

σ2(log σ2 +B) = A

σ2 log(σ2eB) = A

eBσ2 log(σ2eB) = AeB

elog(σ
2eB) log(σ2eB) = AeB

log(σ2eB) = W (AeB)

σ2 = eW (AeB)−B ,

(187)

where we made the substitutions A = 2 logR− 2K − 1 and B = 2 logR− 1.848

I Rejection sampling index entropy lower bound849

Assume that we have a pair of correlated random variables x,y ∼ Px,y and Alice and Bob wish to850

realize a channel simulation protocol using standard rejection sampling as given by, e.g. Algorithm 2.851

Thus, when Alice receives a source symbol y ∼ Py, she sets Q = Px|y as the target and P = Px as852

the proposal for the rejection sampler. Let N denote the index of Alice’s accepted sample, which is853

also the number of samples she needs to draw before her algorithm terminates. Since each acceptance854

decision is an independent Bernoulli trial in standard rejection sampling, N follows a geometric855

distribution whose mean equals the upper bound M used for the density ratio (Maddison, 2016). The856

lower bound on the optimal coding cost for N is given by its entropy857

H[N] = −(M − 1) log2

(
1− 1

M

)
+ log2 M ≥ log2 M, (188)

where the inequality follows by omitting the first term, which is guaranteed to be positive since858

x 7→ −x log2 x is positive on (0, 1). Hence, by using the optimal upper bound on the density ratio859

M∗ = exp2(D∞[Q∥P]) and plugging it into the formula above, we find that860

D∞[Q∥P] ≤ H[N]. (189)

Now, taking expectation over y, we find861

Ey∼Py

[
D∞[Px|y∥Px]

]
≤ H[N]. (190)

28

	Introduction
	Background
	Poisson Processes
	Channel Simulation

	Greedy Poisson Rejection Sampling
	Speeding up the greedy search

	Experiments
	Related Work
	Discussion and Future Work
	Measure-theoretic Construction of Greedy Poisson Rejection Sampling
	Analysis of Greedy Poisson Rejection Sampling
	The Expected First Arrival Time
	The Expectation and Variance of the Runtime
	The Codelength of the Index

	Analysis of Parallel GPRS
	Simulating Poisson Processes Using Tree-Structured Partitions
	GPRS with Binary Search
	General GPRS with Binary Search
	Necessary Quantities for Implementing GPRS in Practice
	Uniform-Uniform Case
	Triangular-Uniform Case
	Finite Discrete-Discrete / Piecewise Constant Case
	Diagonal Gaussian-Gaussian Case

	Experimental Details
	Rejection sampling index entropy lower bound

