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Abstract

Relative entropy coding (REC) algorithms encode a sample from a target distribu-1

tion Q using a proposal distribution P using as few bits as possible. Unlike entropy2

coding, REC does not assume discrete distributions or require quantisation. As3

such, it can be naturally integrated into communication pipelines such as learnt4

compression and differentially private federated learning. Unfortunately, despite5

their practical benefits, REC algorithms have not seen widespread application, due6

to their prohibitively slow runtimes or restrictive assumptions. In this paper, we7

make progress towards addressing these issues. We introduce Greedy Rejection8

Coding (GRC), which generalises the rejection based-algorithm of Harsha et al.9

(2007) to arbitrary probability spaces and partitioning schemes. We first show that10

GRC terminates almost surely and returns unbiased samples from Q, after which11

we focus on two of its variants: GRCS and GRCD. We show that for continuous12

Q and P over R with unimodal density ratio dQ/dP , the expected runtime of13

GRCS is upper bounded by βDKL[Q∥P ]+O(1) where β ≈ 4.82, and its expected14

codelength is optimal. This makes GRCS the first REC algorithm with guaranteed15

optimal runtime for this class of distributions, up to the multiplicative constant β.16

This significantly improves upon the previous state-of-the-art method, A* coding17

(Flamich et al., 2022). Under the same assumptions, we experimentally observe and18

conjecture that the expected runtime and codelength of GRCD are upper bounded19

by DKL[Q∥P ] + O(1). Finally, we evaluate GRC in a variational autoencoder-20

based compression pipeline on MNIST, and show that a modified ELBO and an21

index-compression method can further improve compression efficiency.22

1 Introduction and motivation23

Over the past decade, the development of excellent deep generative models (DGMs) such as varia-24

tional autoencoders (VAEs; Vahdat & Kautz, 2020; Child, 2020), normalising flows (Kingma et al.,25

2016) and diffusion models (Ho et al., 2020) demonstrated great promise in leveraging machine26

learning (ML) for data compression. Many recent learnt compression approaches have significantly27

outperformed the best classical hand-crafted codecs across a range of domains including, for example,28

lossless and lossy compression of images and video (Zhang et al., 2021; Mentzer et al., 2020, 2022).29

Transform coding. Most learnt compression algorithms are transform coding methods: they first30

map a datum to a latent variable using a learnt transform, and encode it using entropy coding31

(Ballé et al., 2020). Entropy coding assumes discrete variables while the latent variables in DGMs32

are typically continuous, so most transform coding methods quantize the latent variable prior to33

entropy coding. Unfortunately, quantization is a non-differentiable operation. Thus, state-of-the-art34

DGMs trained with gradient-based optimisation must resort to some continuous approximation to35

quantisation during training and switch to hard quantisation for compression. Previous works have36

argued that using quantisation within learnt compression is restrictive or otherwise harmful, and that37
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Figure 1: An illustration of the relations between the variants of GRC, introduced in this work, and
the variants of A∗ coding. Algorithms in purple are introduced in this work. The algorithms of Harsha
et al. (2007) and Li & El Gamal (2018) are equivalent to GRCG and Global A∗ coding respectively.

a method which naturally interfaces with continuous latent variables is needed (Havasi et al., 2018;38

Flamich et al., 2020; Theis & Agustsson, 2021; Flamich et al., 2022).39

Relative entropy coding. In this paper, we study relative entropy coding (REC; Havasi et al.,40

2018; Flamich et al., 2020), an alternative to quantization and entropy coding. A REC algorithm41

uses a proposal distribution P , and a public source of randomness S, to produce a random code42

which represents a single sample from a target distribution Q. Thus REC does not assume discrete43

distributions and interfaces naturally with continuous variables. Remarkably, REC has fundamental44

advantages over quantization in lossy compression with realism constraints (Theis & Agustsson;45

Theis et al., 2022). More generally, it finds application across a range of settings including, for46

example, differentially private compression for federated learning (Shah et al., 2022).47

Limitations of existing REC algorithms. While algorithms for solving REC problems already48

exist, most of them suffer from limitations that render them impractical. These limitations fall into49

three categories: prohibitively long runtimes, overly restrictive assumptions, or additional coding50

overheads. In this work, we study and make progress towards addressing these limitations.51

General-purpose REC algorithms. On the one hand, some REC algorithms make very mild52

assumptions and are therefore applicable in a wide range of REC problems (Harsha et al., 2007; Li &53

El Gamal, 2018). Unfortunately, these algorithms have prohibitively long runtimes. This is perhaps54

unsurprising in light of a result by Agustsson & Theis (2020), who showed that without additional55

assumptions on Q and P , the worst-case expected runtime of any general-purpose REC algorithm56

scales as 2DKL[Q∥P ], which is impractically slow. There are also REC algorithms which accept a57

desired runtime as a user-specified parameter, at the expense of introducing bias in their samples58

(Havasi et al., 2018; Theis & Yosri, 2022). Unfortunately, in order to reduce this bias to acceptable59

levels, these algorithms require runtimes of an order of 2DKL[Q∥P ], and are therefore also impractical.60

Faster algorithms with additional assumptions. On the other hand, there exist algorithms which61

make additional assumptions in order to achieve faster runtimes. For example, dithered quantisation62

(Ziv, 1985; Agustsson & Theis, 2020) achieves an expected runtime of DKL[Q∥P ], which is optimal63

since any REC algorithm has an expected runtime of at least DKL[Q∥P ]. However, it requires both64

Q and P to be uniform distributions, which limits its applicability. Recently, Flamich et al. (2022)65

introduced A∗ coding, an algorithm based on A∗ sampling (Maddison et al., 2014) which, under66

assumptions satisfied in practice, achieves an expected runtime of D∞[Q∥P ]. Unfortunately, this67

runtime is sub-optimal and is not always practically fast, since D∞[Q∥P ] can be arbitrarily large for68

fixed DKL[Q∥P ]. Further, as discussed in Flamich et al. (2022) this runtime also comes at a cost of69

an additional, substantial, overhead in codelength, which limits the applicability of A∗ coding.70

Our contributions. In this work, we address some of these limitations. First, we propose greedy71

rejection coding (GRC), a REC algorithm based on rejection sampling. Then, inspired by A* coding72

(Flamich et al., 2022), we develop GRCS and GRCD, two variants of GRC that partition the sample73

space to dramatically speed up termination. Figure 1 illustrates the relations between GRC and its74

variants with existing algorithms. We analyze the correctness and the runtime of these algorithms75

and, in particular, prove that GRCS has an optimal codelength and order-optimal runtime on a wide76

class of one-dimensional problems. In more detail, our contributions are:77

• We introduce Greedy Rejection Coding (GRC), which generalises the algorithm of Harsha78

et al. (2007) to arbitrary probability spaces and partitioning schemes. We prove that under79

mild conditions, GRC terminates almost surely and returns an unbiased sample from Q.80
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Figure 2: Example run of Harsha et al. (2007), for a pair of continuous Q and P over [0, 1]. The
green and red regions correspond to acceptance and rejection regions at each step. Here the algorithm
rejects the first two samples and accepts the third one, terminating at the third step.

• We introduce GRCS and GRCD, two variants of GRC for continuous distributions over81

R, which adaptively partition the sample space to dramatically improve their convergence,82

inspired by AS∗ and AD∗ coding (Flamich et al., 2022), respectively.83

• We prove that whenever dQ/dP is unimodal, the expected runtime and codelength of GRCS84

is O(DKL[Q∥P ]). This significantly improves upon the O(D∞[Q∥P ]) runtime of AS∗85

coding, which is always larger than that of GRCS. This runtime is order-optimal, while86

making far milder assumptions than, for example, ditered quantization.87

• We provide clear experimental evidence for and conjecture that whenever dQ/dP is uni-88

modal, the expected runtime and codelength of GRCD are DKL[Q∥P ]. This also signifi-89

cantly improves over the D∞[Q∥P ] empirically observed runtime of AD∗ coding.90

• We implement a compression pipeline with VAEs, using GRC to compress MNIST images.91

We propose a modified ELBO objective and show that this, together with a practical method92

for compressing the indices returned by GRC further improve compression efficiency.93

2 Background and related work94

Relative entropy coding. First, we define REC algorithms. Definition 1 is stricter than the one given95

by Flamich et al. (2022), as it has a stronger condition on the the algorithms’ expected codelength. In96

this paper, all logarithms are to the base 2, and all divergences are measured in bits.97

Definition 1 (REC algorithm). Let (X ,Σ) be a measurable space, let R be a set of pairs of98

distributions (Q,P ) over (X ,Σ) such that DKL[Q∥P ] < ∞ and P be the set of all distributions99

P such that (Q,P ) ∈ R for some distribution Q. Let S = (S1, S2, . . . ) be a publicly available100

sequence of independent and fair coin tosses, with corresponding probability space (B,F ,P) and101

let C = {0, 1}∗ be the set of all finite binary sequences. A REC algorithm is a pair of functions102

enc : R× B → C and dec : C × P × B → X , such that for each (Q,P ) ∈ R, the outputs of the103

encoder C = enc(Q,P, S) and the decoder X = dec(P,C, S) satisfy104

X ∼ Q and ES [|C|] = DKL[Q∥P ] +O(logDKL[Q∥P ]), (1)

where |C| is the length of the string C. We call enc the encoder and dec the decoder.105

In practice, S is implemented with a pseudo-random number generator (PRNG) with a public seed. In106

the remainder of this section, we discuss relevant REC algorithms, building up to GRC in section 3.107

Existing REC algorithms. While there are many REC algorithms already, they suffer from various108

issues limiting their applicability in practice. Our proposed algorithm, Greedy Rejection Coding109

(GRC), is based on and generalises the rejection-based algorithm of Harsha et al. (2007), by drawing110

inspiration from A∗ coding (Flamich et al., 2022). Specifically, A∗ coding can be viewed as a111

generalisation of an algorithm due to Li & El Gamal (2018). The former generalises the latter by112

introducing a partitioning scheme to speed up termination. In an analogous fashion, GRC generalises113

Harsha et al. (2007) by also introducing partitioning schemes, to speed up termination and achieve114

optimal runtimes. Here we discuss relevant algorithms, building up to GRC in section 3.115

REC with rejection sampling. Harsha et al. (2007) introduced a REC algorithm based on rejection116

sampling, which we generalise and extend in this work. While this algorithm was originally presented117

for discrete Q and P , we will show that it can be generalised to arbitrary probability spaces. In118

this section, we present this generalised version and in section 3 we further extend it to arbitrary119

partitioning schemes (see definition 5). The generalisation to arbitrary probability spaces relies on120

the Radon-Nikodym derivative dQ/dP , which is guaranteed to exist since Q≪ P by definition 1.121

When Q and P both have densities, dQ/dP coincides with the density ratio.122

At each step, the algorithm draws a sample from P and performs an accept-reject step, as illustrated123

in fig. 2. If it rejects the sample, it rules out part of Q corresponding to the acceptance region, adjusts124
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the proposal to account for the removed mass, and repeats until acceptance. More formally, define T0125

to be the zero-measure on (X ,Σ), and recursively for d ∈ N, set:126

Td+1(S)
def
= Td(S) +Ad+1(S), Ad+1(S)

def
=

∫
S

αd+1(x) dP (x), (2)

td(x)
def
=

dTd

dP
(x), αd+1(x)

def
= min

{
dQ

dP
(x)− td(x), (1− Td(X ))

}
, (3)

Xd ∼ P, Ud ∼ Uniform(0, 1) βd+1(x)
def
=

αd+1(x)

1− Td(X )
, (4)

for all x ∈ X , S ∈ Σ. The algorithm terminates at the first occurrence of Ud ≤ βd+1(Xd). The127

Td measure corresponds to the mass that has been ruled off up to and including the dth rejection:128

T1(X ), T2(X ) and T3(X ) are the sums of the blue and green masses in the left, middle and right129

plots of fig. 2 respectively. The Ad measure corresponds to the acceptance mass at the dth step:130

A1(X ), A2(X ) and A3(X ) are the masses of the green regions in the left, middle and right plots131

of fig. 2 respectively. Lastly, td, αd are the Radon-Nikodym derivatives i.e., roughly speaking, the132

densities, of Td, Ad with respect to P , and βd+1(Xd) is the probability of accepting the sample Xd.133

Here, the encoder enc amounts to keeping count of the number of rejections that occur up to the134

first acceptance, setting C equal to this count and returning X and C. The decoder dec amounts to135

drawing C + 1 samples from P , using the same seed as the encoder, and returning the last of these136

samples. While this algorithm is elegantly simple and achieves optimal codelengths, Flamich & Theis137

(2023) showed its expected runtime is 2D∞[Q∥P ], where D∞[Q∥P ] = supx∈X log(dQ/dP )(x) is138

the Rényi∞-divergence. Unfortunately, this is prohibitively slow in most practical cases.139

REC with Poisson & Gumbel processes. Li & El Gamal (2018) introduced a REC algorithm based140

on Poisson processes, referred to as Poisson Functional Representation (PFR). PFR assumes that141

dQ/dP is bounded above, and relies on the fact that (Kingman, 1992), if Tn are the ordered arrival142

times of a homogeneous Poisson process on R+ and Xn ∼ P , then143

N
def
= argmin

n∈N

{
Tn

dP

dQ
(Xn)

}
=⇒ XN ∼ Q, (5)

Therefore, PFR casts the REC problem into an optimisation, or search, problem, which can be solved144

in finite time almost surely. The PFR encoder draws pairs of samples Tn, Xn, until it solves the145

search problem in eq. (5), and returns X = XN , C = N − 1. The decoder can recover XN from146

(P,C, S), by drawing N samples from P , using the same random seed, and keeping the last sample.147

While, like the algorithm of Harsha et al. (2007), PFR is elegantly simple and achieves optimal148

codelengths, its expected runtime is also 2D∞[Q∥P ] unfortunately (Maddison, 2016).149

Fast REC requires additional assumptions. These algorithms’ slow runtimes are perhaps un-150

surprising considering Agustsson & Theis’s result, which shows under the computational hardness151

assumption RP ̸= NP that without making additional assumptions on Q and P , there is no REC152

algorithm whose expected runtime scales polynomially in DKL[Q∥P ]. Therefore, in order achieve153

faster runtimes, a REC algorithm must make additional assumptions on Q and P .154

A∗ coding. To this end, Flamich et al. (2022) proposed: (1) a set of appropriate assumptions which155

are satisfied by many deep latent variable models in practice and (2) a REC algorithm, referred to156

as A∗ coding, which leverages these assumptions to achieve a substantial speed-up over existing157

methods. In particular, A∗ coding generalizes PFR by introducing a partitioning scheme, which158

splits the sample space X in nested partitioning subsets, to speed up the solution of eq. (5). Drawing159

inspiration from this, our proposed algorithm generalises eqs. (2) to (4) in an analogous manner (see160

fig. 1), introducing partitioning processes (definition 2) to speed up the algorithm’s termination.161

Definition 2 (Partitioning process). A partitioning process is a process Z : N+ → Σ such that162

Z1 = X , Z2n ∩ Z2n+1 = ∅, Z2n ∪ Z2n+1 = Zn. (6)

In other words, a partitioning process Z is a process indexed by the heap indices of an infinite binary163

tree, where the root node is X and any two children nodes Z2n, Z2n+1 partition their parent node Zn.164

In section 3 we present specific choices of partitioning processes which dramatically speed up GRC.165
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Figure 3: Illustrations of the two variants of GRC considered in this work. (a) to (c) show GRC
with the sample-splitting partitioning process (GRCS). (d) to (f) show GRC with the dyadic partition
process (GRCD). GRC interleaves accept-reject steps with partitioning steps. In the former, it draws
a sample and either accepts or rejects it. In the latter, it partitions the sample space and randomly
chooses one of the partitions, ruling out large parts of the sample space and speeding up termination.

Greedy Poisson Rejection Sampling. Contemporary to our work, Anonymous (2023) introduces166

a rejection sampler based on Poisson processes, which can be used as a REC algorithm referred to167

as Greedy Poisson Rejection Sampling (GPRS). Similar to GRC and A* coding, GPRS partitions168

the sample space to speed up the convergence to the accepted sample. Furthermore, a variant of169

GPRS also achieves order-optimal runtime for one-dimensional distribution pairs with a unimodal170

density ratio. However, the construction of their method is significantly different from ours, relying171

entirely on Poisson processes. Moreover, GPRS requires numerically solving a certain ODE, while172

our method does not, making it potentially more favourable in practice. We believe establishing a173

closer connection between GPRS and GRC is a promising future research direction.174

3 Greedy Rejection Coding175

Generalising Harsha et al. (2007). In this section we introduce Greedy Rejection Coding (GRC;176

definition 5), which generalises the algorithm of Harsha et al. (2007) in two ways. First, GRC can177

be used with distributions over arbitrary probability spaces. Therefore, it is applicable to arbitrary178

REC problems, including REC with continuous distributions. Second, similar to A∗ coding, GRC179

can be combined with arbitrary partitioning processes, allowing it to achieve optimal runtimes given180

additional assumptions on the REC problem, and an appropriate choice of partitioning process.181

3.1 Algorithm definition182

Overview. Before specifying GRC, we summarise its operation with an accompanying illustration.183

On a high level, GRC interleaves accept-reject steps with partitioning steps, where the latter are184

determined by a partitioning process. Specifically, consider the example in figs. 3d to 3f, where Q185

and P are distributions over X = [0, 1], and Z is the partitioning process defined by186

Zn = [L,R] =⇒ Z2n = [L,M), Z2n+1 = [M,R], where M = (L+R)/2. (7)

In each step d = 1, 2, . . . , GRC maintains a heap index Id of an infinite binary tree, and an active187

subset Sd = ZId ⊆ X of the sample space, initialised as I0 = 1 and S1 = Z1 = X respectively.188

Accept-reject step. In each accept-reject step, GRC draws a sample from the restriction of P to Sd,189

namely P |Sd
/P (Sd). If the sample is accepted, the algorithm terminates. Otherwise, GRC performs190

a partitioning step as shown in fig. 3d191

Partitioning step. In each partitioning step, GRC partitions Sd = ZId into Z2Id and Z2Id+1, as192

specified by the partitioning process Z. It then samples a Bernoulli random variable bd, whose193

outcomes have probabilities proportional to the mass of Q which has not been accounted for, up194

to and including step d, within the partitions Z2Id and Z2Id+1 respectively. In fig. 3e, these two195

masses correspond to the purple and orange areas, and the algorithm has sampled bd = 1. Last, GRC196
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Algorithm 1 Harsha et al.’s rejection algorithm;
equivalent to GRC with a global partition
Require: Target Q, proposal P , space X
1: d← 0, T0 ← 0
2:
3: while True do
4: Xd+1 ∼ P
5: Ud+1 ∼ Uniform(0, 1)
6: βd+1 ← AcceptProb(Q,P,Xd+1, Td)
7: if Ud+1 ≤ βd+1 then
8: return Xd+1, d
9: end if

10:
11:
12:
13: Td+1 ← RuledOutMass(Q,P, Td)
14: d← d+ 1
15: end while

Algorithm 2 GRC with partition process Z; differ-
ences to Harsha et al.’s algorithm shown in green
Require: Target Q, proposal P , space X , partition Z
1: d← 0, T0 ← 0
2: I0 ← 1, S1 ← X
3: while True do
4: XId ∼ P |Sd/P (Sd)
5: UId ∼ Uniform(0, 1)
6: βId ← AcceptProb(Q,P,XId , Td)
7: if UId ≤ βd+1 or d = Dmax then
8: return XId , Id
9: end if

10: p← PartitionProb(Q,P, Td, Z2d, Z2d+1)
11: bd ∼ Bernoulli(p)
12: Id+1 ← 2Id + bd and Sd+1 ← ZId+1

13: Td+1 ← RuledOutMass(Q,P, Td, Sd+1)
14: d← d+ 1
15: end while

updates the heap index to Id+1 = 2Id + bd and the active subset to Sd+1 = ZId+1
. GRC proceeds by197

interleaving accept-reject and partitioning steps until an acceptance occurs.198

Algorithm specification. The aforementioned algorithm can be formalised in terms of probability199

measures over arbitrary spaces and arbitrary partitioning processes. Above, algorithms 1 and 2200

describe Harsha et al.’s rejection sampler and our generalisation of it, respectively. For the sake of201

keeping the exposition lightweight, we defer the formal measure-theoretic definition of GRC to the202

appendix (see definition 5 in appendix A.1), and refer to algorithm 2 as a working definition here.203

Comparison to Harsha et al. While algorithms 1 and 2 are similar, they differ in two notable ways.204

First, rather than drawing a sample from P , GRC draws a sample from the restriction of P to an active205

subset Sd = Zd ⊆ X , namely P |Sd
/P (Sd). Second, GRC updates its active subset Sd = Zd at each206

step, setting it to one of the children of Zd, namely either Z2d or Z2d+1, by drawing bd ∼ Bernoulli,207

and setting Z2d+bd . This partitioning mechanism, which does not appear in algorithm 1, yields a208

different variant of GRC for each choice of partitioning process Z. In fact, as shown in Proposition 1209

below, algorithm 1 is a special case of GRC with Sd = X for all d. See appendix A.2 for the proof.210

Proposition 1 (Harsha et al. (2007) is a special case of GRC). Let Z be the global partitioning211

process over Σ, defined as212

Z1 = X , Z2n = Zn, Z2n+1 = ∅, for all n = 1, 2, . . . . (8)

Harsha et al. (2007) is equivalent to GRC using this Z and setting C = D∗ instead of C = ID∗ . We213

refer to this algorithm as Global GRC, or GRCG for short.214

Partitioning processes and additional assumptions. While Proposition 1 shows that Harsha et al.’s215

algorithm is equivalent to GRC with a particular choice of Z, a range of other choices of Z is possible,216

and this is where we can leverage additional structure. In particular, we show that when Q and P are217

continuous distributions over R with a unimodal density ratio dQ/dP , we can dramatically speed up218

GRC with an appropriate choice of Z. In particular, we will consider the sample-splitting and dyadic219

partitioning processes from Flamich et al. (2022), given in Definitions 3 and 4.220

Definition 3 (Sample-splitting partitioning process). Let X = R ∪ {−∞,∞} and P a continuous221

distribution. The sample-splitting partitioning process is defined as222

Zn = [a, b], a, b ∈ X =⇒ Z2n = [a,Xn], Z2n+1 = [Xn, b], where Xn ∼ P |Zn
/P (Zn).

In other words, in the sample-splitting process, Zn are intervals of R, each of which is partitioned223

into sub-intervals Z2n and Z2n+1 by splitting at the sample Xn drawn from P |Zn
/P (Zn). We refer224

to GRC with the sample-splitting partitioning process as GRCS.225

Definition 4 (Dyadic partitioning process). Let X = R∪{−∞,∞} and P a continuous distribution.226

The dyadic partitioning process is defined as227

Zn = [a, b], a, b ∈ X =⇒ Z2n = [a, c], Z2n+1 = [c, b], such that P (Z2n) = P (Z2n+1).

Similar to the sample-splitting process, in the dyadic process Zn are intervals of R. However, in the228

dyadic process, Zn is partitioned into sub-intervals Z2n and Z2n+1 such that P (Z2n) = P (Z2n+1).229

We refer to GRC with the dyadic partitioning process as GRCD.230
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GRC with a tunable codelength. Flamich et al. presented a depth-limited variant of AD∗ coding,231

DAD∗ coding, in which the codelength |C| can be provided as a tunable input to the algorithm. Fixed-232

codelength REC algorithms are typically approximate because they introduce bias in their samples,233

but are nevertheless useful in certain contexts, such as for coding a group of random variables with234

the same fixed codelength. GRCD can be similarly modified to accept |C| as an input, by limiting235

the maximum steps of the algorithm by Dmax (see algorithm 2). Setting Dmax =∞ in algorithm 2236

corresponds to exact GRC, while setting Dmax <∞ corresponds to depth-limited GRC.237

3.2 Theoretical results238

Correctness of GRC. In theorem 1 we show that GRC terminates almost surely and produces239

unbiased samples from Q, given interchangeable mild assumptions on Q,P and Z. Assumption 1 is240

the most general, since it holds for any Q and P over arbitrary probability spaces, and can be used to241

apply GRC to arbitrary coding settings.242

Assumption 1. GRC has a finite ratio mode if dQ/dP (x) < M for all x ∈ X , for some M ∈ R.243

Assumption 1 holds for GRCG, GRCS and GRCD, so long as dQ/dP is bounded. While this244

assumption is very general, in some cases we may want to consider Q,P with unbounded dQ/dP .245

To this end, we show that it can be replaced by alternative assumptions, such as assumptions 2 and 3.246

Assumption 2. GRC is single-branch if for each d, bd = 0 or bd = 1 almost surely.247

GRC with the global partitioning process (eq. 8) satisfies assumption 2. In addition, if Q and P are248

distributions over R and dQ/dP is unimodal, GRCS also satisfies assumption 2.249

Assumption 3. Suppose X ⊆ RN . GRC has nicely shrinking Z if, almost surely, the following250

holds. For each x ∈ X which is in a nested sequence of partitions x ∈ Z1 ⊇ · · · ⊇ Zkd
⊇ . . . with251

P (Zkd
)→ 0, there exist γ, r1, r2, ... ∈ R>0 such that252

rd → 0, Zkd
⊆ Brd(x) and P (Zkd

) ≥ γP (Brd(x)). (9)
If Q and P are distributions over R, GRCD satisfies assumption 3. Theorem 1 shows that if any of253

the above assumptions hold, then GRC terminates almost surely and yields unbiased samples from Q.254

We provide the proof of the theorem in appendix B.255

Theorem 1 (Correctness of GRC). Suppose Q,P and Z satisfy any one of assumptions 1 to 3. Then,256

algorithm 2 terminates with probability 1, and its returned sample X has law X ∼ Q.257

Expected runtime and codelength of GRCS. Now we turn to the expected runtime and codelength258

of GRCS. Theorem 2 shows that the expected codelength of GRCS is optimal, while Theorem 3259

establishes that its runtime is order-optimal. We present the proofs of the theorems in appendix C.260

Theorem 2 (GRCS codelength). Let Q and P be continuous distributions over R such that Q≪ P261

and with unimodal dQ/dP . Let Z be the sample-splitting process, and X its returned sample. Then,262

H[X|Z] ≤ DKL[Q∥P ] + 2 log (DKL[Q∥P ] + 1) +O(1). (10)

Theorem 3 (GRCS runtime). Let Q and P be continuous distributions over R such that Q ≪ P263

and with unimodal dQ/dP . Let Z be the sample-splitting process and D the number of steps the264

algorithm takes before accepting a sample. Then, for β = 2/ log(4/3) ≈ 4.82 we have265

E[D] ≤ β DKL[Q∥P ] +O(1) (11)

Improving the codelength of GRCD. In Theorem 2 we state the bound for the REC setting, where266

we make no further assumptions on Q and P . However, we can improve the bound if we consider the267

reverse channel coding (RCC) setting (Theis & Yosri, 2022). In RCC, we have a pair of correlated268

random random variables X,Y ∼ PX,Y . During one round of communication, the encoder receives269

Y ∼ PY and needs to encode a sample X ∼ PX|Y from the posterior using PX as the proposal270

distribution. Thus, RCC can be thought of as the average-case version of REC, where the encoder sets271

Q← PX|Y and P ← PX . In this case, when the conditions of Theorem 2 hold for every (PX|Y , PX)272

pair, in appendix C we show that the bound can be improved to I[X;Y ] + log(I[X;Y ] + 1) +O(1),273

where I[X;Y ] = EY∼PY

[
DKL[PX|Y ∥PY ]

]
is the mutual information between X and Y .274

GRCS runtime is order-optimal. Theorem 3 substantially improves upon the runtime of A∗ coding,275

which is the current fastest REC algorithm with similar assumptions. In particular, AS∗ coding has276

O(D∞[Q∥P ]) expected runtime, which can be arbitrarily larger than that of GRCS. Remarkably,277

the runtime of GRCS is optimal up to the multiplicative factor β. This term arises from the fact the278

sample-splitting process may occasionally rule out a small part of the sample space at a given step.279
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Figure 4: Comparison between GRC and A∗ coding on synthetic REC problems with Gaussian Q
and P . Left: we fix DKL[Q∥P ] = 3 and vary D∞[Q∥P ], measuring the number of steps taken
by each algorithm. Right: we fix D∞[Q∥P ] = DKL[Q∥P ] + 2 and vary DKL[Q∥P ], plotting the
codelengths produced by each algorithm. Reported codelengths do not include additional logarithmic
overhead terms. Results are averaged over 4× 103 different random seeds for each datapoint. We
have included error-bars in both plots but these are too small to see compared to the plot scales.

4 Experiments280

We conducted two sets of experiments: one on controlled synthetic REC problems to check the281

predictions of our theorems numerically, and another using VAEs trained on MNIST to study how282

the performance of GRC-based compression pipelines can be improved in practice. We conducted all283

our experiments under fair and reproducible conditions and make our source code public.1284

4.1 Synthetic Experiments285

Synthetic REC experiments. First, we compare GRCS and GRCD, against AS∗ and AD∗ coding,286

on a range of synthetic REC problems. We systematically vary distribution parameters to adjust the287

difficulty of the REC problems. Figure 4 shows the results of our synthetic experiments.288

Partitioning processes improve the runtime of GRC. First, we observe that, assuming that dQ/dP289

is unimodal, introducing an appropriate partitioning process such as the sample-splitting or the dyadic290

process, dramatically speeds up GRC. In particular, fig. 4 shows that increasing the infinity divergence291

D∞[Q∥P ] (for a fixed DKL[Q∥P ]) does not affect the runtimes of GRCS and GRCD, which remain292

constant and small. This is a remarkable speed-up over the exponential expected runtime of GRCG.293

GRC is faster than A∗ coding. Further, we observe that GRC significantly improves upon the294

runtime of A* coding, which is the fastest previously known algorithm with similar assumptions.295

In particular, Figure 4 shows that increasing the infinity divergence D∞[Q∥P ], while keeping the296

KL divergence DKL[Q∥P ] fixed, increases the runtime of both AS∗ and AD∗ coding, while the297

runtimes of GRCS and GRCD remain constant. More generally, for a fixed KL divergence, the infinity298

divergence can be arbitrarily large or even infinite. In such cases, A∗ coding would be impractically299

slow or even inapplicable, while GRCS and GRCD remain practically fast.300

GRCD improves on GRCS. In our experiments, we observe that the performance of GRCD (green301

in fig. 4) matches that of GRCS (blue in fig. 4) in terms of runtime and codelength. While in our302

experiments, GRCD does not yield an improvement over GRCS, we note the following behaviour.303

The sample-splitting process may occasionally rule out a only a small part of space, which can304

slow down convergence. In particular, in appendix C we show that on average, the sample-splitting305

process rules out 1/2 of the active sample space in the best case at each step, and 3/4 in the worst case.306

By contrast, the dyadic process always rules out 1/2 of the sample space, potentially speeding up307

termination. We conjecture that GRCD achieves an optimal expected runtime with β = 1.308

4.2 Compression with Variational Autoencoders309

Compressing images with VAEs and REC. One of the most promising applications of REC310

is in learnt compression. Here, we implement a proof-of-concept lossless neural compression311

pipeline using a VAE with a factorized Gaussian posterior on MNIST and take the architecture312

used by Townsend et al. (2018). To compress an image Y , we encode a latent sample X from the313

VAE posterior q(X | Y ) by applying GRCD dimensionwise after which we encode the image Y314

with entropy coding using the VAE’s conditional likelihood p(Y | X) as the coding distribution.315

Unfortunately, in addition to the DKL[q(Xd | Y )∥p(Xd)] bits coding cost for latent dimension d, this316

incurs an overhead of log(DKL[q(Xd | Y )∥p(Xd)] + 1) +O(1) bits, analogously to how a symbol317

code, like Huffman coding, incurs a constant overhead per symbol (MacKay, 2003). However, since318

log(1 + x) ≈ x when x ≈ 0, the logarithmic overhead of GRC can become significant when the KL319

over Hence, we now investigate two approaches to mitigate this issue.320

1Source code to be published with the camera-ready version: https://github.com/source-code.
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TRAINING
OBJECTIVE

# LATENT
TOTAL BPP

WITH ζ CODING
TOTAL BPP

WITH δ CODING
NEG. ELBO

PER PIXEL
OVERHEAD BPP
WITH δ CODING

ELBO
20 1.472± 0.004 1.482± 0.004 1.391± 0.004 0.091± 0.000
50 1.511± 0.003 1.530± 0.003 1.357± 0.003 0.172± 0.000
100 1.523± 0.003 1.600± 0.003 1.362± 0.003 0.238± 0.000

MODIFIED ELBO
20 1.470± 0.004 1.478± 0.004 1.393± 0.004 0.085± 0.000
50 1.484± 0.003 1.514± 0.003 1.373± 0.003 0.141± 0.000
100 1.485± 0.003 1.579± 0.003 1.373± 0.003 0.205± 0.000

Table 1: Lossless compression performance comparison on the MNIST test set of a small VAE with
different latent space sizes, optimized using either the ELBO or the modified ELBO in eq. (12). We
report the bits per pixel (BPP) attained using different coding methods, averaged over the 10,000 test
images, along with the standard error, using GRCD. See section 4.2 for further details.

Modified ELBO for REC. A principled approach to optimizing our neural compression pipeline321

is to minimize its expected codelength. For bits-back methods (Townsend et al., 2018, 2019), the322

negative ELBO indeed expresses their expected codelength, but in REC’s case, it does not take into323

account the additional dimensionwise logarithmic overhead we discussed above. Thus, we propose to324

minimize a modified negative ELBO to account for this (assuming that we have D latent dimensions):325

326

EX∼q(X|Y )[− log p(Y |X)] +DKL[q(X|Y )∥p(X)]︸ ︷︷ ︸
Regular ELBO

+

D∑
d=1

log (DKL[q(Xd|Y )∥p(Xd)] + 1)︸ ︷︷ ︸
Logarithmic overhead per dimension

. (12)

327 Coding the latent indices. As the final step during the encoding process, we need a prefix code to328

encode the heap indices Id returned by GRCD for each d. Without any further information, the best329

we can do is use Elias δ coding (Elias, 1975), which, assuming our conjecture on the expected runtime330

of GRCD holds, yields an expected codelength of I[Y ;X]+2 log(I[Y ;X]+1)+O(1). However, we331

can improve this if we can estimate E[log Id] for each d: it can be shown, that the maximum entropy332

distribution of a positive integer-valued random variable with under a constraint on the expectation333

on its logarithm is ζ(n|λ) ∝ n−λ, with λ−1 = E[log Id] + 1. In this case, entropy coding Id using334

this ζ distribution yields improves the expected codelength to I[Y ;X] + log(I[Y ;X] + 1) +O(1).335

Experimental results. We trained our VAE with L ∈ {20, 50, 100} latent dimensions optimized336

using the negative ELBO and its modified version in Equation (12), and experimented with encoding337

the heap indices of GRCD with both δ and ζ coding. We report the results of our in Table 1 on the338

MNIST test set in bits per pixel. In addition to the total coding cost, we report the negative ELBO339

per pixel, which is the fundamental lower bound on the compression efficiency of REC with each340

VAE. Finally, we report the logarithmic overhead due to δ coding. We find that both the modified341

ELBO and ζ coding prove beneficial, especially as the dimensionality of the latent space increases.342

This is expected, since the overhead is most significant for latent dimensions with small KLs, which343

becomes more likely as the dimension of the latent space grows. The improvements yielded by each344

of the two methods are significant, with ζ coding leading to a consistent 1− 7% gain compared to δ345

coding and the modified objective resulting in up to 2% gain in coding performance.346

5 Conclusion and Future Work347

Summary. In this work, we introduced Greedy Rejection Coding (GRC), a REC algorithm which348

generalises the rejection algorithm of Harsha et al. to arbitrary probability spaces and partitioning349

processes. We proved the correctness of our algorithm under mild assumptions, and introduced GRCS350

and GRCD, two variants of GRC. We showed that the runtimes of GRCS and GRCD significantly351

improve upon the runtime of A∗ coding, which can be arbitrarily larger. We evaluated our algorithms352

empirically, verifying our theory and conducted a proof-of-concept learnt compression experiment353

on MNIST using VAEs. We demonstrated that a principled modification to the ELBO and entropy354

coding GRCD’s indices using a ζ distribution can further improve compression efficiency.355

Limitations and Further work. One limitation of GRC is that, unlike A∗ coding, it requires us356

to be able to evaluate the CDF of Q. While in some settings this CDF may be intractable, this357

assumption is satisfied by most latent variable generative models, and is not restrictive in practice.358

However, one practical limitation of GRCS and GRCD, as well as AS∗ and AD∗ , is that they assume359

target-proposal pairs over R. For multivariate distributions, we can decompose them into univariate360

conditionals and apply GRC dimensionwise, however this incurs an additional coding overhead per361

dimension, resulting in a non-negligible cost. Thus, an important direction is to investigate whether362

fast REC algorithms for multivariate distributions can be devised, to circumvent this challenge.363
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A Formal definition of Greedy Rejection Coding441

A.1 Formal definition442

Here we give a formal definition of GRC in terms of measures. We chose to omit this from the main443

text for the sake of exposition, and instead formally define GRC in definition 5 below.444

Definition 5 (Greedy Rejection Coding). Let Z be a partitioning process on Σ, and I0 = 1, S0 = ZI0 .445

Let T0(·, S0) be the zero-measure on (X ,Σ). Then for d = 0, 1, . . . define446

td(x, S0:d)
def
=

dTd(·, S0:d)

dP (·)
(x), (13)

αd+1(x, S0:d)
def
= min

{
dQ

dP
(x)− td(x, S0:d),

1− Td(X , S0:d)

P (Sd)

}
(14)

Ad+1(S, S0:d)
def
=

∫
S

dP (x) αd+1(x, S0:d), (15)

βd+1(x, S0:d)
def
= αd+1(x, S0:d)

P (Sd)

1− Td(X , S0:d)
, (16)

XId ∼
P |Sd

P (Sd)
, (17)

UId ∼ Uniform(0, 1), (18)

bd ∼ Bernoulli
(
Q(Z2Id+1)− Td(Z2Id+1, S0:d)−Ad+1(Z2Id+1, S0:d)

Q(Sd)− Td(Sd, S0:d)−Ad+1(Sd, S0:d)

)
, (19)

Id+1
def
= 2Id + bd, (20)

Sd+1
def
= ZId+1

, (21)

Td+1(S, S0:d+1)
def
= Td(S ∩ Sd+1, S0:d) +Ad+1(S ∩ Sd+1, S0:d) +Q(S ∩ S′

d+1), (22)

where S ∈ Σ and P |Zd
denotes the restriction of the measure P to the set Zd. Generalised Greedy447

Rejection Coding (GRC) amounts to running this recursion, computing448

D∗ = min{d ∈ N : UId ≤ βd+1(XId , S0:d)}, (23)

and returning X = XID∗ and C = ID∗ .449

The functions AcceptProb and RuledOutMass in algorithm 2 correspond to calculating the quanti-450

ties in eq. (16) and eq. (22). The function PartitionProb corresponds to computing the success451

probability of the Bernoulli coin toss in eq. (19).452

A.2 Harsha et al.’s algorithm is a special case of GRC453

Here we show that the algorithm of Harsha et al. is a special case of GRC which assumes discrete P454

and Q distributions and uses the global partitioning process, which we refer to as GRCG. Note that455

the original algorithm described by Harsha et al. assumes discrete P and Q distributions, whereas456

GRCG does not make this assumption.457

Proposition 2 (Harsha et al. (2007) is a special case of GRC). Let Z be the global partitioning458

process over Σ, defined as459

Z1 = X , Z2n = Zn, Z2n+1 = ∅, for all n = 1, 2, . . . . (24)

Harsha et al. (2007) is equivalent to GRC using this Z and setting C = D∗ instead of C = ID∗ . We460

refer to this variant of GRC as Global GRC, or GRCG for short.461

Proof. With Z defined as in eq. (24), we have bd ∼ Bernoulli(0) by eq. (19), so bd = 0 almost surely.462

Therefore Sd = X for all d ∈ N+. From this, we have Td+1(S, S0:d) = Td(S, S0:d) + Ad(S, S0:d)463

and also P (Sd) = P (X ) = 1 for all d ∈ N+. Substituting these in the equations of definition 5, we464

recover eqs. (2) to (4). Setting C = D∗ instead of C = ID∗ makes the two algorithms identical.465
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B Proof of correctness of GRC: Theorem 1466

In this section we give a proof for the correctness of GRC. Before going into the proof, we outline467

our approach and the organisation of the proof.468

Proof outline. To prove theorem 1, we consider running GRC for a finite number of d steps. We469

consider the measure τd : Σ→ [0, 1], defined such that for any S ∈ Σ, the quantity τd(S) is equal to470

the probability that GRC terminates within d steps and returns a sample X ∈ S ⊆ Σ. We then show471

that τd → Q in total variation as d→∞, which proves theorem 1.472

Organisation of the proof. First, in section B.1 we introduce some preliminary definitions, assump-473

tions and notation on partitioning processes, which we will use in later sections. Then, in B.2 we474

derive the τd measure, and prove some intermediate results about it. Specifically, proposition 3 shows475

that the measures Ad and Td from the definition of GRC (definition 5) correspond to probabilities476

describing the termination of the algorithm, and lemma 1 uses these facts to derive the form of τd in477

terms of Ad. Then, lemma 2 shows that the measure τd is no larger than the measure Q and lemma 3478

shows that the limit of τd as d → ∞ is also a measure. Lastly lemma 4 shows that Td and τd are479

equal on the active sets of the partition process followed within a run of GRC, and then lemma 5 uses480

that result to derive the subsets of the sample space on which τd is equal to Q and τ is equal to Q.481

Then, in appendix B.3 we break down the proof of theorem 1 in four cases. First, we consider the482

probability pd that GRC terminates at step d, given that it has not terminated up to and including step483

d− 1. Lemma 7 shows that if pd ̸→ 0, then τd → Q in total variation. Then we consider the case484

pd → 0 and show that in this case, if any of assumptions 1, 2 or 3 hold, then again τd → Q in total485

variation. Putting these results together proves theorem 1.486

B.1 Preliminary definitions, assumptions and notation487

For the sake of completeness, we restate relevant definitions and assumptions. Definition 6 restates488

our notation on the target Q and proposal P measures and assumption 4 emphasises our assumption489

that Q≪ P . Definition 7 restates the definition of partitioning processes.490

Definition 6 (Target Q and proposal P distributions). Let Q and P be probability measures on a491

measurable space (X ,Σ). We refer to Q and P as the target and proposal measures respectively.492

Assumption 4 (Q≪ P ). We assume Q is absolutely continuous w.r.t. P , that is Q≪ P . Under this493

assumption, the Radon-Nikodym derivative of Q w.r.t. P exists and is denoted as dQ/dP : X → R+.494

Definition 7 (Partitioning process). A random process Z : N+ → Σ which satisfies495

Z1 = X , Z2n ∩ Z2n+1 = ∅, Z2n ∪ Z2n+1 = Zn. (25)

is called a partitioning process.496

That is, a partitioning process Z is a random process indexed by the heap indices of an infinite binary497

tree, where the root node is X and any two children nodes Z2n and Z2n+1 partition their parent node498

Zn. Note that by definition, a partitioning process takes values which are measurable sets in (X ,Σ).499

Because GRC operates on an binary tree, we find it useful to define some appropriate notation.500

Definition 8 specifies the ancestors of a node in a binary tree. Notation 1 gives some useful indexing501

notation for denoting different elements of the partitioning process Z, as well as for denoting the502

branch of ancestors of an element in a partitioning process.503

Definition 8 (Ancestors). We define the one-step ancestor function A1 : 2N
+ → 2N

+

as504

A1(N) = N ∪ {n ∈ N+ : n′ = 2n or n′ = 2n+ 1, for some n′ ∈ N}, (26)

and the ancestor function A : 2N
+ → 2N

+

as505

A(N) =
{
n ∈ N+ : n ∈ Ak

1({n′}) for some n′ ∈ N, k ∈ N+
}
. (27)

where Ak
1 denotes the composition of A1 with itself k times.506

Viewing N+ as the set of heap indices of an infinite binary tree, A maps a set N ⊆ N of natural507

numbers (nodes) to the set of all elements of N and their ancestors.508
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Notation 1 (Double indexing for Z, ancestor branch). Given a partitioning process Z, we use the509

notation Zd,k, where d = 1, 2, . . . and k = 1, . . . , 2d−1 to denote the kth node at depth d, that is510

Zd,k := Z2d−1−1+k. (28)

We use the hat notation Ẑd,k to denote the sequence of nodes consisting of Zd,k and all its ancestors511

Ẑd,k := (Zn : n ∈ A({2d−1 − 1 + k})), (29)

and call Ẑd,k the ancestor branch of Zd,k.512

Notation 2 (P measure). In definition 5, we defined P to be the measure associated with an infinite513

sequence of independent fair coin tosses over a measurable space (Ω,S). To avoid heavy notation,514

for the rest of the proof we will overload this symbol as follows: if F is a random variable from Ω to515

some measurable space, we will abbreviate P ◦ F−1 by simply P(F ).516

B.2 Deriving the measure of samples returned by GRC517

For the remainder of the proof, we condition on a fixed partitioning process sample Z. For brevity,518

we omit this conditioning which, from here on is understood to be implied. Proposition 3 shows that519

the measures Ad and Td correspond to the probabilities that GRC picks a particular branch of the520

binary tree and terminates at step d, or does not terminate up to and including step d, respectively.521

Proposition 3 (Acceptance and rejection probabilities). Let Vd be the event that GRC does not522

terminate up to and including step d and Wd be the event that it terminates at step d. Let S0:d = B0:d523

denote the event that the sequence of the first d bounds produced is B0:d. Then524

P(Vd, S0:d = B0:d) = 1− Td(X , B0:d), for d = 0, 1, . . . , (30)
P(Wd+1, S0:d = B0:d) = Ad+1(X , B0:d), for d = 0, 1, . . . . (31)

Proof. First we consider the probability that GRC terminates at step k + 1 given that it has not525

terminated up to and including step d, that is the quantity P(Wk+1 | Vk, S0:k = B0:k). By definition 5,526

this probability is given by integrating the acceptance probability βk+1(x,B0:k) over x ∈ X , with527

respect to the measure P |Bk
/P (Bk), that is528

P(Wk+1 | Vk, S0:k = B0:k) =

∫
x∈Bk

dP (x)
βk+1(x,B0:k)

P (Bk)
(32)

=

∫
x∈X

dP (x)
βk+1(x,B0:k)

P (Bk)
(33)

=

∫
x∈X

dP (x)
αk+1(x,B0:k)

1− Tk(X , B0:k)
(34)

=
Ak+1(X , B0:k)

1− Tk(X , B0:k)
, (35)

Now, we show the result by induction on d, starting from the base case of d = 0.529

Base case: For d = 0, by the definition of GRC (definition 5) S0 = ZI0 = X , so530

P (V0, S0 = B0) = 1 and T0(X , B0) = 0, (36)

which show the base case for eq. (30). Now, plugging in k = 0 in eq. (35) we obtain531

P(W1, S0 = B0) = P(W1 | V0, S0 = B0) =
A1(X , B0)

1− T0(X , B0)
= A1(X , B0) (37)

where we have used the fact that T0(X , B0) = 0, showing the base case for eq. (31).532

533

Inductive step: Suppose that for all k = 0, 1, 2, . . . , d it holds that534

P (Vd, S0:k = B0:k) = 1− Td(X , B0:k) and P (Wk+1, S0:k = B0:k) = Ak+1(X , B0:k). (38)
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Setting k = d in eq. (35), we obtain535

P(W ′
d+1 | Vd, S0:d = B0:d) =

1− Td(X , B0:d)−Ad+1(X , B0:d)

1− Td(X .B0:d)
, (39)

and using the inductive hypothesis from eq. (38), we have536

P(Vd+1, S0:d = B0:d) = P(W ′
d+1, Vd, S0:d = B0:d) = 1− Td(X , B0:d)−Ad+1(X , B0:d). (40)

Now, Bd = Zn for some n ∈ N+. Denote BL
d := Z2n and BR

d := Z2n+1. Then, by the product rule537

P(Vd+1, S0:d = B0:d, Sd+1 = BR
d ) = (41)

= P(Sd+1 = BR
d | Vd+1, S0:d = B0:d)P(Vd+1, S0:d = B0:d) (42)

=
Q(BR

d )− Td(B
R
d , B0:d)−Ad+1(B

R
d , B0:d)

Q(Bd)− Td(Bd, B0:d)−Ad+1(Bd, B0:d)
P(Vd+1, S0:d = B0:d) (43)

=
Q(BR

d )− Td(B
R
d , B0:d)−Ad+1(B

R
d , B0:d)

Q(X )︸ ︷︷ ︸
= 1

−Td(X , B0:d)−Ad+1(X , B0:d)
P(Vd+1, B0:d = B0:d) (44)

= Q(BR
d )− Td(B

R
d , B0:d)−Ad+1(B

R
d , B0:d) (45)

= 1− Td+1(X , B0:d+1) (46)

where we have written B0:d+1 = (B0, . . . , Bd, B
R
d ). Above, to go from 41 to 42 we used the538

definition of conditional probability, to go from 42 to 43 we used the definition in 19, to go from 43539

to 44 we used the fact that for k = 0, 1, 2, . . . , it holds that540

Q(X )− Tk(X , B0:k)−Ak+1(X , B0:k) = Q(Bk)− Tk(Bk, B0:k)−Ak+1(Bk, B0:k)+

+Q(B′
k)− Tk(B

′
k, B0:k)︸ ︷︷ ︸

= Q(B′
k)

−Ak+1(B
′
k, B0:k)︸ ︷︷ ︸

= 0

(47)

= Q(Bk)− Td(Bk, B0:k)−Ak+1(Bk, B0:k), (48)

from 44 to 45 we have used eq. (40), and lastly from 45 to 46 we have again used eq. (48). Equa-541

tion (46) similarly holds if Bd+1 = BR
d by Bd+1 = BL

d , so we arrive at542

P(Vd+1, B0:d+1 = B0:d+1) = 1− Td+1(X , B0:d+1), (49)

which shows the inductive step for eq. (30). Further, we have543

P(Wd+2, B0:d+1 = B0:d+1) = P(Wd+2 | Vd+1, B0:d+1 = B0:d+1)P(Vd+1, B0:d+1 = B0:d+1)
(50)

and also by setting k = d+ 1 in eq. (35) we have544

P(Wd+2 | Vd+1, B0:d+1 = B0:d+1) =
Ad+2(X , B0:d+1)

1− Td+1(X , B0:d+1)
. (51)

Combining eq. (49) and eq. (51) we arrive at545

P(Wd+2, B0:d+1 = B0:d+1) = Ad+2(X , B0:d+1), (52)

which is the inductive step for eq. (31). Putting eqs. (49) and (52) together shows the result.546

We now turn to defining and deriving the form of the measure τD. We will define τD to be the547

measure such that for any S ∈ Σ, the probability that GRC terminates up to and including step D548

and returns a sample within S is given by τD(S). We will also show that τD is non-increasing in D.549
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Lemma 1 (Density of samples generated by GRC). The probability that GRC terminates by step550

D ≥ 1 and produces a sample in S is given by the measure551

τD(S) =

D∑
d=1

2d−1∑
k=1

Ad(S, Ẑd,k), (53)

where ẐD,k is the ancestor branch of ZD,k as defined in eq. (29). Further, τD is non-decreasing in552

D, that is if n ≤ m, then τn(S) ≤ τm(S) for all S ∈ Σ.553

Proof. Let Vd be the event that GRC does not terminate up to and including step d and let Wd(S) be554

the event that GRC terminates at step d and returns a sample in S. Then555

τD(S) =

D∑
d=1

P(Wd(S)) (54)

=

D∑
d=1

P(Wd(S), Vd−1) (55)

=

D∑
d=1

2d−1∑
k=1

P(Wd(S), Vd−1, S0:d−1 = Ẑd,k) (56)

=

D∑
d=1

2d−1∑
k=1

P(Wd(S) | Vd−1, S0:d−1 = Ẑd,k) P(Vd−1, S0:d−1 = Ẑd,k). (57)

Further, the terms in the summand can be expressed as556

P(Vd−1, S0:d−1 = Ẑd,k) = 1− Td−1(X , Ẑd,k), (58)

P(Wd(S) | Vd−1, S0:d−1 = Ẑd,k) =

∫
x∈S

dP (x)
βd(x, Ẑd,k)

P (Zd,k)
(59)

=

∫
x∈S

dP (x)
αd(x, Ẑd,k)

1− Td−1(X , Ẑd,k)
(60)

=
Ad(S, Ẑd,k)

1− Td−1(X , Ẑd,k)
, (61)

and substituting eqs. (58) and (61) into the sum in eq. (57), we obtain eq. (53). Further, since the557

inner summand is always non-negative, increasing D adds more non-negative terms to the sum, so558

τD is also non-decreasing in D.559

Now we turn to proving a few results about the measure τD. Lemma 2 shows that τD ≤ Q for all D.560

This result implies that ||Q− τD||TV = Q(X )− τD(X ), which we will use later.561

Lemma 2 (Q− τD is non-negative). Let D ∈ N+. Then Q− τD is a positive measure, that is562

Q(S)− τD(S) ≥ 0 for any S ∈ Σ. (62)

Proof. Let S ∈ Σ and write563

Q(S)− τD(S) =

2D−1∑
k=1

Q(S ∩ ZD,k)− τD(S ∩ ZD,k) (63)

=

2D−1∑
k=1

Q(S ∩ ZD,k)−
D∑

d=1

2D−1∑
k′=1

Ad(S ∩ ZD,k, ẐD,k′)

 (64)

=

2D−1∑
k=1

[
Q(S ∩ ZD,k)−

D∑
d=1

Ad(S ∩ ZD,k, ẐD,k)

]
(65)

=

2D−1∑
k=1

[
Q(S ∩ ZD,k)− TD−1(S ∩ ZD,k, ẐD,k)−AD(S ∩ ZD,k, ẐD,k)

]
(66)
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We will show that the summand in eq. (66) is non-negative. From the definition in eq. (14) we have564

αD(x, ẐD,k) = min

{
dQ

dP
(x)− tD−1(x, ẐD,k),

1− TD−1(X , ẐD,k)

P (ZD,k)

}
(67)

≤ dQ

dP
(x)− tD−1(x, ẐD,k) (68)

and integrating both sides of eq. (68) over S ∩ ZD,k, we obtain565

AD(S ∩ ZD,k, ẐD,k) ≤ Q(S ∩ ZD,k)− TD−1(S ∩ ZD,k, ẐD,k) (69)

Putting this together with eq. (66) we arrive at566

Q(S)− τD(S) ≥ 0, (70)

which is the required result.567

Thus far we have derived the form of τD, shown that it is non-decreasing in D and that it is no568

greater than Q. As we are interested in the limiting behaviour of τD, we next show that its limit,569

τ = limD→∞ τD, is also a measure. Further, it also holds that τ ≤ Q.570

Lemma 3 (Measures τD converge to a measure τ ≤ Q). For each S ∈ Σ, τD(S) converges to a571

limit. Further, the function τ : Σ→ [0, 1] defined as572

τ(S) = lim
D→∞

τD(S) (71)

is a measure on (X ,Σ) and τ(S) ≤ Q(S) for all S ∈ Σ.573

Proof. First, by lemma 1, τD(S) is non-decreasing in D, and bounded above by Q(S) for all S ∈ Σ.574

Therefore, for each S ∈ Σ, τD(S) converges to some limit as D →∞. Define τ : Σ→ [0, 1] as575

τ(S) = lim
D→∞

τD(S), (72)

and note that τ is a non-negative set function for which τ(∅) = 0. By the Vitali-Hahn-Saks theorem576

(see Corollary 4, p. 160; Dunford & Schwartz, 1988), τ is also countably additive, so it is a measure.577

Also, by lemma 2, τD(S) ≤ Q(S) for all D ∈ N+ and all S ∈ Σ, so τ(S) ≤ Q(S) for all S ∈ Σ.578

Definition 9 (Hd,k, Hd and H). For d = 1, 2, . . . and k = 1, . . . , 2d−1, we define the sets Hd,k as579

Hd,k =

{
x ∈ Zd,k

∣∣∣ dQ
dP

(x)− td−1(x, Ẑd,k) ≥
1− Td−1(X , Ẑd,k)

P (Zd,k)

}
. (73)

Also, define the sets Hd and H as580

Hd =

2d−1⋃
k=1

Hd,k and H =

∞⋂
d=1

Hd. (74)

Lemma 4 (TD(·, ẐD+1,k) and τD agree in ZD+1,k). Let R ∈ Σ. If R ⊆ ZD+1,k, then581

τD(R) = TD(R, ẐD+1,k). (75)

Proof. Suppose R ⊆ ZD+1,k. First, we have582

τD(R) =

D∑
d=1

2d−1∑
k′=1

Ad(R, Ẑd,k′) =

D∑
d=1

Ad(R, (ẐD+1,k)1:d). (76)

From the definition of TD in eq. (22), we have583

TD(R, ẐD+1,k) = TD−1(R ∩ ZD+1,k, (ẐD+1,k)1:D) +AD(R ∩ ZD+1,k, (ẐD+1,k)1:D)+ (77)

+Q(R ∩ Z ′
D+1,k)︸ ︷︷ ︸

= 0

= TD−1(R ∩ ZD+1,k, (ẐD+1,k)1:D) +AD(R ∩ ZD+1,k, (ẐD+1,k)1:D) (78)

= TD−1(R, (ẐD+1,k)1:D) +AD(R, (ẐD+1,k)1:D) (79)
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where we have used the assumption that R ⊆ ZD+1,k. In a similar manner, applying eq. (79)584

recursively D − 1 more times, we obtain585

TD(R, ẐD+1,k) =

D∑
d=1

Ad(R, (ẐD+1,k)1:d) = τD(R). (80)

which is the required result.586

Lemma 5 (Equalities with Q, τD and τ ). The following two equalities hold587

Q(X \HD) = τD(X \HD) and Q(X \H) = τ(X \H). (81)

Proof. Let R = ZD+1,k \HD,k. Then, by similar reasoning used to prove eq. (77), we have588

TD(R, ẐD+1,k) = TD−1(R, (ẐD+1,k)1:D) +AD(R, (ẐD+1,k)1:D) (82)

Further, we also have589

AD(R, ẐD,k) =

∫
R

dP (x) αD(x, ẐD,k) (83)

=

∫
R

dP (x) min

{
dQ

dP
(x)− tD−1(x, ẐD,k),

1− TD−1(X , ẐD,k)

P (ZD,k)

}
(84)

=

∫
R

dP (x)

(
dQ

dP
(x)− tD−1(x, ẐD,k)

)
(85)

= Q(R)− TD−1(R, ẐD,k) (86)

where from eq. (84) to eq. (85) we have used the definition of HD,k. Then, combining eqs. (82)590

and (86) and using lemma 4, we arrive at591

Q(ZD+1,k \HD,k) = TD(ZD+1,k \HD,k, ẐD+1,k) = τD(ZD+1,k \HD,k). (87)

Now, using the equation above, we have that592

τD(X \HD) =

2D∑
k=1

τD(ZD+1,k \HD) =

2D∑
k=1

Q(ZD+1,k \HD) = Q(X \HD). (88)

Now, using τD ≤ τ ≤ Q and τD(X \HD) = Q(X \HD), we have that τ(X \HD) = Q(X \HD),593

which is the first part of the result we wanted to show. Taking limits, we obtain594

Q(X \H) = lim
D→∞

Q(X \HD) = lim
D→∞

τ(X \HD) = τ(X \H), (89)

which is the second part of the required result.595
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B.3 Breaking down the proof of Theorem 1 in five cases596

In definition 10 we introduce the quantities wd = Q(X )− τd(X ) and pd = P(Wd | Vd−1). Then we597

break down the proof of theorem 1 in five cases. First, in lemma 7 we show that if pd ̸→ 0, then598

wd → 0. Second, in lemma 8 we show that if P (Hd) → 0, then wd → 0. In lemma 9 we show599

an intermediate result, used in the other three cases, which we consider in lemmas 10, 11 and 12.600

Specifically, in these three cases we show that if pd → 0 and P (Hd) ̸→ 0, and assumption 1, 2 or 3601

hold respectively, we have wd → 0. Putting these results together shows theorem 1.602

Definition 10 (pd, wd,k and wd). Define pd = P(Wd | Vd−1). Also define wd,k and wd as603

wd,k
def
= Q(Zd,k)− τd(Zd,k), (90)

wd
def
=

2d−1∑
k=1

wd,k. (91)

Lemma 6 (wd non-increasing in d). The sequence wd is non-negative and non-increasing in d.604

Proof. Since τd is non-decreasing in d (from lemma 5) and605

wd =

2d−1∑
k=1

Q(Zd,k)− τd(Zd,k) = Q(X )− τd(X ), (92)

it follows that wd is a non-increasing and non-negative sequence.606

Lemma 7 (Case 1). If pd ̸→ 0, then wd → 0.607

Proof. Let pd = P(Wd | Vd−1) and suppose pd ̸→ 0. Then, there exists ϵ > 0 such that pd > ϵ608

occurs infinitely often. Therefore, there exists an increasing sequence of integers ad ∈ N such that609

pad
> ϵ for all d ∈ N. Then610

τad
(X ) = P

(
ad⋃
d=1

Wd

)
(93)

= 1− P (Vad
) , (94)

= 1−
ad∏
d=1

P (Vd | Vd−1) , (95)

= 1−
ad∏
d=1

(1− pd), (96)

≥ 1− (1− ϵ)d → 1 as d→∞. (97)

Therefore, τd(X )→ 1 as d→∞, which implies that ||Q− τd||TV → 0.611

Lemma 8 (Case 2). If P (Hd)→ 0, then wd → 0.612

Proof. Suppose P (Hd) → 0. Since Q ≪ P , we have Q(H) = 0, and since Q ≥ τ ≥ 0 (by613

lemma 3), we also have τ(H) = 0. Therefore614

lim
d→∞

wd = lim
d→∞

||Q− τd||TV (98)

= Q(X )− τ(X ) (99)
= Q(X \H)− τ(X \H)︸ ︷︷ ︸

= 0 from lemma 5

+Q(H)︸ ︷︷ ︸
= 0

− τ(H)︸ ︷︷ ︸
= 0

(100)

= 0 (101)

which is the required result.615
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Lemma 9 (An intermediate result). If pd → 0 and wd ̸→ 0 as d→∞, then616

2d−1∑
k=1

P (Hd,k)

P (Zd,k)
wd,k → 0 as d→∞. (102)

Proof. Suppose that pd = P(Wd | Vd−1)→ 0 and wd ̸→ 0. Then617

P(Wd | Vd−1) ≥ P(Wd(Hd) | Vd−1) (103)

=

2d−1∑
k=1

P (Wd(Hd,k) | Vd−1) (104)

=

2d−1∑
k=1

P
(
Wd(Hd,k), S0:d−1 = Ẑd,k | Vd−1

)
(105)

=

2d−1∑
k=1

P
(
Wd(Hd,k) | Vd−1, S0:d−1 = Ẑd,k

)
P
(
S0:d−1 = Ẑd,k | Vd−1

)
(106)

=

2d−1∑
k=1

P (Hd,k)

P (Zd,k)
P
(
S0:d−1 = Ẑd,k | Vd−1

)
(107)

=

2d−1∑
k=1

P (Hd,k)

P (Zd,k)

wd,k

wd
→ 0. (108)

In addition, if wd ̸→ 0, then since 0 ≤ wd ≤ 1 we have618

2d−1∑
k=1

P (Hd,k)

P (Zd,k)
wd,k → 0. (109)

which is the required result.619

Lemma 10 (Case 3). Suppose that pd → 0, P (Hd) ̸→ 0 and assumption 1 holds. Then wd → 0.620

Proof. Suppose that pd → 0, P (Hd) ̸→ 0. Suppose also that assumption 1 holds, meaning there621

exists M ∈ R such that dQ/dP (x) < M for all x ∈ X . Then for any S ∈ Σ, we have622

Q(S)− τ(S)

P (S)
≤ Q(S)

P (S)
=

∫
S

dQ
dP dP

P (S)
≤M

∫
S
dP

P (S)
= M =⇒ Q(S)− τ(S)

M
≤ P (S). (110)

Further, we have623

2d−1∑
k=1

P (Hd,k)

P (Zd,k)
wd,k ≥

2d−1∑
k=1

P (Hd,k)

P (Zd,k)
(Q(Hd,k)− τ(Hd,k)) (111)

≥ 1

M

2d−1∑
k=1

(Q(Hd,k)− τ(Hd,k))
2

P (Zd,k)
(112)

≥ 1

M

2d−1∑
k=1

(Q(H ∩Hd,k)− τ(H ∩Hd,k))
2

P (Zd,k)
(113)

≥ 1

M

2d−1∑
k=1

∆2
d,k

P (Zd,k)
(114)

=
1

M
Φd (115)

→ 0, (116)
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where in the second inequality we have used eq. (110) and we have defined624

∆d,k
def
= Q(H ∩Hd,k)− τ(H ∩Hd,k), (117)

Φd
def
=

2d−1∑
k=1

∆2
d,k

P (Zd,k)
. (118)

Now note that the sets H ∩Hd+1,2k and H ∩Hd+1,2k+1 partition the set H ∩Hd,k. Therefore625

∆d,k = ∆d+1,2k +∆d+1,2k+1. (119)

By the definition of Φd in eq. (118), we can write626

Φd+1 =

2d∑
k=1

∆2
d,k

P (Zd+1,k)
=

2d−1∑
k=1

[
∆2

d+1,2k

P (Zd+1,2k)
+

∆2
d+1,2k+1

P (Zd+1,2k+1)

]
, (120)

where we have written the sum over 2d terms as a sum over 2d−1 pairs of terms. We can rewrite the627

summand on the right hand side as628

∆2
d+1,2k

P (Zd+1,2k)
+

∆2
d+1,2k+1

P (Zd+1,2k+1)
=

∆2
d+1,2k

P (Zd+1,2k)
+

(∆d,k −∆d+1,2k)
2

P (Zd+1,2k+1)
(121)

= ∆2
d,k

[
ρ2

P (Zd+1,2k−1)
+

(1− ρ)2

P (Zd+1,2k)

]
(122)

= ∆2
d,k g(ρ) (123)

where in eq. (121) we have used eq. (119), from eq. (121) to eq. (122) we defined the quantity629

ρ = ∆d+1,2k/∆d,k, and from eq. (122) to eq. (123) we have defined g : [0, 1]→ R as630

g(r)
def
=

r2

P (Zd+1,2k)
+

(1− r)2

P (Zd+1,2k+1)
. (124)

The first and second derivatives of g are631

dg

dr
=

2r

P (Zd+1,2k)
− 2(1− r)

P (Zd+1,2k+1)
, (125)

d2g

dr2
=

2

P (Zd+1,2k)
+

2

P (Zd+1,2k+1)
> 0, (126)

so g has a single stationary point that is a minimum, at r = rmin, which is given by632

rmin :=
P (Zd+1,2k)

P (Zd+1,2k) + P (Zd+1,2k+1)
. (127)

Plugging this back in g, we obtain633

g(rmin) =
1

P (Zd+1,2k) + P (Zd+1,2k+1)
=

1

P (Zd,k)
, (128)

which implies that634

∆2
d+1,2k

P (Zd+1,2k)
+

∆2
d+1,2k+1

P (Zd+1,2k+1)
≥

∆2
d,k

P (Zd,k)
. (129)

Therefore635

Φd+1 =

2d∑
k=1

∆2
d,k

P (Zd+1,k)
≥

2d−1∑
k=1

∆2
d,k

P (Zd,k)
= Φd, (130)

but since Φd → 0, this is only possible if Φd = 0 for all d, including d = 1, which would imply that636

∆1,1 = Q(H ∩H1,1)− τ(H ∩H1,1) = Q(H)− τ(H) = 0, (131)

which, together with lemma 5, implies that637

Q(X )− τ(X ) = Q(H)− τ(H) = 0, (132)

and therefore wd = ||Q− τd||TV → 0.638
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Lemma 11 (Case 4). Suppose that pd → 0, P (Hd) ̸→ 0 and assumption 3 holds. Then wd → 0.639

Proof. Suppose that pd → 0, P (Hd) ̸→ 0. Suppose also that assumption that assumption 3 holds,640

meaning that for each d, we have wd,k > 0 for exactly one value of k = kd, and wd,k = 0 for all641

other k ̸= kd. In this case, it holds that Hd,k = ∅ for all k ̸= kd and Hd = Hd,kd
. Since P (Hd) ̸→ 0642

and P (Hd) is a decreasing sequence, it converges to some positive constant. We also have643

pd ≥
2d−1∑
k=1

P (Hd,k)

P (Zd,k)
wd,k =

P (Hd,kd
)

P (Zd,kd
)
wd,kd

=
P (Hd,kd

)

P (Zd,kd
)
wd ≥ P (Hd) wd → 0, (133)

which can only hold if wd → 0, arriving at the result.644

Lemma 12 (Case 5). Suppose that pd → 0, P (Hd) ̸→ 0 and assumption 3 holds. Then wd → 0.645

Proof. Suppose that pd → 0, P (Hd) ̸→ 0 and assumption 3 holds. Since each x ∈ X belongs to646

exactly one Zd,k we can define the function Bd : X → Σ as647

Bd(x) = Zd,k such that x ∈ Zd,k. (134)

Using this function we can write648

pd ≥
2d−1∑
k=1

P (Hd,k)

P (Zd,k)
wd,k =

2d−1∑
k=1

P (Hd,k)
Q(Zd,k)− τd(Zd,k)

P (Zd,k)
=

∫
Hd

dP
Q(Bd(x))− τd(Bd(x))

P (Bd(x))
.

Now, because the sets Hd are measurable, their intersection H := ∩∞d=1Hd is also measurable. We649

can therefore lower bound the integral above as follows650 ∫
Hd

dP
Q(Bd(x))− τd(Bd(x))

P (Bd(x))
≥
∫
H

dP
Q(Bd(x))− τd(Bd(x))

P (Bd(x))
(135)

≥
∫
H

dP
Q(Bd(x))− τ(Bd(x))

P (Bd(x))
, (136)

where the first inequality holds as the integrand is non-negative and we are constraining the integration651

domain to H ⊆ Hd, and the second inequality holds because τd(S) ≤ τ(S) for any S ∈ Σ. Define C652

to be the set of all intersections of nested partitions, with non-zero mass under P653

C =

{ ∞⋂
d=0

Zd,kd
: P

( ∞⋂
d=0

Zd,kd

)
> 0, k0 = 1, kd+1 = 2kd or kd+1 = 2kd + 1

}
, (137)

and note that all of its elements are pairwise disjoint. Each of the elements of C is a measurable set654

because it is a countable intersection of measurable sets. In addition, C is a countable set, which can655

be shown as follows. Define the sets Cn as656

Cn =
{
E ∈ C : 2−n−1 < P (E) ≤ 2−n

}
for n = 0, 1, . . . (138)

and note that their union equals C. Further, note that each Cn must contain a finite number of elements.657

That is because if Cn contained an infinite number of elements, say E1, E2, · · · ∈ Cn, then658

P (X ) ≥ P

( ∞⋃
k=1

Ek

)
=

∞∑
k=1

P (Ek) >

∞∑
k=1

2−n−1 →∞, (139)

where the first equality holds because P is an additive measure and the En terms are disjoint, and659

the second inequality follows because Ek ∈ Cn so P (Ek) > 2−n−1. This results in a contradiction660

because P (X ) = 1, so each Cn must contain a finite number of terms. Therefore, C is a countable661

union of finite sets, which is also countable. This implies that the union of the elements of C, namely662

C = ∪C′∈CC
′ is a countable union of measurable sets and therefore also measurable. Since C is663

measurable, H \ C is also measurable and we can rewrite the integral in eq. (135) as664

pd ≥
∫
H

dP
Q(Bd(x))− τ(Bd(x))

P (Bd(x))
(140)

=

∫
H∩C

dP
Q(Bd(x))− τ(Bd(x))

P (Bd(x))
+

∫
H\C

dP
Q(Bd(x))− τ(Bd(x))

P (Bd(x))
(141)

→ 0 (142)
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Since both terms above are non-negative and their sum converges to 0, the terms must also individually665

converge to 0. Therefore, for the first term, we can write666

lim
d→∞

∫
H∩C

dP
Q(Bd(x))− τ(Bd(x))

P (Bd(x))
= lim inf

d→∞

∫
H∩C

dP
Q(Bd(x))− τ(Bd(x))

P (Bd(x))
= 0. (143)

Similarly to Bd defined in eq. (134), let us define B : C → Σ as667

B(x) = C ′ ∈ C such that x ∈ C ′. (144)

Applying Fatou’s lemma (4.3.3, p. 131; Dudley, 2018) to eq. (143), we obtain668

lim inf
d→∞

∫
H∩C

dP
Q(Bd(x))− τ(Bd(x))

P (Bd(x))
≥
∫
H∩C

dP lim inf
d→∞

Q(Bd(x))− τ(Bd(x))

P (Bd(x))
(145)

=

∫
H∩C

dP
Q(B(x))− τ(B(x))

P (B(x))
(146)

= 0, (147)

where from eq. (145) to eq. (146) we have used the fact that P (Bd(x)) > 0 whenever x ∈ C and669

also that B1(x) ⊇ B2(x) ⊇ . . . . Now we can re-write this integral as a sum, as follows. Let the670

elements of C, which we earlier showed is countable, be C1, C2, . . . and write671 ∫
H∩C

dP
Q(B(x))− τ(B(x))

P (B(x))
=

∞∑
n=1

∫
H∩Cn

dP
Q(B(x))− τ(B(x))

P (B(x))
(148)

=

∞∑
n=1

P (H ∩ Cn)

P (Cn)
(Q(Cn)− τ(Cn)) (149)

= 0. (150)

Now, from lemma 5, we have672

∞∑
n=1

P (H ∩ Cn)

P (Cn)
(Q(Cn)− τ(Cn)) =

∞∑
n=1

P (H ∩ Cn)

P (Cn)
(Q(H ∩ Cn)− τ(H ∩ Cn)) = 0, (151)

which in turn implies that for each n = 1, 2, . . . , we have either Q(H ∩ Cn) − τ(H ∩ Cn) = 0673

or P (H ∩ Cn) = 0. However, the latter case also implies Q(H ∩ Cn)− τ(H ∩ Cn) = 0 because674

Q≪ P , so Q(H ∩ Cn)− τ(H ∩ Cn) = 0 holds for all n. Therefore675

τ(H ∩ C) =

∞∑
n=1

τ(H ∩ Cn) =

∞∑
n=1

Q(H ∩ Cn) = Q(H ∩ C). (152)

Returning to the second term in the right hand of eq. (141), and again applying Fatou’s lemma676

lim inf
d→∞

∫
H\C

dP
Q(Bd(x))− τ(Bd(x))

P (Bd(x))
≥
∫
H\C

dP lim inf
d→∞

Q(Bd(x))− τ(Bd(x))

P (Bd(x))
. (153)

Now, since Z has the nice-shrinking property from assumption 3, we can apply a standard result677

from measure theory and integration Rudin (1986, given in Theorem 7.10, p. 140), to show that the678

following limit exists and the following equalities are satisfied679

lim
d→∞

Q(Bd(x))− τ(Bd(x))

P (Bd(x))
= lim

d→∞

1

P (Bd(x))

∫
Bd

dP

(
dQ

dP
(x)− dτ

dP
(x)

)
(154)

=
dQ

dP
(x)− dτ

dP
(x) (155)

Inserting 155 into eq. (153), we obtain680

lim inf
d→∞

∫
H\C

dP
Q(Bd(x))− τ(Bd(x))

P (Bd(x))
≥
∫
H\C

dP

(
dQ

dP
(x)− dτ

dP
(x)

)
= 0, (156)

which in turn implies that681

dQ

dP
(x)− dτ

dP
(x) = 0 P -almost-everywhere on H \ C, (157)
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or equivalently that Q(H \C) = τ(H \C). Combining this with the fact that Q(X \H) = τ(X \H)682

and our earlier result that Q(H ∩ C) = τ(H ∩ C), we have683

||Q− τ ||TV = Q(X \H)− τ(X \H) +Q(H \ C)− τ(H \ C) +Q(H ∩ C)− τ(H ∩ C) = 0,

which is equivalent to wd = ||Q− τd||TV → 0, that is the required result.684

Theorem (Correcness of GRC). If any one of the assumptions 1, 2 or 3 holds, then685

||Q− τd||TV → 0 as d→∞. (158)

Proof. If pd → 0, then wd → 0 by lemma 7. If P (Hd)→ 0, then wd → 0 by lemma 8. Therefore686

suppose that pd ̸→ 0 and P (Hd) ̸→ 0. Then if any one of assumptions 1, 2 or 3 holds, we can687

conclude from lemma 10, 11 or 12 respectively, that ||Q− τd||TV → 0.688
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C Optimality of GRCS689

Algorithm 3 GRCS with arthmetic coding for the heap index.

Require: Target Q, proposal P over R with unimodal density ratio r = dQ/dP with mode µ.
1: d← 0, T0 ← 0, L0 ← 0
2: I0 ← 1, S1 ← R
3: while True do
4: XId ∼ P |Sd

/P (Sd)
5: UId ∼ Uniform(0, 1)

6: βId ← clip
(
P (Sd) ·

r(XId
)−Ld

1−Td
, 0, 1

)
▷ clip(y, a, b)

def
= max{min{y, b}, a}

7: if UId ≤ βd+1 then
8: return XId , Id
9: end if

10: if XId > µ then
11: Id+1 ← 2Id
12: Sd+1 ← Sd ∩ (−∞, XId)
13: else
14: Id+1 ← 2Id + 1
15: Sd+1 ← Sd ∩ (XId ,∞)
16: end if
17: Ld+1 ← Ld + Td/P (Sd)
18: Td+1 ← PY∼Q[r(Y ) ≥ Ld+1]− Ld+1 · PY∼P [r(Y ) ≥ Ld+1]
19: d← d+ 1
20: end while

In this section, we prove Theorems 2 and 3. We are only interested in continuous distributions over R690

with unimodal density ratio dQ/dP for these theorems. Hence, we begin by specializing Algorithm 2691

to this setting, shown in Algorithm 3. For simplicity, we also dispense with the abstraction of692

partitioning processes and show the bound update process directly. Furthermore, we also provide an693

explicit form for the AcceptProb and RuledOutMass functions.694

Before we move on to proving our proposed theorems, we first prove two useful results. First, we695

bound the negative log P -mass of the bounds with which Algorithm 3 terminates.696

Lemma 13. Let Q and P be distributions over R with unimodal density ratio r = dQ/dP , given697

to Algorithm 3 as the target and proposal distribution as input, respectively. Let d ≥ 0 and let698

X1:d
def
= X1, . . . , Xd denote the samples simulated by Algorithm 3 up to step d+ 1, where for d = 0699

we define the empty list as X1:0 = ∅. Let Sd denote the bounds at step d+ 1. Then,700

−
d∑

j=0

Aj+1(R, S0:d) · logP (Sj) ≤ DKL[Q∥P ] + log e. (159)

Proof. For brevity, we will write Ad = Ad(R, S0:d) and Td = Td(R, S0:d). Furthermore, as in701

Algorithm 3, we define702

Ld
def
=

d−1∑
j=0

1− Tj

P (Sj)
with L0 = 0. (160)

Note that X1:d is well-defined for all d ≥ 0 since we could remove the return statement from the703

algorithm to simulate the bounds it would produce up to an arbitrary step d. Now, note that by704

Proposition 3 we have P[D = d | X1:d] = Ad+1(R, S0:d). Now, fix d ≥ 0 and bounds S0:d, and let705

x ∈ R be such that αd+1(x) > 0 which holds whenever r(x) ≥ Ld. From this, for d ≥ 1 we find706

r(x) ≥
d−1∑
j=0

1− Tj

P (Sj)
(161)

≥ 1− Td−1

P (Sd−1)
, (162)
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where the second inequality follows from the fact that the (1 − Tj)/P (Sj) terms are all positive.707

taking logs, we get708

log r(x)− log(1− Td−1) ≥ − logP (Sd−1). (163)

Now, we consider the expectation of interest:709

d∑
j=0

−Aj+1 · logP (Sj) = −
d∑

j=0

∫
R
αj+1(x) logP (Sj) dx (164)

eq. (163)
≤

d∑
j=0

∫
R
αj+1(x)(log(r(x))− log(1− Tj)) dx (165)

(a)

≤
∫
R

∞∑
j=0

αj+1(x) log r(x) dx+

∞∑
j=0

Aj+1 log
1

1− Tj
(166)

(b)
=

∫
R
q(x) log r(x) dx+

∞∑
j=0

(Tj+1 − Tj) log
1

1− Tj
(167)

= DKL[Q∥P ] +

∞∑
j=0

(Tj+1 − Tj) log
1

1− Tj
(168)

(c)

≤ DKL[Q∥P ] · log 2 +
∫ 1

0

log
1

1− t
dt (169)

= DKL[Q∥P ] + log e. (170)

Inequality (a) holds because all terms are positive. This is guaranteed by the fact that for d ≥ 1, we710

have Ld ≥ 1, hence 0 ≤ logLd ≤ r(x) whenever Equation (163) holds. Equality (b) follows by the711

correctness of GRC (Theorem 1), which implies that for all x ∈ R we have
∑∞

j=0 αd(x) = q(x), and712

inequality (c) follows from the facts that 0 ≤ Td ≤ 1 for all d and that the summand in the second713

term forms a lower-Riemann sum approximation to − log(1− t).714

Second, we consider the contraction rate of the bounds S0:d, considered by Algorithm 3.715

Lemma 14. Let Q and P be distributions over R with unimodal density ratio r = dQ/dP , given to716

Algorithm 3 as the target and proposal distribution as input, respectively. Assume P has CDF FP717

and the mode of r is at µ. Fix d ≥ 0 and let X1:d be the samples considered by Algorithm 3 and Sd718

the bounds at step d+ 1. Then,719

EX1:d
[P (Sd)] ≤

(
3

4

)d

(171)

Proof. We prove the claim by induction. For d = 0 the claim holds trivially, since S0 = R, hence720

P (S0) = 1. Assume now that the claim holds for d = k − 1, and we prove the statement for d = k.721

By the law of iterated expectations, we have722

EX1:k
[P (Sk)] = EX1:k−1

[EXk|X1:k−1
[P (Sk)]]. (172)

Let us now examine the inner expectation. First, assume that Sk−1 = (a, b) for some real numbers723

a < b and define A = FP (a), B = FP (B),M = FP (µ) and U = FP (Xk). Since Xk | X1:k−1 ∼724

P |Sk−1
, by the probability integral transform we have U ∼ Unif(A,B), where Unif(A,B) denotes725

the uniform distribution on the interval (A,B). The two possible intervals from which Algorithm 3726

will choose are (a,Xk) and (Xk, b), whose measures are P ((a,Xk)) = FP (Xk)−FP (a) = U −A727

and similarly P ((Xk, b)) = B − U . Then, P (Sk) ≤ max{U −A,B − U}, from which we obtain728

the bound729

EXk|X1:k−1
[P (Sk)] ≤ EU [max{U −A,B − U}] = 3

4
(B −A) =

3

4
P (Sk−1). (173)
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Plugging this into Equation (172), we get730

EX1:k
[P (Sk)] ≤

3

4
EX1:k−1

[P (Sk−1)] (174)

≤ 3

4
·
(
3

4

)k−1

, (175)

where the second inequality follows from the inductive hypothesis, which finishes the proof.731

The proof of Theorem 3: We prove our bound on the runtime of Algorithm 3 first, as this will732

be necessary for the proof of the bound on the codelength. First, let D be the number of steps733

Algorithm 3 takes before it terminates minus 1. Then, we will show that734

E[D] ≤ 1

log(4/3)
DKL[Q∥P ] + 4 (176)

We tackle this directly. Hence, let735

ED[D] = lim
d→∞

EX1:j

 d∑
j=1

j ·Aj+1

 (177)

= lim
d→∞

EX1:j

 d∑
j=1

−j
logP (Sj)

· −Aj+1 logP (Sj)

 (178)

≤ lim
d→∞

EX1:j

 max
j∈[1:d]

{
−j

logP (Sj)

}
·

d∑
j=1

−Aj+1 logP (Sj)

 (179)

lemma 13
≤ (DKL[Q∥P ] + log e) · lim

d→∞
EX1:j

[
max
j∈[1:d]

{
−j

logP (Sj)

}]
. (180)

To finish the proof, we will now bound the term involving the limit. To do this, note, that for any736

finite collection of reals F , we have maxx∈F {x} = −minx∈F {−x}, and that for a finite collection737

of real-valued random variables F̂ we have E[minx∈F̂ {x}] ≤ minx∈F̂ {E[x]}. Now, we have738

lim
d→∞

EX1:j

[
max
j∈[1:d]

{
−j

logP (Sj)

}]
= lim

d→∞
−EX1:j

[
min

j∈[1:d]

{
j

logP (Sj)

}]
(181)

≤ lim
d→∞

(
− min

j∈[1:d]

{
EX1:j

[
j

logP (Sj)

]})
(182)

(a)
≤ lim

d→∞

(
− min

j∈[1:d]

{
j

logEX1:j [P (Sj)]

})
(183)

lemma 14
≤ lim

d→∞

(
− min

j∈[1:d]

{
−j

j log(4/3)

})
(184)

= lim
d→∞

(
max
j∈[1:d]

{
1

log(4/3)

})
(185)

=
1

log(4/3)
(186)

Inequality (a) follows from Jensen’s inequality. Finally, plugging this back into the previous equation,739

we get740

E[D] ≤ DKL[Q∥P ] + log e

log 4/3
≤ DKL[Q∥P ]

log 4/3
+ 4 (187)

Proof of Theorem 2: For the codelength result, we need to encode the length of the search path741

and the search path itself. More formally, since the returned sample X is a function of the partition742

process Z, the search path length D and search path S0:D, we have743

H[X | Z] ≤ H[D,S0:D] = H[D] +H[S0:D | D]. (188)
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we can encode D using Elias γ-coding, from which we get744

H[D] ≤ ED[2 log(D + 1)] + 1 (189)
≤ 2 log(E[D] + 1) + 1 (190)

≤ 2 log

(
DKL[Q∥P ] + log e

log(4/3)
+ 1

)
+ 1 (191)

≤ 2 log (DKL[Q∥P ] + log e+ log(4/3)) + 1− 2 log (log(4/3)) (192)
≤ 2 log (DKL[Q∥P ] + 1) + 1− 2 log (log(4/3)) + 2 log(log e+ log(4/3)) (193)
≤ 2 log (DKL[Q∥P ] + 1) + 6. (194)

Given the search path length D, we can use arithmetic coding (AC) to encode the sequence of bounds745

S0:D using − logP (SD) + 2 bits (assuming infinite precision AC). Hence, we have that the average746

coding cost is upper bounded by747

H[S0:D | D] ≤ ED[− logP (SD)] + 2
lemma 13
≤ DKL[Q∥P ] + 5. (195)

Putting everything together, we find748

H[D,S0:D] ≤ DKL[Q∥P ] + 2 log(DKL[Q∥P ] + 1) + 11, (196)

as required.749

D Additional experiments with depth-limited GRC750

In this section we show the results of some experiments comparing the approximation bias of depth751

limited GRCD, to that of depth limited AD∗ , following the setup of Flamich et al. (2022). Limiting752

the depth of each algorithm introduces bias in the resulting samples, as these are not guaranteed to753

be distributed from the target distribution Q, but rather from a different distribution Q̂. Figure 5754

quantifies the effect of limiting the depth on the bias of the resulting samples.755

In our experiment we take Q and P to be Gaussian and we fix DKL[Q∥P ] = 3 (bits), and consider756

three different settings of D∞[Q∥P ] = 5, 7 or 9 (bits), corresponding to each of the panes in fig. 5.757

For each such setting, we set the depth limit of each of the two algorithms to Dmax = DKL[Q∥P ]+d758

bits, and refer to d as the number of additional bits. We then vary the number of additional bits759

allowed for each algorithm, and estimate the bias of the resulting samples by evaluating the KL760

divergence between the empirical and the exact target distribution, that is DKL[Q̂∥Q]. To estimate761

this bias, we follow the method of Pérez-Cruz (2008). For each datapoint shown we draw 200 samples762

X ∼ Q̂ and use these to estimate DKL[Q̂∥Q]. We then repeat this for 10 different random seeds,763

reporting the mean bias and standard error in the bias, across these 10 seeds.764

Generally we find that the bias of GRCD is higher than that of AD∗ . This is likely because AD∗765

is implicitly performing importance sampling over a set of 2Dmax+d − 1 samples, and returning the766

one with the highest importance weight. By contrast, GRCD is running rejection sampling up to a767

maximum of Dmax+d steps, returning its last sample if it has not terminated by its (Dmax+d)th step.768

While it might be possible to improve the bias of depth limited GRCD by considering an alternative769

way of choosing which sample to return, using for example an importance weighting criterion, we do770

not examine this here and leave this possibility for future work.771
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Figure 5: Bias of depth-limited AD∗ and GRCD, as a function of the number of additional bit budget
given to each algorithm. See text above for discussion.
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